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Abstract
Accurate segmentation of tissue microarrays is a challenging topic because of some of the similarities
exhibited by normal tissue and tumor regions. Processing speed is another consideration when dealing
with imaged tissue microarrays as each microscopic slide may contain hundreds of digitized tissue
discs. In this paper, a fast and accurate image segmentation algorithm is presented. Both a whole disc
delineation algorithm and a learning based tumor region segmentation approach which utilizes
multiple scale texton histograms are introduced. The algorithm is completely automatic and
computationally efficient. The mean pixel-wise segmentation accuracy is about 90%. It requires
about 1 second for whole disc (1024×1024 pixels) segmentation and less than 5 seconds for
segmenting tumor regions. In order to enable remote access to the algorithm and collaborative studies,
an analytical service is implemented using the caGrid infrastructure. This service wraps the algorithm
and provides interfaces for remote clients to submit images for analysis and retrieve analysis results.
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1. INTRODUCTION
Breast cancer accounts for about 30% of all cancers and 15% of all cancer deaths in women
in the United States. Current therapies and treatment regimens are based upon classification
strategies which are limited in terms of their capacity to identify specific tumor groups
exhibiting different clinical and biological profiles. Tissue microarray (TMA) technique
enables investigators to extract small cylinders of tissue from histological sections and arrange
them in a matrix configuration on a recipient paraffin block such that hundreds can be analyzed
simultaneously [1,2]. An alternate, but less utilized approach is to sequentially digitize each
specimen for subsequent semi-quantitative assessment [3]. Both strategies ultimately involve
the interactive evaluation of TMA samples which is a slow, tedious process that is prone to
error. Processing the specimen using a reliable, image-based analysis system could reduce the
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cost and patient morbidity. There has been increasing interest in investigating the image
analysis algorithm for digitized TMA tissue microarray images [4]. However, to our
knowledge, most of these studies run as stand-alone programs, which limits the scale and
throughput as a result of the computational complexity required by many of the algorithms
used for analysis.

The biomedical research community has recognized the importance of collaborative use of
databases and analysis systems, developed by independent research groups and/or hosted by
different institutions, in order to target complex diseases. There are several large scale projects,
driven by community needs, that develop tools and infrastructure to support federation of
information and analytical resources for basic, clinical, and translational research. An example
in the cancer research field is the cancer Biomedical Informatics Grid (caBIG®,
http://cabig.nci.nih.gov) program, sponsored by the National Cancer Institute. The goal of this
program is to develop informatics standards, a common suite of applications, and a Grid
infrastructure to assist more effective sharing of data and analytical resources across institutions
and support coordinated multi-institutional projects. The CardioVascular Research Grid
(CVRG, http://cvrgrid.org) is another example. The CVRG is developing a suite of tools,
applications, and a federated infrastructure (building on the caBIG ® caGrid architecture[5])
to support information sharing and collaborative studies in the cardiovascular research
community.

In this paper, we describe a learning based segmentation algorithm for analyzing digitized
breast tissue specimens. In Section 2 we present the details of the segmentation algorithm. The
implementation using caGrid for remote access and collaboration is described in Section 3.
Section 4 provides the experimental results and Section 5 concludes the paper.

2. SEGMENTATION
Image segmentation is the process of delineating an image into ”homogeneous” regions based
on the similarity of pixel attributes. In our applications, the pre-processing step of the
segmentation algorithm automatically detects the outer contour of imaged tissue discs. An
Adaboost classifier was trained using a multiscale texton histogram as the feature vector. The
whole procedure has been implemented as a caGrid analytical service and can be launched
remotely by remote clients. The Java based image analysis interface is shown in Figure 1.

2.1. Whole Disc Delineation
The algorithm begins by finding the outer contour of each whole breast tissue disc. This is
achieved by first applying a simple adaptive threshold to provide a binary mask for the tissue
disc. The algorithm then roughly estimates the outer boundary of the binary disc as the region
of interest (ROI). Given a set of point set S, with points p1, …, pN, the outer envelop is given
by the following equation:

(1)

A deformable model [6] is further applied to extract the breast cancer disc from the background.

In Figure 2, we show the unsupervised delineation of the outer boundary of a few representative
tissue discs. After segmenting the whole disc mask, the segmentation of the ROI is performed
using texton histograms.
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2.2. Learning Based Tumor Region Segmentation
Textons [7] are defined as repetitive local features that humans perceive as being discriminative
between textures. We use the multiple scale Schmid filter bank [8] composed of 13 rotation
invariant filters:

(2)

The image filtering responses are clustered using K-means to generate a large code book. A
texton library is constructed from the corresponding cluster centers. The pixel-wise
segmentation of imaged breast tissue is performed by classification. Based on the labeled
ground truth masks, 2000 positive and negative pixels are extracted from the tumor and non-
tumor regions in the image. The appearance of the neighbors of each training pixel is modeled
by a compact quantized description - texton histogram, where each pixel is assigned to its
closest texton using the following equation:

(3)

Here I denotes breast tissue image, i is the i-th element of the texton dictionary, and T (j) returns
the texton assigned to pixel j. The windowed texton histogram is computed around each
individual training pixel.

After normalization, the texton histogram actually represents the texton channel frequency
distribution in a local neighborhood around the centered pixel. In order to compensate for scale
changes, the texton histogram is extracted from 5 different window sizes (4, 8, 16, 32, 64 pixels,
respectively) and concatenated into one large feature vector. This concatenated texton
histogram is used as features to train the classifiers. The integral histogram [9] is used to
calculate the windowed texton histogram. The algorithm starts by exploiting the spatial
arrangement of data points. It then recursively propagates an aggregated histogram. The
aggregated histogram starts from the origin and traverses through the remaining points along
a scan-line. At each step, a single bin is updated using the values of the integral histogram at
the previous visited neighboring data points. The integral histogram method speeds up feature
extraction significantly.

The Adaboost is chosen as the classifier for segmentation. AdaBoost works by sequentially
applying a classification algorithm on a reweighed version of the training data and produces a
sequence of weak classifiers. The weak leaner used in our experiments is classification stump.
The strong classifier is assembled from all the weak classifiers to minimize the cost function
representing the classification accuracy. Given a test image, we apply the trained strong
classifiers for each pixel and separate the image into tumor and non-tumor regions.

Using the multiscale texton histogram, integral histogram and AdaBoost, a fast and accurate
pixelwise segmentation algorithm can be implemented for delineating the tumor region in an
imaged breast cancer specimen. The pseudocode of the algorithm is shown in Figure 3

3. IMPLEMENTATION OF GRID SERVICES FOR REMOTE ACCESS AND
COLLABORATION

One of our goals in this project is to facilitate remote access to analysis methods and analysis
results by researchers and among collaborating teams and to enable efficient execution of
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expensive analysis on high-end systems. We employ Grid computing and high performance
computing frameworks for this purpose. In this work we have adopted a service oriented
implementation to support remote access to analysis programs. This implementation
encapsulates an analysis method or application as a service. The analysis application’s
functionality is accessed remotely and programmatically through application-specific service
interfaces. With a service oriented design and implementation, a heterogeneous collection of
analysis programs (which may be implemented as Matlab scripts, Java codes, or C++ programs)
can be accessed through well-defined and published interfaces. This facilitates more effective
and easier federation of multiple analytic resources in a collaborative environment. Moreover,
the backend analysis program can be deployed on a parallel machine for faster execution of
requests without requiring modifications to client programs. We use the caGrid infrastructure
[5] for Grid-enabled deployment of our analysis methods. caGrid is the core Grid architecture
of caBIG®. It is implemented as a service oriented architecture with extended support on
service metadata, interoperability through published XML schemas and common data
elements, and security.

Our choice of caGrid as the underlying infrastructure is motivated by several factors. First,
caGrid is employed by both the caBIG program and the CVRG project. Implementing our Grid
services using caGrid would enable us to inter-operate with tools and resources developed by
those communities. Second, caGrid provides higher level tools and core services such as
Introduce [10] for service development and deployment and GAARDS [11] for security support
on top of low level Grid middleware. These tools make it easier to develop and deploy
interoperable services and implement Grid-enabled authentication and authorization support
for a service. Third, a service oriented system provides flexibility in organizing and combining
the steps of an analysis process into services. For instance, each step may be implemented as
a separate service or multiple steps can be combined into one service.

We have developed a suite of services for analysis of TMA data. One implementation treats
each step in the analysis process as a separate service. The advantage of this approach is that
the client can compose different analysis processes using a subset of these services. The client
can also replace a service (a step) with another semantically equivalent service, which may be
implementing a different algorithmic variation of the analysis step. The disadvantage is that it
introduces overheads because of multiple service invocations and because data is exchanged
through service interfaces, rather than using native data formats and file or memory copies. A
more recent implementation combines multiple steps (each of which is implemented as a stand-
alone program) into a single caGrid analytical service. This implementation has less overhead,
but offers less flexibility to clients. The implementation of this service has been done using the
caGrid Introduce toolkit. We have implemented a service interface and skeleton using
Introduce. The service interface accepts a TMA disc image and input parameters used by the
analysis programs. It returns a texton histogram as the analysis result. When an image is
received by the service, the service stores the image into a file and invokes the backend analysis
programs passing them the image file. Once the analysis of the image has been completed, the
service converts the results into an object, which represents the texton histogram, and returns
the object to the client. We are in the process of extending this service to accept a collection
of images and make use of a parallel machine so that multiple images can be processed
concurrently reducing the overall execution time.

4. EXPERIMENTAL RESULTS
The tissue microarrays used in our experiments were prepared by different institutes: the
Cancer Institute of New Jersey, Yale University, University of Pennsylvania and Imgenex
Corporation, San Diego, CA. Diaminobenzidine (DAB) and hematoxylin were used to stain
the tissue samples. To date over 300 immunostained microscopic specimens, each containing
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hundreds of tissue image, were digitized at 40 volume scan using the Trestle/Zeiss MedMicro,
the whole slide scanner system. The output images typically contain a few billions of pixels
and are stored as a compressed tiled TIFF file sized at about two gigabytes.

We obtained 100 breast cancer specimens for which ground truth tumor masks were hand-
drawn by a board-certified anatomic pathologist. Compared with the doctor’s annotation, the
algorithm provided a pixel-wise segmentation accuracy around 90% with the average false
positive rate 6.62% and the average false negative rate 3.15%. Some of the segmentation results
are shown in Figure 4. The algorithm is implemented using C++ and computationally efficient.
On a PC with Duo Core Processor 1.8GHz and 2G memory, the whole disc delineation took
only 1 second for a 1024*1024 images, while the segmentation of the tumor region took less
than 5 seconds.

5. CONCLUSIONS
In this paper, we have presented a robust, fast and accurate segmentation algorithm for digitized
tissue microarray images. A novel aspect of this algorithm is that instead of building specific
models of the specific problem, all the major steps in the segmentation process are based on
learning. This characteristic of the algorithm makes it possible to extend the algorithm to other
types of digitized pathology specimen segmentation. Our implementation leverages emerging
service oriented Grid architectures for remote access to the algorithm for collaborative studies.
We believe the availability of extensible algorithms deployed as services has tremendous
potential to significantly improve scientific research that makes use of biomedical imaging.
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Fig. 1.
TMA-Miner Prototype Client Interface.
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Fig. 2.
The classification results. (a) A sample imaged tissue microarray. (b) The delineation of the
outer contours of a few representative breast tissue discs.
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Fig. 3.
The segmentation procedure which applied deformable model to find outer contour and
multiple scale texton histogram for tumor region segmentation.

Foran et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2009 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The representative segmentation results. The segmented mask is overlayed on the original
images.
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