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ABSTRACT 

 

Dealing with irregular domains, graph signal processing 

(GSP) has attracted much attention especially in brain 

imaging analysis. Motor imagery tasks are extensively 

utilized in brain-computer interface (BCI) systems that 

perform classification using features extracted from 
Electroencephalogram signals. In this paper, a GSP-based 

approach is presented for two-class motor imagery tasks 

classification. The proposed method exploits simultaneous 

diagonalization of two matrices that quantify the covariance 

structure of graph spectral representation of data from each 

class, providing a discriminative subspace where distinctive 

features are extracted from the data. The performance of the 

proposed method was evaluated on Dataset IVa from BCI 

Competition III. Experimental results show that the proposed 

method outperforms two state-of-the-art alternative methods. 

 
Index Terms— graph signal processing, EEG, 

simultaneous diagonalization, classification. 

 

1. INTRODUCTION 

 

Electroencephalogram (EEG) is a non-invasive, high 

temporal resolution brain imaging modality that captures 

functional and physiological changes within the brain [1, 2]. 

Motor imagery (MI) tasks are dynamic states during which 

neuronal activity in the primary sensorimotor areas modifies 

similar to a real executed movement [3]. MI tasks are 

extensively utilized in brain-computer interface (BCI) 
systems and can be classified by extracting features from 

EEG signals to identify a user’s mental state [4, 5]. Many 

methods have been proposed to classify MI tasks from EEG 

signals. Some approaches are based on extracting key 

information from the time and frequency domains [6-8]. 

Some other approaches of MI classification are focused on 

learning spatial filters from multichannel EEG signals to 

extract discriminative features from data [9, 10]. There are 

also many studies which have proposed applying 

mathematical transforms, such as wavelet transforms, to 

extract discriminative features via decomposition of EEG 
signals [11, 12]. 

The recently emerged field of graph signal processing (GSP) 

[13-15] has attracted great interest in different signal 

processing applications, in particular, signals defined on 

irregular domains such as the human brain [16-18]. In [19] 

the role of the GSP on the classification and dimensionality 

reduction of functional MRI (fMRI) data was evaluated. 

Promising results have also been presented that suggest the 
benefits of GSP in classification of EEG signals [20, 21]. 
In this work, using EEG data, we define a brain graph that 

characterizes the temporal correlation structure between the 

EEG electrodes. We then transform the EEG data into a 

spectral graph representation. The covariance structure of the 

resulting spectral representations is then computed, resulting 

in a matrix for each class of data. A classification framework 

is then proposed, in which simultaneous diagonalization of 

these two matrices provides the basis of a discriminative 

subspace that can be used to differentiate the two motor 

imagery tasks. An exploratory analysis is then performed to 
identify which spectral graph components from the data 

provide the most discriminative features. Results from the 

proposed method are also compared to two alternative 

methods that use simultaneous diagonalization.  

The remainder of this paper is structured as follows. Section 

2 gives an overview of the fundamental concepts and the 

proposed framework. Section 3 presents the experimental 

results and provides a discussion. Section 4 presents our 

concluding remarks. 

 

2. MATERIALS AND METHODS 

 

2.1. Graph signal processing fundamentals 

 

Let 𝒢 = (𝒱, ℰ, A) denote an undirected, weighted graph, 

where 𝒱 = {1, 2,…, N} denotes the graph’s finite set of N 

vertices, ℰ denotes the graph’s edge set, i.e., pairs (i, j) where 

i, j   𝒱, and A is a symmetric matrix that denotes the graph’s 

weighted adjacency matrix. To exploit the spectral properties 

of the graph, the graph's normalized Laplacian matrix is 

defined as 
1 1
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 

 I - D AD  , where D is the diagonal 

matrix of vertex degrees, i.e., ii ijj
D A  and I is the 

identity matrix. Let ℓ2(𝒢) denote the Hilbert space of all 

square-integrable graph signals f:𝒱→R that are defined on 𝒱; 



a graph signal f ∈ ℓ2(𝒢) is an N×1 vector, whose 𝑛-th 

component represents the signal value at the 𝑛-th vertex of 𝒢.  

Since  is a real and positive semi-definite matrix, it can be 

diagonalized via eigenvalue decomposition as: 

 
T , UΛU    (1) 

 

where 1 2 N{ , ,..., }U u u u  is a matrix of orthonormal 

eigenvectors of  (an eigenvector in each column) with 

corresponding eigenvalues 1 2 N0 ... 2        in the 

diagonal matrix Λ . The eigenvalues define the graph 
Laplacian spectrum, and the corresponding eigenvectors 

form an orthonormal basis that spans the ℓ2(𝒢) space. By 
using the Laplacian eigenvectors, a graph signal f can be 

transformed into a spectral representation, commonly 

denoted as the graph Fourier transform (GFT) of f, obtained 

as 
Tˆ ;f = U f  the inverse GFT is obtained as ˆ.f Uf   

Importantly, the GFT satisfies Parseval’s energy 

conservation relation [22], i.e., 
22

2 2

ˆ .f f  Graph Laplacian 

eigenvectors corresponding to larger eigenvalues entail a 

larger extent of variability, and as such, eigenvalues of the 

graph Laplacian matrix can be seen as an extension of 

frequency elements that define the Fourier domain in 

classical signal processing [15]. 

 

2.2. Data description 

 

In order to evaluate the proposed method, we used EEG 

signals from the publicly available BCI Competition III-

Dataset IVa [23]. The signals were recorded from five healthy 

subjects (labelled as aa, al, av, aw, and ay) using 118 
electrodes arranged in the extended international 10/20-

system at a sampling rate of 100 Hz. Subjects were presented 

with 280 3.5-second-long visual cues during which they were 

asked to perform right hand or right foot motor imageries; 

140 trials were acquired for each class. According to the 

competition instructions, for each class the trials were divided 

into training and test sets, wherein the set sizes differed across 

the five subjects. The first two subjects have the most labelled 

trials (60% and 80%, respectively), while the other three have 

30%, 20% and 10% labelled trials, respectively; as such, 

performing classification is more challenging on subjects av, 
aw, and ay due to their small training set size.  

 
2.3. Graph-based representation of brain signals 

 

We modeled the structure of the brain by a graph with vertices 

corresponding to the EEG electrodes and edges quantifying 

the degree of functional connectivity between the electrodes 

in each subject. Let i,tf  and j,tf  denote the time series of 

electrodes 𝑖 and 𝑗, respectively. The absolute value of the 

Pearson correlation between i,tf  and j,tf , providing an 

estimation of statistical dependency of the two temporal 

signals, was considered as the weight of the edge connecting 

vertices 𝑖 and 𝑗. 

For each trial, we used the time points within the 0.5-2.5 

second interval after the visual cue to construct graph signal; 
this 2-second interval has been previously proposed by the 

winner of BCI Competition III-Dataset IVa. Given that motor 

activity, be it real or imagined, causes modulations of the mu 

and beta rhythms [5], we filtered the extracted signal with a 

third-order Butterworth filter with a pass band of 8-30 Hz. 

Graph signals were then extracted from these filtered signals; 

in particular, we defined one graph signal per time instance, 

i.e., a signal representing EEG values across the 118 

electrodes, which thus resulted in T=200 graph signals per 

trial. We then used the eigenvectors of the EEG graph 

normalized Laplacian matrix to compute the GFT of each 
signal. As such, we obtain a representation of brain signals 

that jointly encodes structural, functional, and temporal 

characteristics of the data. 
 

2.4. Discriminative subspace through simultaneous 

diagonalization 

 

Inspired by the methods presented in [18, 24], simultaneous 

diagonalization of two matrices was considered to provide a 

discriminative subspace for two-class (right hand and right 

foot) MI classification. For graph signal f  defined on 𝒢, let 

f  denote the de-meaned and normalized version of f , 

obtained as [16]: 
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More precisely, let Fk denote an N T  matrix with elements 

,{ },c tf where 1,...,Nc  and 1,...,Tt , denote the k-th trial 

of the EEG time series, where c denotes electrode number; 

similarly, let 
ˆ
Fk  denote the GFT matrix of the k-th de-meaned 

and normalized trial. The goal is to determine a transform P̂  

that simultaneously diagonalizes the following two 

symmetric matrices that are computed for each class: 
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where T and tr(.) denote the transpose and the trace operator, 

respectively, and iK  is the number of the trials in class i. As 

a first step, we whiten 1 2 Ξ Ξ Ξ  such that: 



T T

1 2 1 2( ) .    P ΞP P Ξ Ξ P Ξ Ξ I    (4) 

 

Due to positive definiteness of Ξ , whitening transform P  

can be derived via singular value decomposition as: 

 

        
1

T 2; .
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Ξ=ΦΘΦ P =ΦΘ       (5) 

 

Consequently, eigenvalue decomposition of 1Ξ gives: 

 

     
T T

1 1 2 1( ) .   Ξ ΨΘ Ψ Ξ Ψ I Θ Ψ        (6) 

 

In particular, 1Ξ and 2Ξ  share the same eigenvectors but their 

eigenvalues are complementary; that is, the eigenvector 

associated with the largest eigenvalue of 1Ξ  corresponds to 

the smallest eigenvalue of 2Ξ . Therefore, a small 

combination of the first and last eigenvectors of Ψ  induces a 
suitable discriminatory transform for differentiating the two 

classes. Finally, the overall transformation matrix can be 

obtained as: 

 
Tˆ .P = Ψ P      (7) 

 

This matrix was used to project the GFT coefficients of the 

de-meaned and normalized graph signals to a discriminative 

feature space; these features were then used for classification. 

 

3. RESULTS AND DISCUSSION 

 
In our experiments, the algorithms were trained using the 

training set data available for each subject, and consequently, 

the test set data available for each subject were used to 

evaluate the performance of the methods by assigning a label 

to each trial. The variance of the projected GFT coefficients 

on the first and the last rows of P̂ were used to train an SVM 

classifier with a linear kernel. This projection maximizes the 

variance of the signals from one class while minimizing it for 

the signals of the other class [24].  

In the first experiment, the GFT coefficients were used in four 

different settings. In the first setting, we used the entire set of 

GFT coefficients, i.e., all frequencies (AF), whereas in the 

second to fourth settings we only used a subset of the 
coefficients by equally dividing them into three sub-bands, 

low (LF), medium (MF) and high (HF) frequencies, 

respectively; division of the spectrum into 3 sub-bands was 

inspired by prior work on application of GFT on brain 

imaging data [25, 26]. These four sets of GFT coefficients 

were then used to derive the discriminative matrix P̂ , and 

consequently, features for classification were extracted by 

projecting them on P̂ . Table 1 shows the classification 

accuracies for each individual subject and also on average 

across subjects. 

Table 1. Classification accuracy (%) on the test sets in four 

different frequency band settings. 

 aa al av aw ay Mean ± std 

AF  69.64 100 71.43 92.41 81.75 83.05 ±13.15 

LF 87.50 100 70.92 94.19 90.08 88.54 ±10.92 

MF 52.68 76.78 55.10 54.012 54.36 58.59 ± 10.21 

HF 57.14 69.64 49.49 56.69 48.81 56.36 ± 8.39 

 

In all subjects, classification accuracy obtained by using the 

LF GFT coefficients substantially outperforms that resulting 

from using the MF and HF coefficients, and moreover, it 

outperforms using all the GFT coefficients on average across 

subjects as well as in subjects aa, aw, and ay. There seems to 

be no correlation between the rise in performance and the 

training set size of the subjects. 

Considering the substantial classification accuracy obtained 

by using the lowest one-third of the GFT coefficients, we 
attempted to find the optimal subset of the graph frequencies 

that present the most discriminative features for 

classification. To this end, we performed 10-fold cross-

validation (CV) on the training sets across all the frequencies 

in each subject. Fig. 1 shows the mean accuracies achieved 

for each subject across all eigenvalues (frequency elements). 

The eigenvalue index that resulted in the highest accuracy 

was chosen as the subject-specific (SS) cut-off frequency for 

specifying the LF GFT coefficients; the resulting SS cut-off 

frequencies notably varied across subjects, with values in the 

range [20,117]. Classification results obtained by using the 
determined SS low frequency bands are presented in Table 2, 

denoted by SS-LF. Despite these SS frequency bands 

manifesting the best performance on the training sets in the 

CV framework, their performance was not generalizable to 

the test sets, which can be seen as potential overfitting of the 

selected LF bands to the training sets. 

Table 2. Classification accuracies on the test sets for the 

proposed methods and two state-of-the-art methods. 

Numbers indicated in parenthesis denote the selected cut-off 

frequencies for selecting the lower end of the spectral band. 

 aa al av aw ay Mean±std 

SS-LF 85.71 
(60) 

100 
(47) 

70.41  
(117) 

93.3  
(28) 

88.09  
(20) 

87.50±11.01 

O1-LF 

 (23) 
87.5 98.21 59.18 85.27 86.11 83.25±14.43 

O2-LF 

 (30) 
89.28 100 68.37 93.3 91.27 88.44±11.93 

O3-LF 

 (32) 
91.96 100 68.88 94.2 92.46 89.5±11.96 

O4-LF 

 (35) 
89.28 100 68.88 93.30 92.06 88.71±11.76 

SRCSP 

[9] 
72.32 96.43 60.2 77.68 86.51 78.63±13.78 

RCSSP 

[10] 82.14 96.42 68.87 98.21 88.88 86.91±11.94 



Given that using SS cut-off frequencies did not result in better 

performance, we attempted to find an optimal cut-off that can 

be used across subjects. This was done by performing 10-fold 

CV on the training sets of each subject for different cut-off 

frequencies. Fig. 1 shows the resulting classification 

accuracies across subjects. Overall, on average across 
subjects, best performance was obtained at a cutoff frequency 

corresponding to spectral elements within the range [20,40], 

after which point the performance almost saturated in all five 

subjects. Four cut-off values within the optimal window were 

then selected (see vertical dashed lines), the results for which 

are reported in Table 2, denoted by O𝑥-LF, where 1,...,4x  

 
Fig. 1. Classification accuracies for 10-fold CV on the 

training sets for different indices of cut-off frequencies (λ). 

 

Overall, the best average accuracy was obtained by exploiting 

only the first 32 graph frequencies, which shows a gain of 

6.4% compared to utilizing the entire set of GFT elements 
across the graph spectra (compare AF and O3-LF in Tables 1 

and 2, respectively). Furthermore, in comparison with the 

subject-specific band selection scheme, using O3-LF resulted 

in approximately 2% higher accuracy than SS-LF on average 

across subjects, as well as higher accuracies in four out of five 

subjects.  

Overall, these results show that simultaneous diagonalization 

using the LF GFT coefficients provides a more discriminative 

subspace compared to using the GFT coefficients across the 

entire spectrum in all subjects, except for subject av; in 

subject av the EEG graph signal energy profiles are more 
broadly spread across the spectrum (results not shown), 

therefore, suggesting the potential benefit of using a SS 

definition of the LF band for this subject.  

In Table 2. results from two state-of-the-art methods that 

exploit a similar diagonalization approach as proposed in this 

paper are presented for comparison. Importantly, in contrast 

to the proposed approach, these two methods do not take into 

account the structural information of the brain signals, as 

defined by the proposed EEG graph. Comparison of the 

results verifies that combining structure, function, and 

temporality of the brain signals enhances the classification 

performance of EEG signals compared to these prior 

approaches. Furthermore, extracting features from a low 

dimensional discriminative subspace precludes overfitting to 

the training sets, which is an important aspect to be 
considered especially in subjects that have small training sets. 

Given that the eigenvalues of the Laplacian matrix are 

considered as the basis of the graph frequency domain, graph 

frequency analysis encodes the spatial variation of the 

signals. Lower graph frequency components represent 

smooth signals that vary slowly across the brain connectivity 

graph and high graph frequency components represent 

signals that manifest a greater extent of spatial variation 

relative to the underlying brain connectivity network [25]. 

Our experimental results reflect better classification 

accuracies of the MI tasks by projecting the GFT coefficients 
on the lower part of the graph spectrum. These observations 

indicate that imagined motor activities are not localized and 

represent a regular and smooth pattern across the whole brain. 

Furthermore, EEG graph signal spectral energies, as reflected 

by the GFT coefficients, are more concentrated on low spatial 

frequencies, which to an extent explains the enhanced 

discriminative performance that was obtained by using only 

spectral energy content of data at the lower end of the spectra, 

corroborating similar results that have been observed on 

fMRI graph signals [25, 27]. We defer detailed investigation 

of the energy profiles of EEG graph signals to future work. 

 

4. CONCLUSIONS 

 

In this paper, a GSP framework was presented for 

classification of MI tasks from multi-electrode EEG data. 

Experimental results suggested that decomposition of brain 

signals on a discriminative subspace of the graph Fourier 

domain outperforms two related conventional methods for 

classification of EEG signals. Graph frequency analysis of 

EEG data on brain functional connectivity graphs reveals the 

spatially smooth nature of motor activity signals, making it 

possible to classify these signals by exploiting the 
representation of the data on the low frequency range of the 

graph spectrum. In future work, the proposed method will be 

validated on a dataset with a greater number of subjects. 

Moreover, our future work will be focused on investigating 

the intrinsic properties of representing EEG data in the graph 

Fourier domain, with the goal of finding a generalizable 

approach to extract discriminative subspaces for other classes 

of EEG signals. We will also explore alternative methods for 

deriving brain graphs from EEG data using graph learning 

techniques [28]. 

 

5. COMPLIANCE WITH ETHICAL STANDARDS 
 

The present research study was conducted retrospectively 

using human subject data made available in open access by 

provided by the Berlin BCI group [23]. Ethical approval for 



analyzing the openly available data is not required according 

to our local ethics committee. 

6. ACKNOWLEDGMENTS 

Hamid Behjat was supported by the Swedish Research 
Council (2018-06689) and in part by the Royal Physiographic 

Society of Lund. The authors certify that they have no 

conflict of interest to report in regards to the subject matter 

discussed in this paper. 

 

7. REFERENCES 

 
[1] S.H. Lim, H. Nisar, V.V. Yap, and S.O. Shim, “Tracking of 

electroencephalography signals across brain lobes using 
motion estimation and cross-correlation,” J. Electron. Imaging, 
vol. 24, no. 6, p. 061106, 2015. 

[2] S. Sanei, and J.A. Chambers, “EEG signal processing,” John 
Wiley & Sons., 2007. 

[3] G. Pfurtscheller, and C. Neuper, “Motor imagery and direct 
brain-computer communication,” in Proc. IEEE, 2001, vol. 89, 
no. 7, pp. 1123–1134. 

[4] L.F. Nicolas-Alonso, and J. Gomez-Gil, “Brain computer 
interfaces, a review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 
2012. 

[5] J.J. Shih, D.J. Krusienski, and J.R. Wolpaw, “Brain-computer 
interfaces in medicine,” in Mayo Clinic Proc., 2012, vol. 87, 
no. 3, pp. 268–279. 

[6] B. Hatipoglu, C.M. Yilmaz, and C. Kose, “A signal-to-image 
transformation approach for eeg and meg signal 
classification,” Signal, Image and Video Process., vol. 13, no. 
3, pp.483-490, 2019. 

[7] T. Kayikcioglu, and O. Aydemir, “A polynomial fitting and k-
NN based approach for improving classification of motor 
imagery BCI data,” Pattern Recognit. Lett., vol. 31, no. 11. pp. 
1207–1215, 2010. 

[8] L. Yi, F. Yingle, and T. Qinye, “EEG feature detection and 
classification algorithm in brain-computation interface,” IEEE 
Conf. Ind. Electron. Appl., 2008, pp. 1403–1407. 

[9] F. Lotte, and C. Guan, “Regularizing common spatial patterns 
to improve BCI designs: unified theory and new algorithms,” 
IEEE Trans. biomed. Eng., vol. 58, no. 2, pp. 355-362, 2010. 

[10] M.N Cherloo, H.K. Amiri, and M.R. Daliri, “Ensemble 
Regularized Common Spatio-Spectral Pattern (Ensemble 
RCSSP) Model for Motor Imagery-based EEG Signal 
Classification,” Comput. Biol. Med., pp.104546, 2021. 

[11] B. Wang, L. Jun, J. Bai, L. Peng, G. Li, and Y. Li, “EEG 
recognition based on multiple types of information by using 
wavelet packet transform and neural networks,” in IEEE Eng. 
Med. Biol. 27th Ann. Conf., 2006, pp. 5377–5380. 

[12] D. Hu, W. Li, and X. Chen, “Feature extraction of motor 
imagery EEG signals based on wavelet packet decomposition,” 
in IEEE Int. Conf. on Complex Med. Eng., 2011, pp. 694–697. 

[13] A. Ortega, P. Frossard, J. Kovacevic, J.M.F. Moura, and P. 
Vandergheynst, “Graph signal processing: Overview, 

challenges, and applications,” in Proc. IEEE, 2018, vol. 106, 
no. 5. 808–828. 

[14] L. Stanković, D. Mandic, M. Daković, B. Scalzo, M. Brajović, 
E. Sejdić, and A.G. Constantinides, “Vertex-frequency graph 
signal processing: A comprehensive review,” Digital Signal 
Process., pp.102802, 2020. 

[15] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. 
Vandergheynst, “The emerging field of signal processing on 
graphs: Extending high-dimensional data analysis to networks 
and other irregular domains,” IEEE Signal Process. Mag., vol. 
30, no. 3, pp. 83–98, 2013. 

[16] H. Behjat, I. Aganj, D. Abramian, A. Eklund, and C.F. Westin, 

“Characterization of spatial dynamics of fMRI data in white 
matter using diffusion-informed white matter harmonics,” in 
IEEE Int. Symp. Biomed. Imaging (ISBI), 2021, pp. 1586-1590. 

[17] W. Huang, T.A. Bolton, J.D. Medaglia, D.S. Bassett, A. 
Ribeiro, and D.V. De Ville, “A graph signal processing 
perspective on functional brain imaging,” Proc. IEEE, 2018, 
vol. 106, no. 5, pp. 868-885. 

[18] S. Itani, and D. Thanou, “Combining anatomical and functional 
networks for neuropathology identification: A case study on 
autism spectrum disorder,” Med. Image Anal., vol. 69, 
p.101986, 2021. 

[19] M. M´enoret, N. Farrugia, B. Pasdeloup, and V Gripon, 
“Evaluating graph signal processing for neuroimaging through 
classification and dimensionality reduction,” in IEEE Conf. 
Signal and Inf. Process. (GlobalSIP), 2017, pp. 618–622. 

[20] L. Rui, H. Nejati, and N.M. Cheung, “Dimensionality reduction 
of brain imaging data using graph signal processing,” in IEEE 
Int. Conf. Image Process. (ICIP), 2016, pp. 1329–1333. 

[21] R. Liu, H. Nejati, and N.M. Cheung, “Simultaneous low-rank 
component and graph estimation for high-dimensional graph 
signals: Application to brain imaging,” in IEEE Int. Conf. 
Acoust. Speech and Signal Process., 2016, pp. 4134-4138. 

[22] D.I Shuman,.B. Ricaud, and P. Vandergheynst, “Vertex-
frequency analysis on graphs,” Appl. Comput. Harmon. Anal., 
vol. 40, no. 2, pp.260-291. 2016. 

[23] G. Dornhege, B. Blankertz, G. Curio, and K. M¨uller, 
“Boosting bit rates in non-invasive EEG single-trial 
classifications by feature combination and multi-class 

paradigms,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 993–
1002, Jun. 2004. 

[24] K. Fukunaga, “Introduction to Statistical Pattern Recognition,” 
Academic Press, second edition, New York, 1990. 

[25] W. Huang, L. Goldsberry, N.F. Wymbs, S.T. Grafton, D.S. 

Bassett, and A. Ribeiro, “Graph frequency analysis of brain 
signals,” IEEE J of Sel. Top. Signal Process., vol. 10, no. 7, 
pp.1189-1203, 2016. 

[26] J.D. Medaglia, W. Huang, E.A. Karuza, A. Kelkar, S.L. 
Thompson-Schill, A. Ribeiro, and D.S. Bassett, “Functional 
alignment with anatomical networks is associated with 
cognitive flexibility,” Nat. Hum. Behav., vol. 2, no. 2, pp. 156-
164, 2018. 

[27] H. Behjat, and M. Larsson, “Spectral characterization of 
functional MRI data on voxel-resolution cortical graphs,” In 
IEEE Int. Symp. Biomed. Imaging (ISBI), 2020, pp. 558-562. 

[28] V. Kalofolias, “How to learn a graph from smooth signals,” In 
Artif. Intell. and Stat., PMLR, pp. 920-929, 2016. 


