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Abstract—Security of inference phase deployment of Convolu-
tional neural network (CNN) into resource constrained embedded
systems (e.g. low end FPGAs) is a growing research area. Using
secure practices, third party FPGA designers can be provided
with no knowledge of initial and final classification layers. In this
work, we demonstrate that hardware intrinsic attack (HIA) in
such a “secure” design is still possible. Proposed HIA is inserted
inside mathematical operations of individual layers of CNN,
which propagates erroneous operations in all the subsequent
CNN layers that leads to misclassification. The attack is non-
periodic and completely random, hence it becomes difficult to
detect. Five different attack scenarios with respect to each CNN
layer are designed and evaluated based on the overhead resources
and the rate of triggering in comparison to the original imple-
mentation. Our results for two CNN architectures show that in all
the attack scenarios, additional latency is negligible (< 0.61%),
increment in DSP, LUT, FF is also less than 2.36%. Three attack
scenarios does not require any additional BRAM resources, while
in two scenarios BRAM increases, which compensates with the
corresponding decrease in FF and LUTs. To the authors’ best
knowledge this work is the first to address the hardware intrinsic
CNN attack with attacker does not have knowledge of the full
CNN.

Index Terms—Convolutional Neural Network, FPGA, Trojan

I. INTRODUCTION

F_]FPGA based Convolutional Neural Network (CNN) infer-
ence has gained attention in recent times [1]. FPGA hardware
accelerators offer good performance, high energy efficiency,
fast prototyping, and capability of reconfiguration, [2]], [3].
The re-configurable nature of FPGAs permits flexibility in
the mapping of CNNs on FPGA with high accuracy and
low precision [4]. The adoption of High Level Synthesis
(HLS) in the mapping of CNN on FPGA allows software
specifications of accelerators to be synthesizable to hardware
[4]. To achieve short time-to-market, the mapping of pre-
trained CNN on hardware accelerators is often outsourced to
untrusted third parties. They contribute to FPGA design flow,
by providing soft IPs or hard IPs (such as bitstream file).
Due to their untrusted nature hardware intrinsic security can
be compromised via malicious hardware insertions, which are
very difficult to detect, especially if the IP is provided as a
bitstream file.

Different techniques of inserting hardware attacks into
CNNs have been explored. Clements et. al [5] presents a
hardware Trojan framework introduced in IP designs. This
hardware Trojan generates small bounded perturbations that
are added to feature maps of targeted layers of the CNN
and causes deterioration in the performance of CNN. Liu
et. al in [6] discusses an attack on neural networks where
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samples of the input data are generated from the pre-trained
model to design a trigger that activates a payload to cause
misclassification. These attacks require a manipulation of the
CNN parameters to achieve misclassification, which can be
detected by carrying out a model integrity test on the hardware
design. Moreover, traditionally it is assumed that the attacker
has full knowledge of the CNN architecture. We argue that
in an effort to deter hardware attacks, the project owner may
hide the details of dataset by not providing details of first
layer and eliminate the last layers to conceal the classification
information as is the case for edge offloading for CNNs [7],
[8]]. This results in third party IP designers (potential attacker)
having no means to evaluate the effectiveness and stealthiness
of the attack. Hence, in this paper we demonstrate a framework
of attacks called SoWaF (Shuffling of Weights and Feature
Maps to corrupt the mathematical computation) that leads to
misclassification, without any knowledge of dataset and final
classification layer.

A. Motivational Analysis

The above discussed attack scenario lead to the question
that, what is the feasibility of hardware intrinsic attack (HIA)
if intermittent changes are made to mathematical operations of
one of the layers in CNN? The premise is that if a subtle (and
stealthy) minimal change in some mathematical operations can
lead to misclassification, then it is extremely difficult to detect
such attacks. To understand the effect of minimal change in
mathematical operations we took a 3 x 12 x 12 input feature
map and perform convolution with a channel 3 X 3 X 5 x 5
weight matrix to obtain a 3 x 8 x 8 output feature maps O;.
This serve as a baseline result. To device a possible attack,
the channels of the weight matrix are then randomly shuffled
and used to perform convolution with the input feature map to
obtain another 3 x 8 x 8 output feature maps O. Element wise
comparison of O; and O,, shows that 72% of the values are
changed more than 95%. This toy example inspired us to do
further investigation and see the effect of SoWaF in complete
CNN architecture.

B. Research Challenges

We formulated the following research challenges based on
the motivational analysis:

e How can an attack be triggered randomly, with the
payload activated only intermittently, so that it cannot
be detected easily?

o How the malicious changes in the mathematical oper-
ations are implemented such that it requires minimal
resources but still capable of inducing an effective attack?



C. Novel Contribution and Concept Overview

To address the aforementioned research challenges, we
propose a HIA methodology for FPGA based CNN inference
called SoWaF. The HIA comprises of two stages namely:
Offline pre-processing and Runtime payload analysis. The
attack is designed to be intermittently triggered. Overview of
SoWaF methodology flow is shown in Fig. [T} The red shaded
portion of Fig. [T] shows our contribution. Section 1 of the
methodology flow involves the offline analysis of the output
feature maps to design a stealthy trigger. Section 2 shows
the comparison of the additional hardware overhead incured
by the HIA circuitry with the design constraints. Section 3
shows the evaluation of the stealthiness and effectiveness of
the attack. Our methodology employs the following analysis
and methods:

attack overhead
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Fig. 2: Brief overview of the mapping of CNN to FPGA elaborating
on the threat model and the corresponding payloads.
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that for verification purposes, a hardware validation dataset is
provided to the 3rd party designer (a normal industrial practice
[2]), without revealing any information about the initial layers.
III. SOWAF ATTACK METHODOLOGY
The proposed methodology is sub-divided into 2 phases
namely:

o Offline Pre-processing: Trigger Design
« Runtime: Payload Operation

A. Offline Pre-processing: Trigger Design
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Fig. 1: Design time flow of the HIA methodology. Highlighted boxes
represent the novel contributions

o To design a trigger, we propose the exploitation of
computation of the layer-by-layer feature maps.

« To achieve stealthiness, we propose a positional relation-
ship based probabilistic trigger, which is intermittent.

o To achieve misclassification with minimum resource
overhead, we propose a novel payload that disrupts cer-
tain mathematical operations with very minimal (if any)
added resources.

The remainder of this paper is organized as follows: Section II
describes the threat model. Section III discusses the proposed
attack design. Section IV shows experimental results and
discussion. Section V provides comparison with state-of-the-
art and Section VI concludes the paper.

II. THREAT MODEL

This work proposes a gray-box attack where the attacker
has little knowledge of the CNN architecture. We assume that
the third party IP designer is not trustworthy. It is assumed
that the attacker has no access of the training and testing
data samples, i.e. attacker is only designing a CNN without
its head (last layers) and initial layers. The attacker provides
the implemented CNN hardware design as a bitstream file to
the defender (project owner). Fig. [2] shows the trusted and
untrusted sections of the design. The 3rd party designer has
access to the untrusted sections based on specifications and
requirements provided by the trusted party. It is also assumed
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Fig. 3: Offline pre-processing (Trigger Design): Conceptual Rep-
resentation of offline processing: the aggregation of values from a
chosen index helps the selection of less occurring range of values
(RoV) (triggers) and the insertion of the trigger (where P is the size
of the Validation dataset, O, O, O® are the output feature maps of
convl, pooll and fcl layers, respectively.)
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During the functional verification stage the hardware val-
idation dataset can be used by the attacker to access the
respective CNN layer’s output feature maps for all the dataset.
As illustrated in Fig. 3] the attacker assess the statistical
properties of the output feature maps to setup a trigger.

In this work, to design the trigger we randomly choose an
index (O}, ,,,, where w is the layer, tuple (n,m) represents
the rows and columns of the index) of one of the randomly
chosen channels of the output feature map of a targeted layer
as shown in line 1 of Algorithm [T} During verification, the
attacker may monitor the the values (X or Y or Z) as shown
in Fig. 3] of the randomly selected index (Oy),,,) against the
validation dataset to obtain the range of values (RoV) (where
[@, Dyy] Tepresent the minimum and maximum value of RoV
respectively) that are likely to occur at a particular index. This



serves as a sample space to estimate RoV that occur less often
on the chosen index as shown in line 3 - 5 of Algorithm [I}
From the Aggregated index outputs ({O}f;n, Oy}, where
0,...P represent each data instance in the validation dataset),
as shown in Fig. EL of a chosen index, we select a RoV whose
number of occurrence in the validation dataset satisfy a chosen
threshold (T'(Oy,,,) — ¢([aw,bw]) = M) as shown in Line
6 - 10 of Algorithm [1} The selected RoV ([a,,b,]) for a
given CNN layer serve as the trigger for the HIA. This offline
pre-processing algorithm, Algorithm [T] enables the proposed
attack to assess the RoV and to select a stealthy trigger while
processing an image.

Algorithm 1 Offline Pre-processing: Trigger Design

Require: Mapping of the CNN to the desired hardware in
HLS (C++).
Require: Verification of mapped CNN hardware design.
1: Select CNN layer index O,/ .
2: for each image (X) € validation dataset (of size P) do

0 P
3 A= {O}im;}...Oﬁml €Oy,
where: {O},,...O} .} are the numerical values of the

chosen index for each data instance in the validation
dataset (1, 2, ... P)
A is output feature map of any layer (X or Y or Z)
O" is the chosen channel of the targeted layer
n, m are the row/column indexes of the chosen channel
w represents the targeted layer
end for
Select less frequently occurring RoV [a,, by,] from A
if 0, : T(Oy,,,) then
Select [a., byy] from A
where: T(O}; ,,,) = c([@w, bw) = M
¢ = number of elements in A within [a, by
M = Chosen threshold for c
T is the function that returns a Boolean if the numerical
value of the index satisfies the chosen RoV
[y, by are the lower/upper limit of the chosen RoV
8: else
. Select new range [a,,, b,] and repeat steps 4 to 6.
10: end if
11: Insert [a.,, by, as trigger in mapped CNN

Nk

B. Runtime: Payload Operation

To design the payload we proposed an algorithm, Algorithm
(] The payload monitors the selected CNN layer, the selection
of CNN layer depends on the additional resource overhead
incurred due to the targeted layer and the rate of triggering on
the layer. Upon triggering, for convolution layers, the payload
shuffles the channels of the weight matrix with another one
as illustrated on the right hand side of the decision block in
Fig. @] Line 4 of Alogrithm [2] makes sure that the individual
channels in a particular layer are swapped, i.e. Qu[jo] is
swapped with Q. [j¢] (where 0 < f < [ and [ is the amount
of weight matrix channels). Because CNN layers other than
convolution and fully connected layers (such as Pooling, etc.)
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Fig. 4: Representation of the payload during runtime: the right side of
the image (shaded in red) shows the weight matrix channels reshuffled
to obtain malicious feature maps to achieve misclassification

do not have weight matrices and channels, therefore the are
treated separately in line 5 of Algorithm [2] This payload is
empirical crafted offline with several experiments (explained
in Section IV) to make sure that the malicious mathematical
modifications likely results in misclassification.

Algorithm 2 Runtime: Payload Operation

Require: CNN Deployment.

1: for each image cycle (Im) do

2 Monitor selected CNN layer index Oy,

3 if Oy, € [aw,b,] then

4 Qujo, j1, ---di] = Qulif, jy+1,---Ji—y] (conv layer)

5: Rw[j()vjla ]l] = Rw[jfajf—O—lv "'jl—f] (pOOI layer)
where: f is the order factor of shuffling
Qwljo, j1,---jf] is the default weight matrix order
Ry [jo, j1,---jy] is the default output channel order
[ is the number of weight channels or output channels

6: if 0 <j < { then
7: L<f<i

8 else

9 0<f<%

10: end if

11:  end if

12: end for
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Fig. 5: LeNet and LeNet-3D CNN Models

IV. EXPERIMENT SETUP, RESULTS AND DISCUSSION

The mapped CNN IP is designed using Xilinx’s Vivado
and Vivado HLS 2018.3 and to generate an IP for resource

16ch 120ch, 84ch 10ch.
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TABLE I: Resource overhead comparison between attacks on different layers of LeNet and LeNet-3D compared to their respective originals

Attack Scenario (Sn): % % LUTs % FFs % Latency (x1000) %
Network Layer Chs | BRAM | yiee | DSPS | Gige | x1000) | diff | (x1000) | diff clock-cycles diff
Original - 42 - 33 0 118.5 - 58.3 - 680.4 -
Snl: convl attack 6 42 0 33 0 119.2 +0.61 59.2 +1.5 680.51 +0.003
LeNet Sn2: pooll attack 6 42 0 33 0 118.9 +0.34 58.8 +0.76 680.51 +0.003
Sn3: conv?2 attack 16 53 +26 33 0 121.3 +2.36 58.8 +0.81 680.58 +0.013
Sn4: pool?2 attack 16 42 0 33 0 119.2 +0.34 59.3 +0.76 680.51 +0.003
Sn5: conv3 attack 120 162 +285 33 0 780.7 -34 34.5 -41 680.74 +0.038
Original - 59 - 37 - 49.0 - 39.7 - 1685.71 -
LeNet-3D Snl: convl attack 5 59 0 37 0 49.9 +1.81 40.5 +1.8 1685.73 +0.001
for Sn2: pooll attack 5 59 0 37 0 49.6 +1.16 40.4 +1.76 1685.72 +0.001
Cifar10 Sn3: $conv2 attack 20 79 +34 37 0 48.6 -0.78 39.0 -1.9 1685.72 +0.001
Sn4: pool2 attack 20 59 0 37 0 50.0 +1.93 41.0 +3.2 1695.99 +0.61
Sn5: conwv3 attack 100 159 +169 37 0 20.1 -59 10.0 -74.6 1685.72 +0.001
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Fig. 6: Graph showing the random nature and low-triggering rate
of the different attack scenarios: Left represents LeNet trained on
MNIST and Right and LeNet-3D CNN model

constrained devices. Vivado is used to integrate the generated
IP with AXI-interconnects and ZYNQ processor (FPGA ZCU
7020 with clock frequency 100MHz). The HIA is implemented
on Lenet (Fig. B) trained on MNIST dataset and LeNet-3D
for Cifar10 datasets, respectively. In this work, we propose 5
different scenarios, where each layer (from convl to conv3)
is infected with the HIA. Stealthiness (defined as of the
additional hardware overhead (BRAM, DSP, flip-flops (FFs),
look-up tables (LUTs), Latency) is evaluated for each case and
effectiveness (defined as the rate of triggering) of the inserted
HIA compared to the original implementation of the mapped
CNNs. The attack is carried out on the convolution and pooling
layers.

Table [l shows that DSP remains same for all the attack
scenarios. In both CNNs, BRAM usage remains the same
except for Sn3 and Snb, where BRAM are increased (5th
column in Table [[). Sn5 compensates this with lower LUTs
and FFs usage (see columns 9 and 11 in Table[l). For LUTSs and
FFs in all the scenarios, other than Sn5, (i.e. Snl - Sn4) have
a very modest increment in usage (up to 2.36%). Similarly,
difference in latency between designs with and without HIA
design is less than 0.61% in Snl - Sn5 (last column in
Table I). Hence, we conclude that Sn1,5n2 and Sn4 can be
good choices for an attacker for a stealthy attack, as overall
resources and latency effects is minimal. It is observed that for
both CNN models, number of weight and output feature map
channels are proportional to the additional amount of hardware
resources overhead. This can be confirmed from the results of

Sn3 and Sn5 where the higher number of output feature map
channels has resulted in higher memory usage. To demonstrate
the randomness of the proposed attack, various random input
validation dataset is examined. In Fig. [] for the Snl, when
five sets (200 images each) of data is provided to LeNet and
LeNet-3D, the number of trigger occurrences vary randomly
between 5 to 9. Same is true for other attack scenarios- making
our attack random and stealthy.

V. COMPARISON WITH STATE-OF-THE-ART

We summarized these differences in Table [l Most of the
state-of-the-art hardware/firmware attacks on the hardware de-
ployment of CNN requires full knowledge of CNN architecture
[5], [71, [8], and [10]. In this paper we argue that to deter the
hardware attackers first and last layers may be kept hidden
from the un-trusted designers. Hence, our proposed attack is
made under more constrained condition. In addition, existing
literature requires actual input image for triggering [5], [7] -
[10], while proposed design just make use of validation data
set. Also in the proposed design, payload implementation does
not require extra computation, unlike [5], [7], [8].

TABLE II: Comparison of our approach with other techniques

Criteria (501 T 100 [ (tof [ (11 ] 112] | Ours
Req. full CNN arch. v v v X v X
Req. changes in the weights X v X X X X
Trig. req. Input Image v v v v v X
Payload req. extra computation | v v v X X X

d

VI. CONCLUSION

To the best of authors’ knowledge, this is the first work to
propose a HIA targeted at FPGA based CNN inference with
attacker having no knowledge of initial layers, datasets, and
final classification layer. The attack achieves misclassification
by shuffling the weight matrices of convolution layers to
propagate wrong feature maps. This attack is carried out
without changes in the model parameters. Our results for
two CNN architectures show that in all the attack scenarios,
additional latency is negligible (< 0.61%), increment in DSP,
LUT, FF is also less than 2.36%. Three of the five investigated

2Several works have addressed security and privacy in many applica-

tions [[T3]-[38]



scenarios show very minimal changes in BRAM. Proposed
attack is triggered intermittently and our results show that the
number of triggers and its occurrence instance are completely
random.
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