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ABSTRACT

Several existing studies showed the interest of estimating

the multifractal properties of tissues in ultrasound (US) imag-

ing. However, US images are not carrying information only

about the tissues, but also about the US scanner. Deconvolu-

tion methods are a common way to restore the tissue reflectiv-

ity function, but, to our knowledge, their impact on estimated

fractal or multifractal behavior has not been studied yet. The

objective of this paper is to investigate this influence through

a dedicated simulation pipeline and an in vivo experiment.

Index Terms— Ultrasound imaging, multifractal analy-

sis, tissue characterization

1. INTRODUCTION

Ultrasonics tissue characterization (UTC) is an area of inten-

sive research, aiming at complementing the visual observa-

tion of ultrasound (US) images with quantitative information

about the tissues. Such quantitative measurements, very use-

ful in computer-aided screening tools, are generally extracted

from US images such as beamformed radiofrequency (RF),

envelope, computed by demodulation of individual RF sig-

nal, or B-mode, log-compressed envelope, images. The most

used parameters to characterize the tissues rely on acousti-

cal properties (e.g., attenuation, speed of sound, backscat-

tering coefficient [1]) or statistical and spectral information

(e.g., [2]). In addition, several studies showed the interest

of extracting from US images fractal or multifractal parame-

ters, potentially related to the fractal or multifractal behavior

of tissues in space and time (e.g., [3]). However, the good

agreement between the parameters computed from the US

images and those specific to the tissues’ signature is difficult

to be proven in practice, thus mitigating the confidence one

can have in such measurements. In our previous study in [4],

we proposed a simulation pipeline that generated US RF im-

ages from tissue reflectivity functions (TRF) with available

ground truth of tissue multifractal characteristics. Multifrac-

tal spectra were further estimated from the resulting simulated

images (RF, envelope and B-mode images were considered)

using the algorithm in [5, 6] and compared with the ground
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truth. The results in [4] led to the conclusion that only part

of the multifractal characteristics were preserved in US (RF

and envelope) images, but B-mode images bear no multifrac-

tal ressemblance with simulated tissues.

The main objective herein is to study the impact of de-

convolution on the multifractal analysis of US images. The

features used in UTC, independently on their acoustic, statis-

tic, spectral or multifractal nature, are computed directly on

acquired echo data (RF, envelope or B-mode images). Never-

theless, this data is not perfectly representative of the tissues,

but also carries information about the US scanner, through

its point spread function (PSF). Therefore, the restoration of

TRF from US images is a subject of active research. Existing

algorithms are assuming that RF images from soft tissues can

be modeled as the convolution between the TRF and the PSF

(e.g., [7, 8]). They aim at restoring the TRF by inverting this

model, using various image regularizations, among which the

ℓ1-norm is a common choice also used in this work. The im-

pact of deconvolution in UTC was already evaluated in [7] for

statistical parameters, but, to the best of our knowledge, has

not been studied yet for multifractal features.

Moreover, to also study purely fractal (Hurst) parameters,

we make use here of a more versatile simulation pipeline in

which fractional Gaussian noise substitutes the independent

Gaussian scatter amplitudes of [4]. The estimated multifrac-

tal spectra from restored TRF are shown to be in better agree-

ment with the ones of the simulated tissues, compared to those

extracted from RF or envelope images. Following the results

in [4], the B-mode images were not considered in this study

given their low correlation with the tissues from a multifrac-

tal viewpoint. Finally, we compare the simulation results to

those obtained on a real-world US image of thyroid.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a brief summary on US image deconvolution

and multifractal analysis. Section 3 details the US simulation

procedure used to generate images from tissues with available

multifractal ground truth. The results are regrouped in Section

4, and conclusion and perspectives are drawn in Section 5.
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2. MULTIFRACTAL ANALYSIS AND IMAGE

DECONVOLUTION

2.1. US image deconvolution

Under the hypothesis of soft tissue examination and using

the first order Born approximation, observed RF images af-

ter beamforming can be related to the unknown TRF by a

linear model, namely a two-dimensional convolution with the

system PSF

y = Hx+ n, (1)

where y is the beamformed RF image, x is the TRF to be

estimated and n is the measurement noise supposed white in-

dependent Gaussian. The RF image, the TRF and the noise

are all expressed in the standard vectorized version. H is a

square matrix accounting for 2D block circulant matrices with

circulant blocks and thus easily tractable in practice. Estimat-

ing x from y is a typical deconvolution problem. A standard

way to solve it is to estimate x by minimizing a cost function,

see (2), consisting of a data fidelity term (an ℓ2-norm here

due to the Gaussianity of the noise) and a regularizer. In this

work, an ℓ1-norm is used to regularize the estimated TRF, due

to its popularity in US image deconvolution.

min
x

1

2
‖y −Hx‖22 + µ‖x‖1, (2)

where µ is a hyperparameter balancing the weight of the two

terms. To solve (2), we use an alternating direction method of

multipliers (ADMM) based optimization algorithm [9].

2.2. Multifractal analysis

We briefly recall the key concepts of multifractal analysis,

see, e.g., [5, 6] for details.

Multifractal spectrum. Multifractal analysis character-

izes texture in an image F (x) by its multifractal spectrum

D(h), defined as the Hausdorff dimension of the sets of points

x with same pointwise regularity index h(x) = h, where

smaller (larger) h(x) correspond with rougher (smoother)

F (x). The spectrum D(h) can be approximated as

D(h) ≈ 2 + (h− c1)
2/(2c2) (3)

where the coefficient c1 quantifies the average regularity of

F that accounts for its self-similarity or fractality, and c2 ≤ 0
quantifies the fluctuations of regularity and accounts for mul-

tifractality [6]. In practice, multifractal analysis amounts to

estimating D(h) or the parameters c1 and c2 in approxima-

tion (3). Fig. 1 provides illustrations for multifractal textures

with different (multi)fractal parameters c1, c2.

Multifractal formalism. The estimation of D(h) relies on

the wavelet leaders. They are defined as the largest discrete

wavelet transform coefficients d
(m)
F (j,k) of F (cf. [10]),

across all finer scales and within a small spatial neighbor-

hood, ℓ(j,k) = supm∈(1,2,3),λ′⊂3λj,k
|d

(m)
F (λ′)|, where λj,k

(c1, c2) =
(0.3,−0.01) (0.3,−0.1) (0.7,−0.01) (0.7,−0.1)

Fig. 1. Synthetic multifractal images. Realizations of mul-

tifractal random walk for different values for c1 and c2.

is the dyadic cube of side length 2j centered at k2j and

3λj,k =
⋃

n1,n2={−1,0,1}λj,k1+n1,k2+n2
the union with its

eight neighbors, see [6] for details.

It can be shown that the cumulants of order p ≥ 1,

Cp(j) = Cump(ln ℓ(j, k)), of the log-leaders ln ℓ(j, k) of F
behave as Cp(j) = c0p + cp ln 2

j . This can be used to define

simple and robust estimators for the parameters c1 and c2 of

D(h) in (3) by means of linear regressions of the average and

sample variance of ln ℓ(j, k) as functions of ln 2j [5, 6].

3. US IMAGE SIMULATION

To investigate the relationship between the multifractal pa-

rameters of a tissue and those that are estimated for the result-

ing simulated image, we follow the standard simulation strat-

egy used in the US literature and replace the TRF with syn-

thetic realizations of a stochastic process with known multi-

fractal properties controlled by (c1, c2). The parameters c1, c2
are then estimated for each image independently. Example

images corresponding with the different stages of the pipeline

are sketched in Fig. 2.

Multifractal TRF (trf). We generate a TRF that mimics

the scattering map with prescribed multifractal properties. To

this end, we numerically synthesize TRFs as realizations of

multifractal random walk (MRW), whose multifractal spec-

trum is given by D(h) = 2 + (h − c1)
2/(2c2), see [11, 12]

for details. Its construction matches the standard US simu-

lation strategy according to which scatterers are modeled as

independent Gaussian random variables whose variances en-

code local reflectivity; for MRW, a multifractal cascade (con-

trolled by c2) modulates the local variance of fractional Gaus-

sian noise (with Hurst parameter H = c1 + c2). We simulate

regularly sampled TRF. It has been checked that this leads

to equivalent results as drawing scatterer positions at random

from a uniform distribution in the field of view, with subse-

quent interpolation to a regular grid, and yields speckle char-

acteristics close to those observed in practice.

RF signal (rf). Next, the TRF is convolved with a realistic

PSF generated with Field II simulator [13], resulting into an

RF image.

Envelope (env). The RF image is further axially demodu-

lated, resulting into an envelope image.

Deconvolution (dec). Alternatively, deconvolution is per-

formed as described in Section 2.1, assuming perfect knowl-



edge of the PSF.

Enveloped of deconvolved image (env(dec)). Finally, we

also compute the envelope of the image obtained by deconvo-

lution, to remove possible residual reverberation.

4. RESULTS

4.1. Simulation results

Collections of MRW images with various multifractal param-

eters were simulated as described above. The value for the

fractal parameter was set to c1 ∈ (0.1, 0.2, . . . , 0.9), and for

the multifractality parameter to c2 ∈ (−0.1,−0.09, . . . ,
− 0.01, 0), covering a large range of realistic multifractal

properties. For each combination (c1, c2), 100 independent

realizations of MRW of size 512× 512 were synthesized and

used in the simulation pipeline. The parameters c1 and c2
were estimated for the trf, rf, env, dec and env(dec) images,

respectively, as detailed in Section 2, using Daubechies2

wavelets and scales j ∈ (4, 6) for linear regressions; values

reported for c1 correspond to the primitive of the image.

Scale invariance. Fig. 3 (left column) plots average cumu-

lants C1(j) and C2(j) as a function of j. It shows that those

obtained for the rf and env images strongly differs from that

of the trf image, for C1(j) for all scales, and for C2(j) for the

fine scales. In contrast, the deconvolution effectively restores

the linear behavior across scales for all scales for C1(j), and

for all but the finest scales for C2(j).

(Multi)fractal parameters c1 and c2. Fig. 3 (right col-

umn) plots average estimates for c1 (top) and c2 (bottom) as

a function of the prescribed values c1 resp. c2. Results are

consistent with those of the previous paragraph. The images

rf, dec and env(dec) produce estimates for the fractal param-

eter c1 that are strongly biased and follow the tendency of the

prescribed c1 values at best very weakly. In contrast, the es-

timates for c1 obtained after deconvolution tightly reproduce

the prescribed values. For the multifractal parameter c2, all

images enable a reasonably accurate assessment of the value

prescribed to the TRF. The best average estimates for c2 are

also obtained after deconvolution.

Quantitative analysis. Tab. 1 reports the correlation co-

efficient ρ, bias and root mean squared error (rmse) of the

estimates obtained for rf, env, dec and env(dec) images, re-

spectively, computed w.r.t. estimates obtained for the trf ref-

erence image. It confirms that the estimates for c1 and c2
after deconvolution are strongly correlated with those of the

TRF model (ρ ≥ 0.98), unlike those for the other images,

and produce significantly smaller rmse values (e.g., up to 2

orders of magnitude smaller than those of rf for c1). It also

shows that computing envelopes strongly deteriorates multi-

fractal parameter estimates, even after deconvolution.

Overall, this simulation study leads to conclude that only

estimates obtained after deconvolution accurately reproduce

the full set of fractal and multifractal properties of the TRF.

trf rf env dec env(dec)

Fig. 2. Simulation pipeline. Synthetic images at different

steps of the simulation pipeline, illustrating that deconvolu-

tion recovers a large part of visual details of the original trf.
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Fig. 3. Log-cumulants and estimation for simulated data.

Average estimates C1(j), C2(j) and c1, c2.

4.2. Illustration for experimental data

We complement the simulation study with a result on an in

vivo thyroid image acquired from a healthy subject, plotted

in Fig. 4(a). Multifractal spectra were estimated for two im-

age patches extracted at the same depth and from different

tissues. The patches were interpolated to isotropic axial and

lateral pixel resolution of ≈ 0.02 mm to match the simulation.

In this experiment, only the US modes were available. These

four pairs of images (two patches for rf, env, dec, env(dec))

are plotted in Fig. 4(b-e), with estimates for c1, c2. The de-

convolution problem is more difficult here than in the simu-

lation because the PSF is unknown and can vary in space, re-

sulting in clearly visible reverberation artifacts (cf. Fig. 4(d)).

We observe that the estimates for multifractality c2 are largely

consistent across the images, corroborating the simulation re-

sults as well as those reported in [4], where changes in c2
of US images were found to indicate a change in multifrac-

tality for the tissues. As far as the fractal parameter c1 is

concerned, the values for the rf and dec images are very sim-

ilar and close to the values observed for rf in the simulation

study. This suggests that the deconvolution has not been suc-

cessfully unveiling the fractality of the tissue, likely due to

the reverberation artifacts caused by a bad estimation of the

PSF phase. One could study the envelope of the images in an

attempt to remove the residual oscillations, yet this strongly

alters the parameter c1, as already observed for the simula-



c1 rf env dec env(dec)

ρ 0.46 0.21 1.00 0.38
bias −1.022 0.628 0.032 0.090

rmse 1.037 0.668 0.034 0.258

c2 rf env dec env(dec)

ρ 0.63 0.47 0.98 0.60
bias −0.007 −0.010 0.010 −0.003

rmse 0.046 0.058 0.016 0.053

Table 1. Correlation coefficient ρ, bias and rmse of estimates

for c1 (top) and c2 (bottom) calculated w.r.t. the estimates ob-

tained for the trf image (best results marked in bold).

(a) (b) (c) (d) (e)

Fig. 4. Results for real data. Thyroid image (a, B-mode

image) and rf (b), env (c), dec (d), env(dec) (e) images of red

(top row) and blue (bottom row) patch, with estimates c1, c2.

tion. Therefore, while values for c1 are different for the two

patches and thus suggest a change in tissue properties, it can

not be directly interpreted as a change in tissue fractality.

5. CONCLUSION AND PERSPECTIVES

This paper studied the influence of deconvolution on the es-

timation of tissue fractal and multifractal properties in US

imaging. A simulation pipeline was proposed allowing to

generate US images from tissues with available multifractal

ground truth. Simulation results showed a better correlation

between this ground truth and the estimated fractal and multi-

fractal behavior from restored TRF than those estimated from

native US data. These encouraging results open several per-

spectives including the consideration of other regularization

than the ℓ1-norm, pursuing with more realistic simulation and

the analysis of further in vivo data.
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