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Fast-Scale Instability of Single-Stage
Power-Factor-Correction Power Supplies

Xiaoqun Wu, Chi K. Tse, Fellow, IEEE, Octavian Dranga, and Junan Lu

Abstract—This paper describes the fast-scale bifurcation phe-
nomena of a single-stage power-factor-correction (PFC) power
supply which is a cost effective design for low-power applications.
The circuit employs a cascade configuration of a boost converter
and a forward converter, which share an active switch and operate
in discontinuous conduction mode, to provide input PFC and tight
output regulation. Main results are illustrated by “exact” circuit
simulations as well as theoretical analysis based on the use of
Jacobians. This work provides a convenient means of predicting
stability boundaries which can facilitate the selection of practical
parameter values for maintaining stable operation.

Index Terms—Bifurcation, dc–dc converter, instability, power
factor correction (PFC), single-stage converter.

I. INTRODUCTION

THE single-stage isolated power-factor-correction (PFC)
power supply (SSIPP) proposed by Redl et al. [1] is a cost

effective design solution for power supplies that are required to
provide PFC and tight output regulation in the low-power range.
The circuit basically employs a cascade structure consisting
of a boost PFC converter and a forward converter for output
regulation [1]. Being a single-stage converter, the SSIPP uses
one active switch, as shown in Fig. 1, and hence mandatorily
operates the PFC stage in discontinuous conduction mode
(DCM) in order to allow the duty cycle control to be solely
deployed for output regulation since the DCM boost converter
can automatically achieve a good power factor without addi-
tional control [2], [3]. Furthermore, such an operating mode,
as pointed in the Redl et al. proposal [1], avoids a variable
voltage stress for the storage capacitor which sits between
the two stages. Due to its practical versatility for low-power
applications, this circuit has received a great deal of attention
in the past decade [4]–[6]. However, previous studies have
mainly focused on its steady-state design and control aspects,
the detailed dynamical behavior and the stability boundaries
have not been thoroughly pursued.

Recently, studies of the dynamical behavior of switching
power converter circuits have revealed the possibilities of
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various kinds of bifurcation behavior, e.g., in pulsewidth-mod-
ulated (PWM) dc–dc converters [7]–[12], current-mode
controlled dc–dc converters [13]–[15], thyristor and diode
circuits [16], [17], free-running dc–dc converters [18], par-
allel-connected dc–dc converters [19], [20], general switching
circuits [21], [22], etc. For the boost PFC preregulators oper-
ating in continuous conduction mode (CCM), it has been found
that both fast-scale and slow-scale instabilities are possible
[23]–[25]. However, similar problems in the DCM counterparts
are known by practitioners but are not systematically explained
and studied. Clearly, the slow-scale instability problem may
worsen the harmonic distortion of the input current, whereas
the fast-scale instability problem may impose higher current
stresses on the switching devices. It has been observed that
the peak current can increase by 10%–20% when fast-scale
instabilities occur in some intervals of the mains cycle [24],
[25]. Thus, the study of such instability problems has a practical
motivation. See also Banerjee and Verghese [26] and Tse [27]
for some surveys of the recent research in this area.

In this paper, we report fast-scale period-doubling bifurca-
tion observed in the complete single-stage PFC power supply,
in which both the PFC boost preregulator and the forward output
regulator are designed to operate in DCM. In this paper, we will
show that, with improper choice of system parameters, the con-
verter can suffer from fast-scale instability for some intervals of
time during the line cycle. This is important because line cur-
rent distortions are often resulted from occasional instabilities
that occur in some parts of the line cycle. Computer simulations
based upon exact cycle-by-cycle system equations are presented
in this paper. The extents to which fast-scale instability may
occur are quantitatively measured and the parameters that affect
fast-scale instability are identified. Analytical equations and de-
sign curves are derived from discrete-time models to facilitate
the design of this type of power supplies to avoid fast-scale in-
stability for all times.

II. SYSTEM DESCRIPTION

The SSIP converter under study is shown in its original form
in Fig. 1 [1]. The front-end boost converter serves as a PFC con-
verter whose output is connected across the storage capacitor

, which in turn serves as the input to a standard forward con-
verter. Moreover, the boost PFC converter and the forward con-
verter share the same active switch , as shown in Fig. 1. Thus,
this circuit can be modeled as a cascade connection of a boost
converter and a buck converter, which are driven synchronously
under one switching PWM signal, as shown in Fig. 2 [3]. The
control uses a simple PWM scheme, in which a control voltage
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Fig. 1. The SSIPP [1]. This circuit consists of a boost front-end PFC converter and a forward converter. Transformer isolation allows sharing of active switch by
the two cascading stages [5], [6]. For brevity, the core reset arrangement is omitted.

Fig. 2. Equivalent circuit model of the single-stage PFC power supply.

is compared with a sawtooth signal to generate a PWM
signal to drive the switches. The sawtooth signal is given by

(1)

where and are the lower and upper voltage limits of
, and is the switching period. The PWM signal is “high”

when , and is ‘low’ otherwise. The control voltage
is derived from a voltage feedback loop, i.e.,

(2)

where is the reference output voltage, is the feedback
gain, and is a dc voltage that gives the required steady-
state duty cycle, i.e., .

When both the boost and the buck stages are working in
DCM, five switch states are possible during a switching cycle:

State A: and are on, and are off;
State B: and are off, and are on;
State C: and are off, is on and is off;
State D: and are off, is off and is on;
State E: and are off, and are off.
It is worth noting that the sequence of switch states, in gen-

eral, takes the order as written above. However, either State C or
State D (not both) goes in the middle because exact synchronous
switching of the diodes is not possible in practice. For simplicity
in our study, we will omit State C, assuming that the buck stage
has a relatively larger inductance. Typical current waveforms
are illustrated in Fig. 3. Note that the choice between omitting
State C or D must be consistent with the choice of parameters,
which can be easily verified by simulations. Nonetheless, such
a choice is arbitrary and does not affect the analysis.

During the off-time of each diode, the circuit state is con-
strained to lie in the space defined by the zero value of the cor-

Fig. 3. Typical current waveforms of the single-stage PFC power supply. Both
the boost and the buck stages operate in DCM.

responding current. Thus, can be ignored for State D, and
both and can be ignored for State E. Then, according to
the circuit topology in each switch state, we can write the state
equations as follows:

for State A
for State B
for State D
for State E

(3)

where is the input voltage, the state vectors are defined as
, , and , and the

system matrices for this converter are

(4)

(5)

(6)

(7)

(8)
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Fig. 4. (a)–(c) Time-domain waveforms and (d)–(f) sampled-data waveforms of i for C = 100 �F, V = 349 V and V = 80 V. The sampled-data
waveforms are obtained by sampling the peak values of the waveforms and hence indicate the instantaneous current stress.

TABLE I
COMPONENT VALUES USED IN SIMULATIONS

where all component symbols are as defined in the circuit dia-
gram shown in Fig. 2.

III. COMPUTER SIMULATION STUDY

In this section, we begin with a series of computer simula-
tions to identify possible bifurcation phenomena. Since we are
primarily concerned with system stability in relation to the refer-
ence output voltage and the feedback gain , we will focus
on variation of these two parameters. Our simulation is based on
the state equations derived in the foregoing section. Essentially,
for each set of parameter values, time-domain cycle-by-cycle
waveforms are generated by solving the appropriate linear equa-
tion in a sub-interval of time, according to different switching
states. After the transient period, we capture the steady-state
time-domain waveforms. The circuit component values used are
listed in Table I.

For a certain range of parameters, fast-scale instability may
occur within a line cycle. Such instability manifests itself as a
period-doubling bifurcation at the switching frequency.

A. Simulation Results for Relatively Large Storage
Capacitance

We begin with a relatively large value of capacitance for .
We generally observe that fast-scale instability occurs near the

two ends of a half line cycle, as shown in Fig. 4 for different
values of the feedback gain for F. Fig. 4(a)
shows the stable operation with . Fig. 4(b) shows
bifurcation in some intervals of the line cycle with .
Fig. 4(c) shows fast-scale instability in the whole line cycle with

. Specifically, period doublings at the switching pe-
riod occurs at some phase angle of the line cycle and instability
grows toward the zero-crossings of the line cycle. In order to ob-
serve the change in dynamical behavior clearly, we collect the
sampled peak values for and during each switching period
in the steady state, and the corresponding sampled values for

and . Fig. 4(d)–(f) shows the corresponding sampled-data
waveforms of Fig. 4(a)–(c). Period-doubling bifurcations are
clearly observed. Fig. 5 shows the corresponding phase portraits
of the sampled input current and voltage .

Of engineering importance is the existence (and location) of
the critical bifurcation points along the line cycle as it affects
the peak current value of the input current and hence the current
stress on the switch. We denote the two critical points in terms
of phase angle and , where is the line
angular frequency. Fig. 6 plots the two critical phase angles
and as functions of the feedback gain and . Here, we
observe that the converter fails to maintain the expected stability
operation in intervals corresponding to and .

Furthermore, for a certain reference output voltage , there
is a critical value of feedback gain , above which the operation
has regions of fast-scale instability. Likewise, for a given feed-
back gain , there is a critical reference output voltage ,
below which the operation has regions of fast-scale instability.
Consequently, these critical parameter values define a stability
boundary dividing the parameter space of the feedback gain and
the reference output voltage, as shown in Fig. 7.

B. Simulation Results for Relatively Small Storage
Capacitance

We now examine the system when the capacitance is rel-
atively small. We observe that, unlike in the case for large ,
fast-scale instability grows in the middle of a half line cycle,
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Fig. 5. Phase portraits of sampled i versus v for C = 100 �F, V = 349 V and V = 80 V.

i.e., the regions near the zero-crossings being fast-scale stable.
Fig. 8 shows various scenarios with different values of the feed-
back gain for F. Fig. 8(a) shows fast-scale insta-
bility in some interval of the line cycle for . Fig. 8(b)
shows the fast-scale period-2 and period-4 (with respect to the
switching period) operations in some interval of the line cycle
for . Fig. 8(c) shows fast-scale instability in some in-
tervals of the line cycle for . Fig. 8(d)–(f) shows the
corresponding sampled-data waveforms.

Similarly, we denote the two critical points in terms of phase
angle as and . Fig. 9 plots the two critical phase angles
and as functions of the feedback gain . Here, we observe
that the converter fails to maintain the desired stable operation
in the interval .

C. Effects of Storage Capacitance on Fast-Scale Instability

Here, we observe two apparently different instability mani-
festations. Specifically, for relatively large storage capacitance,
the growth of fast-scale instability takes place near zero-cross-
ings of the line cycle, whereas for relatively small storage ca-
pacitance, such fast-scale instability occurs near the high input-
voltage regions of the line cycle. In this subsection, we present

a detailed inspection of the effect of the size of the storage ca-
pacitance. Extensive simulations have been performed to track
the values of the critical phase angles as increases. The re-
sults are shown in Fig. 10. There is no sudden jump of the crit-
ical phase angles as the storage capacitance varies. Instead, a
continuous transition has taken place, as clearly illustrated in
Fig. 10. This general transition, giving rise to the different lo-
cations of stability regions observed for large and small storage
capacitance, are due to the phase shift of the storage capacitor
voltage. Such a trend is general observed for different values of
feedback gain . Furthermore, the width of the stable region de-
creases as increases.

IV. THEORETICAL ANALYSIS OF FAST-SCALE

BIFURCATION BEHAVIOR

From the foregoing simulation study, we have identified pe-
riod-doubling bifurcation in certain parameter ranges. In this
section, we try to analyze the bifurcation in terms of suitable
discrete-time model. Since the input voltage is a rectified
sine wave, whose frequency is much lower than the switching
frequency (200 times less in this case), we can assume that
the input voltage is a constant value equal to during a
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Fig. 6. Left: critical phase angles in line cycle versus feedback gain k; right: critical phase angles in line cycle versus V , both for C = 100 �F. � and �
are the critical phase angles at which period-doubling bifurcation begins to occur. Fast-scale stable regions correspond to � < � < � .

Fig. 7. Stability boundary in the parameter space of feedback gain versus
output reference voltage for C = 100 �F.

switching period. The aim of the analytical study is to derive
the discrete-time map describing the dynamics of the system.
Then, by examining the Jacobian of this map, the stability can
be assessed.

A. Derivation of Discrete-Time Map

Our purpose in this subsection is to derive a discrete-time map
that describes the dynamics of the single-stage PFC converter
operating in DCM. As mentioned before, due to the DCM, cur-
rents and do not act as state variables in this discrete-time
model since and for all . Thus, the iter-
ative map we aim to find takes the following form

(9)

where denotes the value at the beginning of the th
cycle, is the duty cycle in the th cycle, is the fraction

of the switching period during which is off and is nonzero,
and is the fraction of the switching period during which
is off and is nonzero.

It is necessary to correctly model the change in state-space
dimension when the diodes switch off in order to obtain correct
stability results. With switched off, the matrix projecting the
four-dimensional state to the three-dimensional state is

(10)

With switched off, the matrix projecting the three-dimen-
sional state to the two-dimensional state is

(11)

With the switches turned on, the matrix augmenting the state-
space dimension from two to four is

(12)

The state is unchanged in dimension and continuous at instants
when the switches are turned off.

The state equations are given in (3) for different states. Here,
without loss of generality, we omit state C. Thus, there are four
consecutive subintervals in one switching cycle.

1) For , and are on, and
are off;

2) For , and are
off, and are on;

3) For ,
and are off, is off and is on;

4) For , and are
off, and are off.
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Fig. 8. (a)–(c) Time-domain waveforms and (d)–(f) sampled-data waveforms of i for C = 10 �F, V = 321 V and V = 90 V.

Fig. 9. Critical phase angles in line cycle versus feedback gain k for C =

10 �F. Fast-scale unstable regions correspond to � < � < � .

For the state equation in each subinterval, we can derive the
solution, and by stacking up the solutions, can be expressed
in terms of , , , and , as represented in (13), i.e.,

(13)

where , , is the unit matrix,
is the input voltage at the beginning of the th cycle, and

(14)

Our next step is to find the feedback equations that connect
, and to . To find the defining equation for the

duty cycle , we first note that both switches are turned off
when . For brevity, we define

(15)

where . Thus, and are turned off simulta-
neously when

(16)

Also, , and are related by enforcing continuity of
the inductor currents at the switching instants [27], i.e.,

(17)

(18)

where and . Combining (16), (17),
and (18) with (13) yields the discrete-time iterative map for the
closed-loop system.

B. Derivation of the Jacobian

The Jacobian plays an important role in the study of dynam-
ical systems. The essence of using a Jacobian in the analysis of
the dynamical systems lies in the capture of the dynamics in the
small neighborhood of an equilibrium point or orbit. We will
make use of this conventional method to examine the bifurca-
tion phenomena observed earlier in Section III.

Suppose the equilibrium point is given by . The
Jacobian of the discrete-time map evaluated at the equilibrium
point can be written as follows:

(19)

Using (13), (16) and (18), we can find all the derivatives in (19).
First, can be found from (13), i.e.,

(20)
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Fig. 10. Left: critical phase angles versus C , with V = 90 V and k = 0:007; right: critical phase angles versus C , with V = 90 V and k = 0:008.

Also, can be obtained as

(21)

where denotes the right-hand side time derivative of state
vector at time . In (21), the first term corresponds to cascading
the solutions of the state equations given in (3) and, therefore,
equals . By applying the appropriate transition ma-
trices and (10), (11), and

(22)

we can put the second term of (21) as

(23)

Hence, can be expressed as

(24)

Likewise, we obtain

(25)

Furthermore

(26)

since , , and the condition for
diode to switch off is

(27)
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Fig. 11. Left: comparison of critical phase angles obtained from analysis and simulations for C = 100 �F; right: comparison of critical phase angles obtained
from analysis and simulations for C = 10 �F. The difference between theoretical and simulation data can be attributed to the fact that analytical computation
of the Jacobian assumes a steady-state operating point for each value of the input voltage, but such a steady state is never reached in the simulations in which
time-varying input voltage has been used.

Now, from (25) and (26), the final state is first-order inde-
pendent of the switch-off times of the diodes. Thus, is
the last derivative needed to compute (19). From (15), we have

(28)

Finally, substituting the derivatives obtained above in (19), the
Jacobian is obtained as shown in (29) at the bottom of the page.

C. Computation of Critical Phase Angles

The Jacobian derived here can be used to evaluate the dy-
namics of the system. We study the loci of the characteristic
multipliers, the aim being to identify possible bifurcation sce-
narios as the input voltage varies with time. To find the charac-
teristic multipliers, we solve the following polynomial equation
in :

(30)

In a line cycle, the input voltage is , where
. We track the movement of the characteristic mul-

tipliers as we vary the phase angle . For a stable operation,
all characteristic multipliers should stay inside the unit cycle.
Any crossing from the interior of the unit cycle to the exte-
rior indicates a bifurcation. For any set of parameters, we can
compute the discrete-time map (13) and the corresponding Ja-
cobian given in (29) for every , and record the
values of when one of the characteristic multipliers

of the Jacobian reaches 1. These are the critical phase an-
gles at which period-doubling occurs. A comparison of these
results with those obtained by computer simulations is shown
in Fig. 11. The theoretical results generally match with the sim-
ulations. The discrepancies can be attributed to the fact that the
computation of the Jacobian assumes a steady-state operating
point for each value of the input voltage, but such a steady-state
is never reached in the circuit simulations in which actual time-
varying input voltage has been used. Thus, the simulation data
should more realistically locate the stability boundaries, while
the theoretical results produced from the analytical expressions
provide quick and reasonably close numerical estimates.

V. CONCLUSION

Power factor correction has become an important design con-
sideration for switching power supplies. For low-power applica-
tions (below 200 W), a cost effective solution is to use a single-
stage design in which the PFC stage is integrated with the dc–dc
power stage. The specific solution proposed by Redl et al. [1]
has proven to be versatile for low-power applications in terms
of ease of control and containment of voltage stresses. Such a
design utilizes DCM of operation to simplify the control and to
maintain a fixed (load independent) voltage stress in the storage
capacitor. In this paper we have performed a detailed study of
the fast-scale bifurcation behavior of this converter and we have
investigated into the effects of various parameters on the stability
of the system. Such fast-scale stability problems are important
as they affect the peak current stresses imposed on the switching
devices. The results obtained here can be used to facilitate pa-
rameter selection for guaranteeing stable operation.

(29)
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