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ABSTRACT the number of objects is very high and the trajectories in-

Green Fluorescent Protein (GFP)-tagging and time-lapse f|L;§ract. Temporal stochastic filters [2], particle filteritegch-
orescence microscopy enable to observe molecular dynamigédues [3] or graph-theory based methods [4] have been then
and interactions in live cells. Original image analysis et developed to improve temporal matching. In [5], the authors
ods are then required to process challenging 2D or 3D imag@PPlied a deterministic approach assuming that vesicles ar
sequences. To address the tracking problem of several hufiloving along the microtubule network, and thus the number
dreds of objects, we propose an original framework that pro®f Paths IS limited. Kymogr.am-bas'ed modeling is then US_Ed
vides general information about vesicle transport, thagis ~ for analyzing temporal profiles of different paths. The main
fic flows between origin and destination regions detected iffmitation of this method is that each path is independesuty
the image sequence. Traffic estimation can be accomplishégrvised. In[6], the authors propose also to use minimalspat
by adapting the advances in Network Tomography commonliﬁethofj for esumatmg the object trajectories without udH
used in network communications. In this paper, we addres4al object tracking.

image partition given vesicle stocking areas and multipath  In this paper, we propose an alternative and global ap-
routing for vesicle transport_ This approach has been deveproaCh for traffic anaIySiS. The idea is to estimate the numbe

oped for real fluorescence image sequences and Rab proteifévesicles going from origin to destination regions. Our es
timation method is inspired from the Network Tomography

(NT) concept [7] developed for network communications and
further applied to video surveillance in [8]. We just need to
count the number of “objects/vehicles” in different image r

1. INTRODUCTION gions at each time step. Our contributions are twofolds: i)
To preserve the structure, cohesion and functions of themerg we extend the usual NT concept described in Section 2 to
ism, the eukaryotic cell exchanges information between ition-binary routing from geodesic paths given the image se-
compartments on physical supports such as intermediate filgquence; ii) we propose an estimation/optimization franéwo
ments or microtubules. In our study, the transport interimed to derive counting measurements from image intensities (flu
ates corresponding to small spherical vesicles move aldng morescence) and to solve the traffic flow problem.
crotubules and are propelled by molecular motors. We focus
on the traffic between the Golgi apparatus and the endoplass TRAFFIC MODEL: NETWORK TOMOGRAPHY
mic reticulum in eukaryotic cells, presumably regulated by
two isoforms of the Rab6 GTPase (Rab6A and Rab6A). Obin time-lapse fluorescence microscopy, GFP-Rab6 proteins
servation of protein dynamics in live cells using GFP-taggi involved in traffic correspond to small lighted blobs alohg t
and time-lapse fluorescence video-microscopy can be used tmobserved microtubule network from origin regions (Golgi
investigate and clarify the role of Rab6A and Rab6A' in ret-apparatus) to destination regions (“end-points” locatetthe
rograde transport [5]. It is worth noting that the GFP-Rabéperiphery of the cell). We decide to adapt tiNetwork To-
proteins are either free (diffusion) in the cytosol, or lmshat mography(NT) approach introduced to estimate vehicle traf-
the periphery of the Golgi membrane, or anchored to the vesific flows [9] and re-popularized in computer networks [7] to
cle membrane and microtubules (corresponding to traffic). solve our traffic flow problem.

Image processing methods have been developed to track In this modeling, the network is described as a graph
vesicles over time. The most commonly used tracking cong (E, V') defined byn vertices and- edges, wherel de-
cept is the so-called “connexionist” approach [1] which-con notes the set of edges (microtubule pieces), &nthe set
sists in detecting particles independently in each frama in of vertices (vesicle stocking areas or microtubule cragsin
first step, and then linking the detected objects over tinie T Each pair of neighbor vertices is connected by two edges in
relateddata associatiortask is the most critical step when order to enable traffic in both directions (see Fig. 1 (left))

Index Terms— Traffic control (transportation), mi-
croscopy, fluorescence, proteins, video, routing, tragkin
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Fig. 1 Lefft: “toy” graph: the vertices are labeled by letters ame tedges by ‘ ]
numbers; right: Several rows @& corresponding to the “toy” graph. D (

Then, the vesicles follow a path defined by an origin ver-

tex, a destination vertex, and possible intermediateaesti FIg. 2. Image sequence and MIP map. Left) typical image (and zodmeiews)
h f h be th h ized by th .. extracted from a time-lapse microscopy image sequencedle)idIP map extracted

The seto pat s can be then characterize y the orngin anfdm the sequence corresponding to the image at left (withmea-in views of areas

destination vertices, that is the Origin/Destination Si@(DD of interest). For clarity, the high fluorescence levels apidted with dark values and
a gamma correction is applied for better visualizationhtjg graph associated to the

pairs). Gi_VGﬂn vertices i_n the graph: = n(n - 1)_ oD pairs partitio_n of Fig.3_a_) with colors corresponding to the cslof segmented regions related
are possible. In NT, given the number of objects detecteth theimage partition

as going from one vertex to a neighbor vertex, the goal is to
estimate the proportions of vesicles for each OD pai.

More formally, letz, be the number of vesicles on the
OD pair #f at time¢. The measurements.; correspond
to the number of vesicles that pass through eggeat time
t. We then assume the following modé&¥: = AX, where
Y = {Ycttee(t,...r}.teq1,...,7} 1S the set of measurements
X = {zsi}reqr,..chtequ,...,y the unknown OD flowsT’
the number of images antl denotes the x ¢ routing matrix
with binary elements.; = 1 if edgee belongs to the path for
the OD pair# f (defined as the shortest path in the graph), an(ij1
0 otherwise. A cost is then associated to each edge (Euclide
distance between vertices, number of vertices in the pah, .
and the Dijkstra algorithm [10] is applied to the whole graph
for computing the shortest path for each OD pair. In Fig. 1 . .

(right), we give several rows of the matrix corresponding to 3.2. Image partition based on the minimal paths method
the graph shown in Fig. 1 (left) when the Euclidean distancerg partition the image, we exploit the minimal paths method
between the vertices is considered. [13]. In this setting, the minimal action map computed from

To apply NT in video analysis, we then need to provides seed poinprovides for each point in the image a measure
a graph given an image sequence, a relevant metric/criteriqyroportional to the minimal path between this point and the
for computing the routing matrA and generate temporal seed point. Image partition is then achieved by computing a

MIP map is shown in Fig. 2 (middle). The likely origin
and destination regions appear as darker and larger regions
than moving blobs because vesicles are temporally stocked
in these areas. Hence, a segmentation of the MIP map can
be used to detect the OD regions in the image. By applying
' the segmentation method described in [12] to the MIP map of
Fig. 2 (middle), meaningful regions are extracted as shown i

Fig. 3 a).

In the NT-based approach, the dafacorrespond to the
umber of vesicles that pass through edges at each time step.
%Q:cordingly, we need an image partition composed of adja-
cent regions for temporal object counting (see [8]).

counting measurements in spatial regions to fafm minimal action map for each segmented region. More for-
mally, the minimal action mag¥; associated to seed pojnt
3. GRAPH CONSTRUCTION is definedvp € Q (2 denotes the MIP map domain) as:

The microtubule network extraction is really hard to penfior

sincg we only ob_f,erve s'malll lighted blobs. Neyertheless, th U(p) = min /
Maximum Intensity ProjectiofMIP) map provides useful Apip | Jy
information about partial trajectories of vesicles andicles _ ) _
stocking areas. Accordingly, we extract the origin and idest WhereA,,, . is the set of planar curves connecting the points

nation regions by segmenting the MIP map and labeling théP1,P2) € X ©Q,7p, , is acurve inA,, ,,, v > 0 is a con-
graph vertices. stantand® : Q — R™* gives the intensity at the current point

p. The partitionG; associated to segmented region of center
p; is then derived asg; = {p € Q : U;(p) < Ui(p),Vi €
{1,...,N},i # j}. The set ofR partitions associated to the
The MIP map in the direction of time axis is defined at eactsegmented regions with centefs,, ...,pr} forms the im-
point p in the image as: MIB) = max,c(i,.. 7 It(p), age partition: Paff2) = Uje{le} 0G;, wheredg; is the
wherel,(p) is the intensity observed at poiptin the image  boundary of regiorg;. In practice, we use thast march-

I;. A preliminary pre-processing step [11] is first applieding algorithm [13] to compute the minimal action maps. The
to substract the image background (vesicles free in the cyimage partition based on the MIP map of Fig. 2 is shown in
tosol and those anchored at the Golgi membrane). A typicdtig. 3 a).

[v+ P(7p1,p(5))]d8} )

P1,P

3.1. Extraction of origin/destination regions
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Table 1 Non-binary routing matrix for the OD paid — B corresponding to
the graph shown in Fig. 1 (left). We associate the path— B to the probabilityrm,
A — D — Btomsg,andA — C — D — Btomgy,andM = mi+mo+m3.

fluorescence in the complete region corresponding to vertex
a) v at timet, and lety.; be the fluorescence intensity to be

Fig. 3. a) image partition based on the minimal paths method appti¢tie MIP determined on edge at timet. Then we ObSEI’VGZAﬂg_H —

map shown in Fig. 2 (right) given the seed points (labeled laglcrosses) defined _ _ _ _

as gravity centers of the segmented regions (appearinglaedareas); b-c) minimal <At __y27t+1 i Y41+ Ya+1 — Yse1 + 96,1‘,-1—.1 Y5,t+1-

paths computed for connecting region pairs (with zoomeduigws). The MIP map This equation can be extended to all vertices:A& be

appears as a bright region in the background and the miniathsmre depicted in red. . . . .

In a), b) and c), the regiong; (image partition) are depicted with light-to-dark green theR X_T matrix de_nOtmg the difference of fluc_)resc_:ence In-

variations. tensity In each region between two consecutive time steps.
LetY be ther x T matrix representing the level of fluores-

Given a partition of the MIP map, we define the verticesSence that fluctuates on edges at each time step. We define

(regions) and edges (region boundaries) to form a graph (sgg\%[t"’lS the so-called “neighborhoadx r matrix” composed

Fig. 2 (riaht). | ' | fi f ernary elements: € {—1,0, 1} that expresses neighbor-
ele?ch e(dngge tt)g der:isg?ggoro’uv;ﬁga;g&ied to define a cost fo hood relationships. Then, we haX’, = MY, and the prob-

lem is under-constrained (> n). We assume that all the
components o are positive sinc& represents counts. Fi-
nally, the measurements are obtained by solving the fotigwi

The minimal paths between the gravity centers of neighigorin ©Ptimization problem:
regions can be used to define the edge costs. LetMi@ the N _ ) )
minimal path between the gravity centgrsandps: Y = min|AZ-MY [ subjecttoY > 0.

MP; 2 Argrp}z {/7

In our study, it is also desired that the vesicles can follow
To get MR , the minimal action map/; (resp. o) is first  different paths for going from an origin to a destination re-
computed. A gradient descent is then applied fqgnfresp.  gion. For each OD pair, we compute all the paths linking
p1)- We define the edge cost between the regighand#2  the origin to the destination thanks to a depth-first seamch i
as the integral of intensity of the MIP map along the minimalthe graph. To each path, we associate a cost defined as the
path. Two typical examples of minimal paths used to defingum of edge costs. Unlike to the usual NT [7], we consider
path costs are depicted in Fig. 3 b) and c). In the first examg probabilistic routing matrix and propose the followingppr
ple, a relatively short path is computed while in the secongyrobabilitiesm.,,  exp (_%w) wherec,, denotes the cost
example, the path is much longer than the Euclidean distanGf path w, ando is a constant. In practice; is different
between the two region centers. This demonstrates that a feyyr each OD pair and is chosen to be the smallest path cost
vesicles are moving directly through the common boundaryor the current OD pair to encourage the shortest paths. The
#0. 2. These costs will be used to derive an original form forprobabilistic routing matrix is then derived as follows. tLe

3.3. Costs for edges

[v + P(Ypy.,ps (s))]ds} . 4.2. Probabilistic routing matrix

P1,P2

the routing matrixA.. {w.}i,i € {1,...,Q}, be the set of paths that use the edge
and letm,,), be the corresponding probability. Hence, each
4. TRAFFIC ESTIMATION element, ; of the non-binary routing matriA is defined as
In our study, it is established that the level of fluorescesce q, ; = rzgzlm““e)i

o ZQ= M(w_,); '
e/ =1 i=1 el

For illustration, the row of the non-binary routing matrix
for the OD pairA — B in the graph shown in Fig. 1 (left) is
given in Tab.1.

proportional to the number of vesicles at each pixel. Ouaide
to infer the number of vesicles passing through each edge (i.
Y) amounts to computing the difference of intensity variatio
at two consecutive time steps in each neighboring region.

4.1. 'Y computation 4.3. NT optimization

We consider the fluorescence exchanges at veftén the In our study, we are only interested in the proportions of-ves
graph shown in Fig. 1 (left). Let, , be the total amount of cles on each OD pair for the whole image sequence. So we



propose instead to solve the following optimization profle

min ||y — Ax[? stz >0, fe{l,....c}, (1)

wherex = (71,...,Z.)T contains the positive proportions of
vesicles for each OD pair arl = (71, . ..,%-)" defined as

Ye = %EL Yet, Ve € {1,...,r} correspond to tempo-
ral averages. As the traffic is observed only on a few of OD

pairs, we add a parsimony constraint and solve the followindrig. 4. Resuits obtained by applying the NT-based approach on theesee shown
bl . in Fig. 2 (left). The colored areas correspond to the segetkrgigions and the partition

problem: is labeled with light-to-dark green variations. The arraepresent the estimated OD

pairs, and the corresponding colored numbers at the lefefo@sent traffic proportions.

min ||y — AZ|2 + A|R]l0 stZ >0, fe{l,....c},

where||x|lo = #{z; # 0},i € {1,...,c}. An alternative 6. CONCLUSION

to express the parsimpny const_rair!t is to introd_uce hard cony, this paper, we have proposed a general framework for
straints about the origin or destination vertices if knoWor ¢~ flow estimation without individual tracking of mov-

example, assume that vertess the single origin region. Let 4 ghiects. First, an image partition is performed from a
R be all the OD pairs that havefor originandO the setofall .4 segmentation of the OD regions using the minimal
OD pairs. The routing matripA is then updated as f_ollows: paths method. Then, an adjacency graph with edge costs pro-
Ae,O~NR)=0,¥e € {1,...,r}. The same restriction can ,nional to the path lengths is computed. Finally, we solve
be applied to impose additional origin or destination el ¢ yraffic flow problem by considering a probabilistic rout-
Once the routing matrix is updated, the problem (1) is solvegly matrix and temporal counting measurements to extract
by standard non-negative mean square minimization. meaningful paths corresponding to “motorways” for vesicle
trafficking in molecular imaging. More intensive experinten

5. EXPERIMENTAL RESULTS have been conducted but cannot be reported in this paper.

The NT concept was successfully experimented on Rab6 traf-
fic simulations in [14]. We propose four experiments corre-
sponding to the sequence composed of 121 images (2-bytes)
using time-lapse fluorescence (wide-field) microscopy-(res
olution: 160nm x 160nm, frame rate: 2 images/sec.), and
shown in Fig. 2 (left). In a preliminary step, the background [2]
was removed using [11]. The traffic estimation results afe re
ported in Fig. 4. In this figure, the black region corresponds
to a masked area, consequently the fluorescence variations 2
this region are not taken into account.

In Fig. 4 a) and b), we compare the estimated OD flows
between a single path routing matrix and a probabilisti¢-rou
ing matrix. According to the expert-biologists, the vesgl
mostly move from the Golgi Apparatus (blue region) to “end-
points” located at the periphery of the cell. With a singléhpa (6]
routing, a lot of significant OD pairs are estimated in any di- 71
rections with no preference. This result is not satisfyind a
is not consistent with the prior knowledge given by the ex- [8l
perts. By considering a probabilistic routing matrix, aitied (9]
number of significant OD pairs are estimated, mainly oridnte
from the image center to the periphery. [10]

For the experiments shown in Fig. 4 ¢) and d), the Golgi
apparatus region (in blue) is compelled to be an origin regio 111
In these experiments, two different partitions/segméorat
are used. In both experiments, three principal directiams f
the traffic are extracted with roughly similar estimatedfica [13]
flows: from the Golgi apparatus to respectively the top (22%—
24%), left bottom (41%—-30%) and right bottom (37%—46%)14]
of the figure. This tends to show that traffic flows are hierar-
chically organized and “motorways” can be identified.

3]

(12]
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