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ABSTRACT

We propose a new generic framework for segmentation of 3D
digital data, based on knowledge contained in a segmentation
example of similar data. The integration of prior knowledge
is made by registering the image to segment on the segmen-
tation example. Since the registration step relies on binary
segmented data, segmentation and registration are performed
jointly in a coarse-to-fine way using a multiscale parametric
representation of a threshold map and of a deformation field.
The threshold map is required by the segmentation procedure
which is also devoted to recover topological details. The ben-
efit of such an approach is illustrated in the context of head
bone segmentation in 3-D computed tomography (CT) im-
ages.

Index Terms— Image segmentation, image registration.

1. INTRODUCTION

Devising reliable and fully automatic segmentation methods
for head bones in 3-D CT images is still an open issue, and
few methods in the literature are addressing this problem [1,
2]. One of the key points making this task difficult is related
to the nature of CT images, which are subject to noise and
to severe streaking artifacts due to metal objects such as den-
tal fillings. Another issue is to separate “bones of interest”
from the other ones. For example, in the context of this work,
bones of the spinal column should not be segmented. These
two points are usually tackled using pre- or post-processings:
in [2], a metal artifact removal procedure is applied on the CT
images before segmentation, and in [1], a post-labelling ofthe
structures of interest is performed after segmentation. Tack-
ling all these issues during the segmentation process would
require the introduction of strong priors. However, extracting
knowledge remains a difficult task. That is why segmenting
images based on available segmentation examples is of in-
creasing interest in image processing community. The key
point is to use one or several manually labelled examples to
improve the segmentation of a similar image [3].

In this paper, we consider the segmentation of a 3-D CT
imageI of the head, while taking advantage of a reference
segmentationBm of another similar CT image (Bm has been
segmented manually by an expert). In the sequel, all binary

images are denoted byB (if a voxel s is classified as bone
of interest,B(s) is set to 1, and to 0 otherwise). To use the
knowledge provided byBm, we follow an idea similar to [3],
which consists in finding correspondences between parts of
Bm and parts ofI. To this end, the transformation that best
mapsI ontoBm should be estimated. Most registration meth-
ods dedicated to the maxillofacial region are feature-based.
This implies that features have to be extractedbefore regis-
tration. However, as the feature extraction step requires to
segment the image, a chicken-and-egg problem arises: taking
into accountBm to segmentI requires to registerI on Bm

and the registration ofI on Bm requires to segmentI. In
order to tackle this problem, we propose to jointly perform
segmentation and registration. The benefit is to progressively
improve, on the one hand, the segmentation quality thanks
to the knowledge provided by the registration procedure, and
on the other hand, the registration accuracy thanks to a better
segmentation ofI. The paper is organized as follows. In Sec-
tion 2, the proposed method is described. Section 3 presents
results. Conclusion and perspectives are given in Section 4.

2. PROPOSED FRAMEWORK

In the proposed method, segmentation and registration are
performed in a coarse-to-fine way based on two multireso-
lution parametric models: one for the non-rigid transforma-
tion, and one for the threshold map. At scalel, the deforma-
tion model is estimated by mapping the segmented version
of I obtained at scalel-1, namelyBl−1, on Bm. Since the
mapping ofI on Bm becomes more accurate as the scale in-
creases, it can be assumed that the knowledge extracted from
Bm to drive the segmentation ofI becomes more and more
confident (extracted features enable to estimate the threshold
map, which is used during the segmentation procedure). The
different steps of the algorithm, summarized in Alg. 1, are
described in the following subsections.

2.1. Registration

The purpose of registration at scalel is to estimate the param-
eters of the deformation model so as to matchBl−1 on Bm

given a cost function. Before describing the cost function,we
present the multiresolution deformation model.



Algorithm 1 Joint segmentation and registration (notations
are defined in the text)

Initialization of segmentation using Otsu’s method:B0

for l = 1 to lf do {/*registration loop*/}
Registration at scalel (Sec. 2.1):hl

Knowledge extraction (Sec. 2.2):Z l
boi, Z l

ref , {pl,r
i,j,k}

Estimation of the threshold map (Sec. 2.3):I
l,0
t

Initialization of segmentation (Sec. 2.4):Bl,0

for r = 1 to l − 1 do {/*segmentation loop*/}
Estimation of the threshold map (Sec. 2.3):I

l,r
t

Refinement of the segmentation (Sec. 2.4):Bl,r

end for
Fine topology details recovering (Sec. 2.4):Bl

end for

Let s
∆
= [x, y, z]t be a voxel of an image defined on

Ω = [0, 1]3. The mappingh between the source and the
target image writesh (s) = s + u (s), whereu is the dis-
placement vector field. We consider a decomposition of the
displacement vector fieldu over a sequence of nested sub-
spacesV1 ⊂ V2 ⊂ . . . ⊂ Vlf−1 ⊂ Vlf , defining a multireso-
lution approximation ofu. SpaceV1 defines the coarsest scale
representation. A basis ofVl may be generated from a scaling
functionΦ. To handle a 3-D deformation field, three multires-
olution decompositions are considered, one for each compo-
nent of the displacement. First degree polynomial spline scal-
ing functionΦ is considered in this work [4] so that the sup-
portΩl

i,j,k of the spline,(i, j, k) ∈ [1 . . . 2l − 1]3, is a cube of
size21−l×21−l ×21−l (the image is defined onΩ = [0, 1]3).

The parameters of the deformation model are estimated
by minimizing a cost function. The cost function quantifies
the distance between two binary images, namelyBl−1(hl)
andBm. This problem is often tackled by considering only
surfaces of the segmented structures and by using the Itera-
tive Closest Point (ICP) algorithm [5]. The energy function
consists in summing for each point of the floating surface its
squared distance to the closest point on the target surface rep-
resentation. However, this criterion, at first proposed forrigid
registration, is not suitable for affine or non-rigid transfor-
mation [6]. Indeed, if the whole floating surface is matched
to a single point on the target surface, the energy function is
zero, corresponding to an obviously aberrant solution. Con-
sequently, when registering a surface onto another one with
affine or non-rigid transformation, a shrinking of the warped
surface may be observed. To circumvent this phenomenon,
some methods match points which have similar local shape
features [6, 7]. We propose another way to handle this prob-
lem based on the following observation: the ICP algorithm
converges towards an aberrant solution since it considers only
the points of interest and not the other points, which have also
to be matched. Consequently, to compute the distance be-
tween the floating segmentationBl−1(hl) andBm, we con-

sider a distance composed of two terms. The first one, similar
to the one used in the ICP algorithm, is the sum for each bone
voxel in Bm of its squared distance to the closest bone voxel
in the floating image. The second term is computed as the sum
for each non-bone voxel ofBm of its squared distance to the
closest non-bone voxel in the floating image. To alleviate the
computational burden, two chamfer distance maps are used to
compute the cost function. Moreover, to enforce the smooth-
ness of the deformation field, we consider an additional reg-
ularization termEreg(h

l) in the cost function, corresponding
to the elastic membrane energy of the deformation field. The
JacobianJ(hl) of the mappinghl is constrained to be pos-
itive in order to ensure the estimated transformation to be a
one-to-one mapping [4]. The optimization problem writes fi-
nally as follows:

h
l = argmin

J(hl) > 0

∑

s∈Ω;Bm(s)=1

CPBl−1(hl(s))+

∑

s∈Ω;Bm(s)=0

CBBl−1(hl(s)) + λCEreg(hl),
(1)

whereCPBl−1(s) andCBBl−1(s) stand respectively for the
squared distance between the voxels and the closest bone
point in Bl−1, and the squared distance betweens and the
closest non-bone voxel ofBl−1. λ is the weighting factor
of the regularization term (it has been set to 1 in our experi-
ments) andC a scaling factor computed at the beginning of
each scale so that the data energy term andEreg are compara-
ble. Estimation of the parameters is made using the blockwise
constrained gradient descent algorithm described in [4].

2.2. Knowledge extraction

A way to segmentI is to transport the segmentationBm onto
I. However, the quality of such a segmentation depends on
the registration accuracy. Suppose that the maximal regis-
tration error at scalel along the x-, y- or z-axis,ǫmax(hl),
is known (estimation ofǫmax(hl) is discussed at the end of
this section). The first extracted knowledge is an area, de-
notedZ l

boi, which corresponds to all voxels ofI which may
possibly correspond to bones of interest with regard to the
registration accuracy at scalel. Z l

boi is merely obtained by
transporting the segmentation mapBm on I and by dilating
this transported segmentation map with a cubic structuringel-
ement of sizeǫmax(hl). Transporting the segmentation map
Bm on I requires the computation of the reverse transforma-

tion h
l−1

. The inversion of the deformation field is done us-
ing a numerical scheme based on interval analysis techniques
(not published yet).

The second extracted knowledge is the bone ratiop
l,r
i,j,k in

Z l
boi ∩ Ωr

i,j,k (see 2.1 for the definition ofΩr
i,j,k, and Fig. 1

for a graphical representation ofZ l
boi andp

l,r
i,j,k) computed as

follows:

p
l,r
i,j,k =

|Z l
ref ∩ Ωr

i,j,k|

|Z l
boi ∩ Ωr

i,j,k|
, (2)



Zl
boi: voxels of I which may

possibly correspond to bones

Zl
ref : segmentation

map Bm

transported on I

Ωr
i,j,k Ωr

i,j,k

p
l,r
i,j,k: bone proportion

in Ωr
i,j,k ∩ Zl

boi

Likelihood of bone
and non-bone

gray-levels in Zl
boi

p
l,r
b (.)

p
l,r
nb(.)

X
⋆,l,r
i,j,k ?

gray-level of
I in Zl

boi

probability density functions of
bone gray levels, p

l,r
b (.), and

non-bone gray levels, p
l,r
nb(.), in Z l

boi

p
l,r
i,j,k: bone ratio in

Ωr
i,j,k ∩ Z l

boi

Fig. 1. Extracted features (left) used for the estimation of
X

⋆,l,r
i,j,k (right).

Z l
ref corresponding to the segmentation mapBm transported

onI (see Fig. 1). The size ofΩr
i,j,k, characterized by scaler,

must be large with respect to the accuracy of the registration,
in order to guarantee a reliable estimation ofp

l,r
i,j,k. Conse-

quently, onlyr’s lower than or equal tol-1 are considered.
Concerning the estimation of the maximal registration er-

ror at scalel, ǫmax(hl) is set empirically to the quarter of size
of a spline support at scalel. This setting has been validateda
posteriori by the quality of the results. A more confident es-
timation of ǫmax(hl) is under investigation by learning reg-
istration errors on some characteristic points defined by an
expert on a database of images.

2.3. Bayesian estimation of the threshold map

Features extracted during the previous step are used for es-
timating the threshold mapIt, which is required by the seg-
mentation procedure. During the segmentation step, a voxel
s, whose gray-levelI(s) is greater than or equal toIt(s), will
be considered as bone, whereas a voxels, whose gray-level
I(s) is smaller thanIt(s), will be considered as non-bone,
unless topological constraints imply the contrary.

The threshold map is estimated in a coarse-to-fine way
(from scaler=0 tor=l-1) thanks to the set of features{pl,r

i,j,k}.
For a givenr, the basic idea consists in estimating for each
volumeΩr

i,j,k ∩ Z l
boi a thresholdX⋆,l,r

i,j,k (see Fig. 1). The

thresholdX
⋆,l,r
i,j,k is computed by minimizing a Bayes risk,

which is computed from the prior probabilitypl,r
i,j,k (expected

bone ratio inZ l
boi ∩ Ωr

i,j,k), and two likelihood terms (the
probability density functions (pdf s) of the gray-levels inZ l

boi

for bone voxels,pl,r
b (.), and for non-bone voxels,pl,r

nb(.)).
Gaussianpdf s are considered. They are estimated for a given
r using the segmentationBl,r−1 if r >0, andBl−1 other-
wise. More precisely, given a thresholdX0, the Bayes risk
C

l,r
i,j,k(X0) is defined as the sum of two terms: the number of

expected voxels inZ l
boi∩Ωr

i,j,k corresponding to bone voxels
although their gray-level is lower thanX0 and the expected

number of voxels in the same area corresponding to non-bone
voxels although their gray-level is greater than or equal toX0.

A continuous model of the threshold map is used in order
to prevent block effects in the segmentation. The map is mod-
eled using a hierarchical representation based on a first degree
polynomial spline scaling function similar to the one used for
modelling the deformation field. Moreover, an additional pa-
rameter, denotedtl,0, is used to model a constant threshold.
The threshold mapI l,r

t is derived from the set of thresholds
{X⋆,l,r

i,j,k}. Moreover, for a voxels, which does not belong to
Z l

boi, or which belongs to a volumeZ l
boi∩Ωr

i,j,k for which the

thresholdX⋆,l,r
i,j,k is greater than all gray-levels inZ l

boi∩Ωr
i,j,k,

I
l,r
t (s) is set to+∞, since no bone is expected.

2.4. Segmentation

The head bones present non-trivial topological properties.
They are composed of two connected components (mandible
bonevs. other bones), and present holes (foramina) and cavi-
ties (sinuses) - refer to [8] for classical topological definitions
used in this section. Most of these topological properties cor-
respond to fine details in CT images (the diameter of holes is
generally small, such as the distance between the connected
components). Thus, from a simplified point of view, the head
- when considered at a coarse resolution - can be modeled as
a simply connected object (i.e., an object composed of one
connected component), with no holes and no cavities. At a
finer resolution, it presents more specific topological details.
Based on these assumptions, it can be justified to propose
a topology-controlled segmentation process, composed of
a procedure of homotopic deformation from an initial ob-
ject topologically equivalent to the head from a coarse point
of view, and followed by a topology modifying procedure
devoted to recover the finer topological details of the head.

Actually, the segmentation process can be split into three
distinct steps. The first one is the “initial” head segmentation
(i.e., whenr = 0, at each scalel). A simply connected ob-
ject is obtained by performing a homotopic reduction on the
whole image support. The second step consists in refining
the segmentationBl,r (1 ≤ r ≤ l − 1) from the informa-
tion carried out by the segmentationBl,r−1, the imageI and
the threshold mapI l,r

t . This step is ensured to preserve the
topology by removing or adding simple points. The third step
consists in recovering the fine topology details of the object
obtained from the last segmentationBl,l−1. It performs the
following operations: recovery of cavities, separation ofcon-
nected components, and finally, recovery of holes. Note that,
in the preliminary version of the proposed method, this stepis
not yet driven by “a priori” knowledge. However, information
on the localization and size of the cavities (correspondingto
sinuses), on the number of connected components and on the
number of holes can be extracted from the segmented exam-
ple to drive and constrain the segmentation process in further
works.



3. RESULTS

The proposed framework was applied to a dataset of32 CT
images. The final scale, denotedlf , has been set to6 in our
experiments. As the size of the image is 2563, the size of final
spline supports is 83. The proposed approach was compared
with Otsu’s method. An illustrative example of segmenta-
tion results is shown in Fig. 2. The first row represents one
CT image of the dataset in coronal, sagittal and axial views.
The second and third rows represent the segmentation results
obtained with Otsu’s method and the proposed approach,
respectively. The Otsu’s method is very sensitive to noise
(spongy bones are sometimes not well segmented) and to ar-
tifacts which corrupt CT images (metal objects such as dental
fillings lead to severe streaking artifacts). Results obtained
by jointly performing registration and segmentation are much
satisfactory. These good results are largely explained by the
features provided by the reference image and, to a lesser
extent, by the topologically-controlled segmentation process
(a more intensive use of topological knowledge is under in-
vestigation). Moreover, contrary to the Otsu’s method, the
proposed method allows to segment only the structures of
interest (the spinal column does not appear in the third row)
thanks to the knowledge provided byBm. Finally, the pro-
posed approach has shown to be robust to the variability of
human head. As an example, subjects with no teeth have also
been well-segmented. This illustrates the fact that, even if the

Fig. 2. Segmentation results. First row: 3-D CT image. Sec-
ond row: result obtained with Otsu’s method. Third row: re-
sult obtained with the proposed method.

extracted features of the example do not exactly correspond
to the properties of the image to segment, the data term of
the Bayesian rule may drive the segmentation to the good
solution.

4. CONCLUSION AND PERSPECTIVES

We proposed a scheme to segment complex structures based
on an available segmented example. Results obtained in the
context of head bone segmentation in 3-D CT images high-
light the interest of the approach. Moreover, the proposed
framework is versatile and may be extended. For example,
further work will consist in using more intensively the topo-
logical knowledge of the segmented example to drive the seg-
mentation/registration process.
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