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Abstract—This work experimentally examines different no-
tions of stability of the behavior of individuals and groups in
a network of blogs. Our experiments are conducted on data
collected from LiveJournal. All stability notions aim to locate
stable behavior within an individual's area, which is defined
in a variety of manners. Our experiments confirm an earlier
observation of the highly dynamic nature of the network. Roudply
70% of the communication of a typical week was not observed in
the previous week. Depending on the definition of stability ad

do not appear in the graph regularly.

Conditional Stablility : A real value which quantifies how
stable an individual's area is when viewed from his or her
perspective. Stability is measured without taking into account
user inactivity.

Parameterized Stability. A binary classification where an
individual’s area is described as stable or unstable based on
some behavioral thresholds.

area used, we find small, but highly stable, sets of individuals

with stable behavior in the network. Each of these metrics have some drawbacks and advantages which

will be explored as well as statistics showing the distribution of
stability among users of the network.
The emergence of vast, easily observable networks such as The formalization and observation of stability within net-
those formed by the WWW, email activity, social networkingyorks such as the blogosphere have various implications. First,
sites, and blog communications has enabled a large amougy identification of stability will result in better models of the
of research focusing on network dynamics. Recent work hagerall behavior of individuals in these networks. Better models
shown that some networks have connections which are vegll result in better results for predicting who will communicate
dynamic while vertex sets remain comparatively static [1][2}nith whom and how ideas will spread between them. Identification
Given these intense reconnection dynamics, the identification ¢ff stability also gives a global picture of expected behavior in a
stability becomes important, as it enabes classification, predictigistwork. If, all of a sudden, distributions and statistcs change
and understanding of individual and group behavior within thgrastically, either for a stable individual or for the network as a
network. whole, an observer would know that some significant event has
Previous research has focused on locating stability in thppened with respect to the individual in question or the network
sea of statistics that can be generated from evolving, dynamjg a whole.
graphs [3]. This has led to a better understanding of universal
trends such as network size during a given period, what portion pf pata

edges remain constant, and how out-degree and in-degree relate . . . . .
in a aiven snanshot of a network. However. this work did no € popular blogging service LiveJournal has grown quite rapidly
g P ) ’ ver the years. As of Janurary 2009, 18 million blogs have

aim to locate individual users or groups whose behavior is stabje. . o U .
. : L . céen created since the service’s inception in 1999[4]. LiveJournal
Using a series of snapshots of communication patterns in a blg

network, this work will present and locate various notions O?Hers users the ability to create their own blogs, as well as

behavioral stability at both the individual and collective leveld€C2"€ friénds and interests, join community centered groups, and
o . : discuss other user’s blog posts through comments. Our research
Rather than focus on the stability of social groups or topics, an

) . . n the Russian lan t of Liv rnal an
individual’s behavior will be examined through the concept Opcuses on the Russian language subset o eJournal and uses

. commenting and posting activity to generate graphs representin
an area. Conceptually, areas are defined as a subset of the gra| R 9 P g ylog grap P 9

o - : weekly snapshots of the communications dynamics in the network.

where a specific user is likely to attach edges in the future. T - . .

- . . . ne of the advanced features of LiveJournal is an RSS feed which
stability of a variety of areas are examined further in the text, . .

- . . - \ - ublishes newly created posts as they appear in the system. Our
offering glimpses into the stability of the network’s behavior a . : -

. . collection software records every post published in this feed and

different levels of granularity.

The dynamics of the blogograph, a series of networks fOrma‘gores a record of each comment that appears in response to that

2 e - 0st.
!at_ed fro_m act_uf’:ll comml_mlcatlons w_|th|n a blog provider, .”.’a" From this collected data, weekly snapshots of activity within
it incredibly difficult to pin down a singular notion of stability. | . A
L . . : LiveJournal are created. Weeks were considered to be a natural
Individuals may be inactive for long stretches of time, though thelr

- ; . ntil of time based on the cyclic nature of activity levels in the
behavior when they do appear may be incredible stable. In ordger - -
- . . . S ata, where weekends result in much fewer comments and posting
to circumvent this, we examine multiple flavors of stability:

than weekdays. From the collected data for each week, a weighted,
« Universal Stability: A real value which quantifies how stabledirected graph is created in the following manner. If an individual,
an individual’s area is when viewed from the perspective ofl, comments on one of the posts of uggrthe graph will contain
the entire network. Vertices are considered unstable if theyn edge fromA to B. The edges are weighted based on the

I. Introduction
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Fig. 2. A histogram showing how many vertices appear in a givenber Fig. 3.  Distribution of how often edges repeat for the vasi@raph
of weeks of the observed data. formulations.

number of posts of3 user A has commented on. For example, ithat the values converge as values along the x-axis increase.
A comments 10 times on one &'s posts, the resulting edge will Proportionally however, the graphs with appearance thresholds
have weight 1. However, if uset comments once on 10 d8’s predictably contain a larger number of stable edges.
posts, the edge from to B would have weight 10. An example
of this construction is given in Figure 1. Detailed descriptions dfl. Area
the statistics of these graphs are given in [1] and [3]. In a network such as the one described above, the dynamics of
The most significant feature of the LiveJournal data collectafle network complicate the search for stable behavior. In order
is its instability. Over the 46 weeks of observed data, the preserngecombat this, the notion of aarea is defined. In [1], an area
of an individual in a given week’s graph indicates that at thig defined as a region of the graph from which a user is more
very least, the user in question posted a comment or receiMid@ly to reconnect its edges in the next evolution of the graph.
a comment from another user on one of his or her posts. IfSimply put, an individual’s area in a given snapshot of the graph
user does not participate in either of these activities, they are igndefined by some criteria which indicates the belief that a user
isolate in the graph formulated from the week’s postings. Thes@s more of a connection to individuals within their area than
users are considered inactive for the given week. The ability pfdividuals in the rest of the graph. The criteria used to define
bloggers to become inactive from week to week causes difficultigsis set can be varied and range from simple definitions such as
in the search for stability. Figure 2 is a histogram showing hote 1-neighborhood to complex definitions such as the union of
many vertices appear a given number of weeks in the observastial groups which contain an individual. This text will examine
data. A proportionally large number of individuals appear only the stability of these two area definitions, an individual's one
handful of weeks. neighborhood and the union of their social groups, over all users
Due to this instability in vertex set, it makes sense to examing the observed networks.
the stability of specific subsets of the vertices. Thus, in this The community detection algorithm used to locate social
analysis we examine graphs based on the data. First, we consigielups to use as areas is lterative Scan, with input seeds de-
the set consisting of all vertices. This graph is constructed asrmined by Link Aggregate. The specifics of the algorithm are
described above. We also consider the subsets of vertices whigiscribed in [5]. The algorithm works by taking a set of seed
appear at least 30 weeks and those which appear at least 40 weeksimunities and adding or removing vertices until each group
This restricts the graph to only active and ultra-active individualg conditionally optimal with respect to some defined density
In the graphs analyzed for vertices with at least 30 appearanggsction. For this application, the density function used was
and 40 appearances, edges from the original graph are dropped o
if they do not contain endpoints in the same set. This removes density = ————— + e, (3.1)
vertices below the appearance threshold from the analysis. Cin + Cout
The connections between individuals in the data are alsdheree;, is the number of edges within the communigy,,: is
highly dynamic. For any week’s graph, 60% of the edges withe number of edges connecting vertices within the community
not be present in the next week’s graph. Many of these edgesvertices outside) is a weighting parameter, angd, is the
do not reappear at any point in the observed 46 weeks. Figur@dge probability within the cluster. The term involving edge
shows how often individual edges appear in the observed data fwobability was introduced to restrict community size in sparse
each of the three graphs described above. Note that the numbephs. The term discourages vertices from being added which
of edges shown on the y-axis is a raw count in order to shoare not significantly connected to the rest of the community being



Thread on Alice’s Blog o‘ Thread on Bill's Blog

> Alice posted Edges Edgest . gj| posted
° Bill commented B—>A @ 9 é:ﬁ > Alice commented
> Alice commented|| € ™A D—>B ° Cory commented
° Cory commented O ° Dave commented

Fig. 1. Blogograph generation example. Vertices are placee¥ery blogger who posted or commented, the edges are plemadtiie author of
the comment to the author of the post (the blog owner). Paradiges and loops are not allowed.

A Clusters| Avg Size | AvgDensity
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0.125 | 101309 | 2.65638 | 0.293328
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0.03125| 98086 | 10.1978 | 0.339646
0 95603 | 33.3089 | 0.379738

Fig. 4. Table showing cluster and area statistics\ahanges.
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optimized. This value can have a significant effect on the results 10

of the algorithm. The average community sizes and densities are

shown in Figure 4 for a week of the observed data for various 1 .
values of\. Area Size

Now, we consider two area definitions on the same graphig. 5.  Area size distribution for various areas. Note tHathie
Figure 5 shows the distribution of area sizes for the areas defingfkighborhood is used as a baseline, at some point, incgeasimuses
by the 1-neighborhood and by the union of communities witthe social group area definition’s distribution of sizesdth below that of
various values of\. The difference in the size distributions forthe 1neighborhood.
different area definitions show that as the valueloincreases,
areas get smaller. This is a consequence of favoring groups
with high edge probability. As\ grows, the edge probability

definitions. Noti in, that reducing the si fi
is weighted so heavily in the density function, that addin efinitions. Notice again, that reducing the size oincreases

- . . . . . area size due to increased cluster size. Also, when many large
a'dlfﬂonal yertlces o a co.mmunlt_y of size 2 becomes 'ncred'béﬁusters are discovered, the number of vertices with defined area
difficult since a communlty of size two W't.h. an gdge betwee{h the analysis approaches the number of vertices when defining
the two vertices has a high edge probability. Figure 5 Shov\é?eas using 1-neighborhood. This value is the maximum possible,

the distribution in detail. However, in the true distribution for 1as every vertex which is observe must, at some point, be connected
neighborhood, there is a huge tail extending out to an area Sl€some other vertex ' '

of 2500, while no group based areas approach that size. This Is
because when optimizing groups, the algorithm shies away frq@ Stability
placing a vertex of degree 2500 in a group. Since the density
function described penalizes for edges cut by the communi@fability can be measured in a variety of ways. Since stability
boundary, adding a user with a high degree to a group requi,iés at its heart, the similarity between two sets, it makes sense to
that a large portion of vertices adjacent to the user already H&e the Jaccard index between vectors representing an individual's
in the group, which is unlikely barring the presence of intens@€a in two time periods. Formally, the Jaccard index is given as
community structure between the high degree vertex and all of |AN B
his neighbors. J(A,B) = A0 B|

Defining an individual’s area to be the union of his or her
social groups does have a slight wrinkle to it in that occasionallywhere in this cased and B are sets containing the vertices in an
indidividuals do not belong to any social groups as found bydividual’s area. This value will be 1 when the setsand B are
the algorithm. In this case, this analysis cannot define an aregual and is O if they do not overlap. This index can be utilized
for the person. Therefore, he or she is simply considered to ledifferent ways to capture some of the subtleties of stability.
inactive in the graph. Figure 6 shows the number of vertices that The simplest notion of stability is that ahiversal stability.
have defined areas and the average area size for various drethis case, the stability is measured with respect to the rest of




Area Type All Appearances| 30 Appearances 40 Appearances

1-neighborhood 555853 6.69) 89539 8.689 47851 0.659
GroupsA =1 470326 2.319 89498 @.300 47840 @.290
GroupsA = 0.5 469972 2.323 | 89498 .29 | 47840 Q.289
GroupsA = 0.25 471074 R.452 | 89499 @.307) | 47839 Q.287)

Groups\ = 0.125 478218 ¢.382 | 89497 @.23) | 47839 .81§
Groups\ = 0.0625 | 505289 p5.83 | 89506 £8.5) | 47844 Q6.39
GroupsA = 0.03125 | 529049 (56.0 | 89510 Q06.3 | 47843 Q17.9

Fig. 6. Table showing the number of vertices with defined anedke observed 46 weeks of data. The average area size fdisetivered areas is
also shown in parentheses and bold.

the graph. That is to say, that if an individual does not appefor each of the different area definitions. For the 30 appearance
in the graph in a given week, the network continues its normahd 40 appearance graphs, an increase in stability across all area
behavior. From the network’s perspective, the individual shouliefinitions is seen. Again, this is expected, as universal stability
be penalized for being unstable, even though the individual's aredl penalize vertices for not periods of inactivity. These graphs
might be the same in all weeks in which he or she appears liave had inactive vertices, to a certain extent, removed. The
the graph. Using the Jaccard index, we formalize the describgeneral trend using this metric is that 1-neighborhood appears to

situation as provide the most stability followed by the areas which are defined
E’_’L:OlJ(AtwAturl) by taking the union of social groups with the smallest size.
Sulto,tn) = ——— —— Figure 8 shows the distribution of conditional stabilities.

: . . . Here, a much different distribution is observed, as individuals
From a practical standpoint, this value is perhaps the most S : " .
e - . . . many more individuals have higher stability due to the relaxation
indicative of stability. Given an arbitrary graph, it shows how

stable one would expect an individual to be in the next gra| Rf metric. Using the union of social groups to define areas
p 9 pW'gh this measure provides more stability fdrvalues producing

However, based on the appearance histogram shown in Figure

ertices in the blogoranh enter and leave the network re Iar?m'aller areas than the 1-neighborhood. Looking at the 30 and 40
vert ) gorap v W gu é)earance graphs, the difference in conditional stability defined

Using this measure, a vertex with the same area over 10 we§?

would be classified as unstable even though he or she embo %%lgvn\:g‘sif\?:ﬁ ni:)izséih:ﬂ?cg;?w areas, and 1-neighborhoods
some notion of stability. 9 :

As a complement to universal stabilitypnditional stability Figures 9, 10, and 11 examine parameterized Sftab'“ty' They

. A show, for each of the graphs, the number of vertices that are
can be used. In this measure, stability is measured from the useétsable" for a given number of weeks along the x-axis given one of
perspect!ve. Here,. i the.us.er does not. appear in the n?two{hree stability thresholds: 0.1, 0.3, 0.7. These values are meant to
the metric delays its similarity computation until the individua

. . examine a low, medium, and high threshold requirement. Looking
appears again. It then takes the average of the Jaccard index OL. . X .

. . ; at Figure 9, using an area defined by the 1-neighborhood of an
these adjacent appearances. Consider the chronologically ordered : f I

. . . ; individual results in more stability across all thresholds, though

setT = {to,t1,t2,...,tn—1,tn} Of time steps in which a given = . . . S
vertex appeared in the network using groups with a high value of as the area shows significant

PP ' stability with a threshold of 0.3 for 5-15 weeks. In Figures 10 and
. g (tiy tiv) 11 showing the 30 appearance graph and 40 appearance graph,

So(T) = T —1 this continues to be the case, except when the stability threshold

These two stability metrics can be used together to help gdifaches 0.7. Here, the union of groups with a high value\ of
an understanding of the stability of an individual. A person with EESUlts in an a similar amount of stability in the 30 appearance
high conditional stability value has a stable area when he appedf&Ph and more stability in the 40 appearance graph than using
in the network. A person with a high universal stability has € 1-neighborhood. o .
stable area as well a stable activity profile; he or she regularly is Based on all of this data, it is apparent that, with few
a part of the network. It would also be useful to identify stable sefCEPtions, using areas as defined by the 1-neighborhood of an
of individuals with respect to certain parameters and to obser{lividual result in more stability. Given this, one can ask how
the size of the stable sets increase or decrease as the paramEl€r§ets that are considered stable compare. Specifically, how well
change. This is the third notion of stability we will present. wgloes the set of stable individuals found using 1-neighborhood
identify a vertex as being stable if he or she has some numis&Ver the, genera!ly smaller, set of stable |nd|v!dugls found using
Turapie > Tinresn OF adjacent appearances with Jaccard indde union of somallgroups. Across all comblna}tlons of stab!e
J(t,t;41) > t, Wheres ., andt are user defined parametersparametersf approximately 50% of stable_ mdwn_duals _found in
group based areas are also stable when using their 1-neighborhood
as an area. This indicates that the 2 definitions find different sets

V. Results R
. . of stable individuals.
The universal stability results for each of the three graph formu- Using parameterized stablility, the result of each analysis

lations are_shown below in Figure 7. A§ _Would be expectt_ad using 5 partitioning of the vertex set into “stable” and “unstable”
such a strict measure, all of the stability values are fairly low
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Fig. 8. Three plots detailing the average conditional §itghdf 4 area definitions on the 3 formulated graphs. Subfigajeuses a logscale along
its y-axis. For all graphs, using areas composed of the uni@o@al groups which on average are smaller than the areaseddfly 1neighborhood
locate more stable vertices. The elimination of infrequerrsisn the 30 and 40 appearance graphs also results in a chadigribution shape,

indicating an increase in the proportion of vertices witghar stability values.
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Fig. 9. Plot showing the portion of vertices that appearlstédr exactly the number of weeks listed along the x-axis fnious stability thresholds.
The underlying graphs used in this evaluation consist o€athmunication data.
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Fig. 10. Plot showing the number of vertices that appear etivlexactly the number of weeks listed along the x-axis forous stability threshold.
The underlying graphs used in this evalution consist onljndividuals appearing at least 30 times in the observed data.
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Fig. 11. Plot showing the number of vertices that appear etlexactly the number of weeks listed along the x-axis foiouss stability threshold.
The underlying graphs used in this evalution consist onlyndividuals appearing at least 40 times in the observed data.

) Dt of Avsg Sty i il s individuals in an attempt to study the active "core” of the graph.
ne oo ot o Such analyses are important as they provide a set of observations
sl O Group Areas Ep:ﬁ_zs | which can be used to enhance current models of dynamic network
o7 b Group Aveas EP=00625 @~ | behavior used in link prediction, diffusion, etc.
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In highly dynamic networks such as the blogograph, understand-
ing the nuances of behavioral stability is a difficult task. Using
the concept of an individual’s area, we are able to observe how
stability distributions change under different stability metrics.
Once these metrics have been applied to each data set, we can
then consider how individual stability compares under definitions
and how stable individuals interact with unstable individuals.
In addition to analyzing the full observed data, we have also
examined the graphs composed of only active and ultra-active



