
A NOVEL SYSTEM ARCHITECTURE FOR REAL-TIME LOW-LEVEL
VISION

A. Benedetti, l? Perona

California Institute of Technology
Division of Engineering and Applied Science

Pasadena, CA 9 1 125
{arrigo,perona}@vision.caltech.edu

ABSTRACT
A novel system architecture that exploits the spatial local-
ity in memory access that is found in most low-level vi-
sion algorithms is presented. A real-time feature selection
system is used to exemplify the underlying ideas, and an
implementation based on commercially available Field Pro-
grammable Gate Arrays (FPGA’s) and synchronous SRAM
memory devices is proposed. The peak memory access rate
of a system based on this architecture is estimated at 2.88 G-
Bytesh, which represents a four to five times improvement
with respect to existing reconfigurable computers.

1. INTRODUCTION

It is well known that real-time processing of video streams
is a most expensive task from a computational point of view,
due to the high amount of information to be processed. At
a resolution of 640 x 480 pixels and 30 framedsec, for ex-
ample, the bandwidth of a single monochrome NTSC video
stream is 9.2 M-Bytedsec. The bandwidth of a color video
signal is three times as much. Even when simple opera-
tions on pixel neighborhoods need to be carried out on such
a data stream, the high bandwidth requirements rule out the
use of conventional processors. For this reason, general pur-
pose or dedicated massively parallel supercomputers based
on the Single Instruction Multiple Data (SIMD) paradigm
have long been advocated as a cure to this problem [l].
Massively parallel systems, however, have failed so far to
provide a cost effective and flexible solution to the devel-
opment and widespread use of vision systems, due to the
physical constraints preventing their use on the field and
their million-dollar price tags. Application Specific Inte-
grated Circuits (ASIC’s) have been widely used to imple-
ment low-level vision systems. Although they offer good
performance, ASIC’s do not lend themselves to rapid pro-
totyping of systems and their development has high non-
recurring engineering costs. Field Programmable Gate Ar-
rays (FPGA’s) emerged as a new technology for the imple-

mentation of digital logic circuits during the mid 80’s. The
basic architecture of an FPGA consists of a large number
of Configurable Logic Blocks (CLB’s) and a programmable
mesh of interconnections [2] . In the beginning FPGA’s were
mostly viewed as large Programmable Logic Devices, thus
they were usually employed for the implementation of the
“glue-logic” used to tie together complex VLSI chips like
microprocessors and memories used to build general pur-
pose computer systems. In the late 80’s and early 90’s it
became clear that the ability to change electrically the logic
functions of FPGA’s at almost any point during operation
could open an entirely new spectrum of applications. Accel-
erators built using arrays of reconfigurable devices proved
to boost the speed of several applications by up to three or-
ders of magnitude, comparing favorably with supercomput-
ers [3]. Recently, we have designed and demonstrated a 2-
D feature selection system implemented on a commercially
available FPGA-based reconfigurable computer [4]. This
system is composed of a camera, a video decoder, an array
of 6 Xilinx FPGA’s and an interface to a host PC. This sys-
tem is, to the best of our knowledge, the only feature selec-
tion system developed using reconfigurable devices. During
this process we have learned several lessons:

The use of an array of FPGA’s to accomplish a given
task adds a level of complexity to the design process,
due to the need of manually partitioning the system
across several chips.

Most low-level vision tasks can be accomplished by
simple local operations performed across the image,
which for the most part map nicely onto FPGA archi-
tectures.

The majority of low-level vision algorithms process
the image through a series of independent pipelined
stages operating on local pixel neighborhoods of sim-
ilar size (e.g. gradient computation, followed by non-
linear operations).

0-7803-5471-0/99/$10.0001999 IEEE

111-500

mailto:arrigo,perona}@vision.caltech.edu

I I

Input

I (i

i

N

stream

+ 1 , j + I) ~ (i + i , j) r (i + i , j - i) I (i , j + 1) I (i , j) I (i , j - 1) I (i - 1 , j + 1) I (i - 1, j) I (i -

Delay lines

Figure 1: Formation of a 3 x 3 pixel neighborhood.

0 Performance of real-time image processing systems
is limited by the throughput of memory and U 0 chan-
nels.

Based on these motivations, and the need felt by many prac-
titioners in the computer vision community, we have de-
signed a novel system level architecture tuned to real-time
processing of video streams. This architecture exploits the
locality of data access found in low-level vision algorithms
and the recent availability of high pin count FPGA devices
to partition in an optimal way memory and computation re-
sources. The system that we envision is a PCI expansion
board for a PC featuring a high density reconfigurable de-
vice, several synchronous SRAM memories and a digital
interface for a high resolution progressive-scan video cam-
era. A conservative estimate of the memory bandwidth that
we will be able to achieve using off-the-shelf synchronous
SRAM memory devices is 2.88 G-Bytes/s at a 60 MHz mem-
ory clock rate, which represents a four to five times im-
provement with reslpect to existing reconfigurable comput-
ers [5].

2. REQUIREMENTS OF REAL-TIME IMAGE
PROCESSING SYSTEMS

Image processing tasks carried out by low-level vision sys-
tems require both memory and computation resources. Mem-
ory resources are needed to feed the data to be processed to
computation resources in a steady flow, and vary according
to the nature of the space where the operation is defined.
Spatial operations t,ake into account every pixel of the im-

age and require the availability of the pixel values belonging
to a neighborhood defined by some geometric shape. Sup-
pose that a pixel stream is transmitted in raster scan order by
a video decoder, and that at every clock cycle a new pixel is
available. The simple structure presented in Fig. 1 will make
the values of the pixels belonging to a 3 x 3 square window
available to computing resources. This window will slide
across the entire image, covering a different pixel neigh-
borhood at every clock cycle. This structure is composed
of several First In First Out (FIFO) memories and registers
synchronized with the video decoder. For a k x k square
neighborhood the length of the FIFO is M - k + 1, where
M is the width of the image and usually k << M . In most
FPGA architectures registers are abundant, and their imple-
mentation does not require excessive area. FIFO memo-
ries, however, require an excessive amount of CLB’s when
implemented as long shift register chains. In the Xilinx
XC4000 FPGA architecture, for instance, each CLB con-
tains two flip flops. At NTSC resolution, forming a 3 x 3
neighborhood would require six 8 bit registers and two 8
bits wide and 638 stages deep FIFO’s, for a total of 5128
CLB’s. On the other hand, the configurable logic blocks
found in the XC4000 architecture can be configured as 34
bit SRAM cells, thus bringing the the number of required
CLB’s down to 302. However, when we consider operations
requiring the pixel values of several frames, like filtering a
video signal in the time domain, even last generation FPGA
devices are not able to provide enough memory resources.
The mechanism for neighborhood generation presented in
Fig. 1 is easily adapted to the scheme employing an exter-
nal RAM memory, as exemplified in Fig. 2. The two delay

111-501

Input stream

Figure 2: Building 3 x 3 pixel neighborhoods by external SRAM memory and internal CLB memory.

lines are here implemented by writing to the external RAM
the pixel value entering the first FIFO memory and reading
the values corresponding to the output of the FIFO’s. The
read addresses are obtained by decrementing the write ad-
dress by M - k + 1, and after each pixel clock cycle they
are incremented according to

lw = (I w + 1) mod 2g,
lRi = (1 ~ ~ + 1) mod 2g,
1~~ = (1 ~ ~ + 1) mod 2g,

where q is the number of address lines of the memory de-
vice. Obviously, 29 > (I C - 1)(M - k + l) must hold.
According to this scheme, for every pixel clock cycle one
memory write and k - 1 memory read cycles are issued.
Typical values for the pixel clock frequency are in the 12 +
40 MHz range, while off-the-shelf synchronous SRAM’s
are usually clocked at 100 MHz. This means that, according
to image resolution, two or three cascaded delay lines will
usually fit into a single external memory device.

3. A RECONFIGURABLE ARCHITECTURE FOR
LOW-LEVEL VISION

The data flow of many image processing systems can be de-
composed as a sequence of operations on sets of data whose
organization resembles that of the initial image. The first
stage of the feature selection system presented in [4], for
example, computes the image gradient components I , and
Iy. The next operation is the calculation of (Iy)2

and I, . Iy, which are defined for every pixel in the im-
age. Then a, b and e, defined by a = (I ;) , b =
Cfz, I: . I;, c = Cfz, (I;)’ , where the sum is extended
over the pixels of a 3 x 3 neighborhood, are computed in
parallel by three chains of adders interleaved with pixel and
line delay elements in order to build a 3 x 3 mask in the
(I,)’, I , x Iy and (Iy)’ planes. The rest of the system
calculates the value of P(&) = (a - &)(e - A,) - b2
by time-multiplexing a signed multiplier and performs the
test expressed by P(&) > 0 and a > At. If the cur-
rent 3 x 3 window passes the test, a red pixel is sent to
the video encoder, meaning that that the window contains
a “good” feature, otherwise the pixel value from the in-
put stream is transmitted to the video encoder unchanged.
Memory resources are necessary to build the pixel neigh-
borhood, whose content is shifted across the “image” asso-
ciated with the input stream. For the sake of clarity, we will
consider a k x k pixels square neighborhood, and will later
relax this assumption. At every clock cycle the current val-
ues associated with the neighborhood feed a pipelined func-
tion block, computing some (arithmetic) function of the in-
put data. The only constraint imposed on this block is that,
after an initial latency of one or more clock cycles, it must
generate an output data stream synchronous with the input
data stream. The total latency introduced by this stage is
thus given by the sum of the latency of the pipelined func-
tion block and the number of cycles needed to fill the delay
lines so that the central pixel of the neighborhood corre-
sponds to the first pixel of the input stream. Due to these
latency periods, the output stream will be delayed with re-
spect to the input stream. Some processing stages, like those
computing (I ,) 2 , I , x Iy and (Iy) ’ , do not need mem-
ory resources since they compute numbers that are associ-

k2 2

111-502

ated with individual pixels. Most stages, however, process
pixel neighborhoods, thus a modular and efficient scheme
for their generation is of the utmost importance for real-
time video processing. In the architecture that we propose,
the memory resources used to build pixel neighborhoods are
provided by externall synchronous SRAM memory devices,
addressed according to the scheme presented in Fig. 2. The
use of external memory devices has several important im-
pacts on the design of the system. The most critical section
of the system in te rm of timing requirements is the FPGA
to memory interface, which is clocked at up to 100 MHz,
the maximum systeim clock frequency supported by most
current generation FPGA’s. The rest of FPGA logic can
run at the slower pixel clock rate, usually in the 12 + 40
MHz range. In adclition, the FPGA to memory interface
can be easily generated from a high level specification of
the algorithm that is being mapped. There is an additional
key observation that can be exploited to further increase the
memory bandwidth of a system based on this architecture.
As shown in Fig. 2, the SRAM addresses are generated ac-
cording to a fixed pattern, and their offset is M - k + 1.
Different neighborhood sizes, denoted by k,, may be used
at the different P stages of the algorithm by taking

k = max k,

and adjusting the length of the FIFO’s used in each pro-
cessing stage by inserting k - km additional registers in-
side the FPGA. Using this strategy, the address increment is
fixed indeed, and this property can be exploited to increase
the memory bandwidth of the system as follows. First, we
observe that memory devices are addressed according to a
fixed and repeating pattern:

m=l , ... ,P

1. FPGA writes data to memory location Zwl,

2. FPGA reads from memory location Z R ~ = Zwl -
(M - k + l),

(M - k + l),
3. FPGA reads data from memory location ZR2 = lR2 -

4. ...,

5. FPGA reads d,ata from memory location =
- - - (M’ - k + I),

6. Increment pointers to read and write locations,

7. Go to 1.

This property allows us to share the q address lines driving
the memory devices. Let us put our attention to a high den-
sity and high pin count re-programmable device recently de-
veloped by Xilinx, the XC40125XV FPGA. The total num-
ber of U0 pins available to the user of this device is 448.

If we dedicate 32 of these pins to communication with the
digital camera and video monitor and 32 pins to communi-
cation with the PCI bus interface chip, the remaining 384 are
available for interfacing with external memory chips. Up to
12 128K x 32 bit memory devices can be connected to the
main FPGA. The number of FIFO memories that we will be
able to fit in a single memory device depends on the widths
of the data paths and on the constraint given by the: fact that
the delay lines implemented in the same device are neces-
sarily cascaded. An estimate of the memory bandwidth that
we will be able to achieve using this architecture, accessing
the memory at a conservative 60 MHz clock rate, is thus
2.88 G-Bytes/s. This rate, represents a four to five times
improvement with respect to existing reconfigurable com-
puters.

4. CONCLUSIONS

We have presented a novel reconfigurable architecture ded-
icated to fast prototyping of real-time low-level vision sys-
tems. An observation related to the mechanics of pixel neigh-
borhood generation permits to increase almost by a factor
of two the bandwidth of the communication channel be-
tween computation and memory resources. By exploiting
this idea, an improvement of four to five times with respect
to existing reconfigurable computers is achieved. We fore-
see the application of this architecture in general real-time
signal-processing tasks, control systems for autonomous ve-
hicle guidance, vision-based human-machine interfaces as
well as in other applications not related to computer vision.

5. REFERENCES

C.-L. Wang, P. B. Bhat, and V. K. Prasanna. High-
Performace Computing for Vision. Proceedings of the
IEEE, 84(7):931-946, Jul. 1996.

S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic.
Field-Programmable Gate Arrays. Kluwer Academic,
New York, 1992.

D. Buell (editor). Splash 2: “FPGA’s in a Custom Com-
puting Machine”. IEEE Computer Society Press, 1996.

A. Benedetti and P. Perona. Real-time 2-D Feature De-
tection on a Reconfigurable Computer. In Proceedings
of the 1998 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’98), pages 586-593, Santa
Barbara (CA), Jun. 1998.

J. Woodfill and B. Von Herzen. Real-Time Stereo
Vision on the PARTS Reconfigurable Computer. In
Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, pages 201 -210, Napa
(USA), Apr. 1997.

111-503

