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Abstract—The rise of cloud computing has spurred a trend
of transferring data storage and computational tasks to the
cloud. To protect confidential information such as customer
data and business details, it is essential to encrypt this sensitive
data before cloud storage. Implementing encryption can prevent
unauthorized access, data breaches, and the resultant financial
loss, reputation damage, and legal issues. Moreover, to facilitate
the execution of data mining algorithms on the cloud-stored data,
the encryption needs to be compatible with domain computation.
The k-nearest neighbor (k-NN) computation for a specific query
vector is widely used in fields like location-based services.
Sanyashi et al. (ICISS 2023) proposed an encryption scheme
to facilitate privacy-preserving k-NN computation on the cloud
by utilizing Asymmetric Scalar-Product-Preserving Encryption
(ASPE). In this work, we identify a significant vulnerability in the
aforementioned encryption scheme of Sanyashi et al. Specifically,
we give an efficient algorithm and also empirically demonstrate
that their encryption scheme is vulnerable to the ciphertext-only
attack (COA).

Index Terms—Cloud Computing, Cryptanalysis, k-NN, Pri-
vacy, Ciphertext-Only Attack

I. INTRODUCTION

As cloud computing continues to evolve, an increasing
number of data owners (DO) are transferring their data to
the cloud [10] [11]. This shift aids DOs in alleviating the
burden associated with data management, computation, and
query processing [1] [8]. However, the move towards cloud
services also raises concerns regarding data security and
privacy. Thus, the choice of encryption protocol becomes
crucial, especially when computations need to be performed
on encrypted data. Traditional encryption techniques, while
effective for securing data, do not offer the capability to
perform computational operations within the encrypted
domain. Traditionally, in order to perform computations on
data, the data must first be decrypted, potentially exposing it
to security risks. On the other hand, homomorphic encryption
schemes [5] [6] [7] provide a potential solution to this issue.
These schemes are designed to allow computations to be
carried out directly on encrypted data, without the need
for decryption. However, despite these potential benefits,
the effectiveness of homomorphic encryption schemes for
real-world data computations is not entirely certain. These
schemes can be complex and computationally intensive,
which can limit their efficiency and practicality for large-scale
or real-time data computations. Ideally, encryption schemes
that secure the data as well as support search processing

would be best suited for this scenario [13] [14] [15] [16].
Computing k number of nearest neigbours (k-NN) of a given
query point in a database, according to some metric, is an
important technique in the field of machine learning, among
others. Privacy-preserving k-NN is, hence, equally important
in privacy-preserving machine learning (PPML). Wong et
al. [2] introduced Asymmetric Scalar-product-Preserving
Encryption (ASPE), a scheme that preserves the scalar
product ordering between two encrypted data points, when
searching an ASPE encrypted database. While the work of
Zhu et al. [3] encrypted the queries using the Paillier scheme,
the work of Sanyashi et al. [4] encrypts the queries in the
ASPE scheme itself thereby making the query encryption and
the overall scheme more efficient. In the scheme of Sanyashi
et al. [4], encrypting a data tuple involves affine-shifting the
individual data items by a secret vector, appending a vector
of random nonces, and then multiplying the resulting vector
by a secret random matrix results in a ciphertext. The authors
argue that such a product vector serving as a ciphertext
exhibits a high degree of randomness thereby preserving its
security.

Prior Attacks on the ASPE scheme: Chunsheng et al. [17]
gave a known-plaintext attack on the original ASPE scheme
by solving the ciphertext equations corresponding to known
plaintexts. Li et al. [12] used independent component analysis
(ICA), which is used for blind source separation in signal
processing to show that the original ASPE scheme is not
secure against ciphertext-only attacks (COA). In this work,
we present a COA attack on the scheme of Sanyashi et al.
[4], where we make use of linear independence properties of
differences of encryptions of two data tuples to distinguish
between two sets of ASPE-like encrypted ciphertexts (Sec.
III). We stress that the attacks on the original ASPE scheme
does not necessarily imply attacks on the scheme of Sanyashi
et al. [4] due to ciphertext randomization.

A. Our Contribution

In this paper, our primary contribution lies in the analysis
of the scheme proposed by Sanyashi et al. [4], specifically to
look at the COA security of the encryption scheme. We prove
that the encryption scheme is not COA secure. It is argued by
the authors that the product of a vector, which comprises of
affine-shifted data and random nonces, when multiplied with

ar
X

iv
:2

40
3.

09
08

0v
2 

 [
cs

.C
R

] 
 1

7 
A

pr
 2

02
4



a random secret matrix would yield indistinguishable random
ciphertexts. In this work, we revisit the validity of this analysis
from the point of view of ciphertexts reflecting differences in
the underlying plaintexts, and, hence, find that the assumption
is not valid.

We present emperical evidence to suggest that the scheme
proposed by Sanyashi et al. [4] does not provide COA secu-
rity. We implement a COA attack on this scheme, demon-
strating that the attacker’s distinguishing advantage is con-
sistently ≈ 1, in all trials of a few hundred test runs.
This finding substantiates our argument concerning the ab-
sence of COA security for the encryption scheme in [4].
The experimental results are described in Section IV. Our
code is available at https://github.com/Santosh-Upadhyaya/
ICCN-INFOCOM-24/blob/main/coa-attack.ipynb

B. Organization of the Paper

In Section II, we present a recap of the protocol by
Sanyashi et al. [4]. Section III presents the details of the COA
indistinguishability game and our COA attack. In Section IV,
we present the details and results of our experiment. Section
V concludes the paper.

II. RECAP OF THE PROTOCOL BY SANYASHI ET AL.

The scheme put forth by Sanyashi et al. [4] serves as an
improvement over the one proposed by Zhu et al. [3]. In the
subsequent sections, we will summarize the Key Generation,
Encryption, and Decryption components of the scheme from
Sanyashi et al. [4]. The aspects of Query Encryption and
Secure k-NN computation are not included in this recap as
they do not pertain directly to the current study.

A. Key generation

Consider a database ∆ that comprises of n vectors with
d dimensions, n, d ∈ Z+, the set of positive integers. The
elements of the database are assumed to be real numbers.
Remark: Throughout this work, we consider real numbers
to be sampled uniform randomly and independently from a
finite set with suitable bounds, and are represented in a fixed-
point scaled integer representation in the underlying hardware
architecture.

The key generation phase has the following steps.
• The public parameters c and ϵ are generated, where c, ϵ ∈

Z+.
• A secret vector s ∈ Rd+1 is uniform randomly sampled.
• A secret matrix M ∈ Rη×η is uniform randomly sampled.
• A secret vector w ∈ Rc is uniform randomly sampled.
Finally, (s, M, w) is the secret key for the encryption

scheme.

B. Encryption

During data encryption, DO generates a nonce vector z of
length ϵ. Consider the data to be encrypted be mi such that
mi = (mi,1,mi,2, · · · ,mi,d) ∈ Rd. Let w be a (fixed) secret
vector of length c, and let s be a (fixed) secret vector of length
d + 1 such that the elements of s are s1, s2, · · · , sd+1. The

data is pre-processed (affine shifted by s) and subjected to
encryption by vector multiplication of the pre-processed data
with the inverse of a (fixed) secret matrix M ∈ Rη×η , to get
a ciphertext ci of length η, where

ci = (s1 − 2mi,1, · · · , sd − 2mi,d, sd+1+

||mi||2,w, zi))×M−1 (1)

The size of each ciphertext vector is η = d+ 1 + c+ ϵ.

C. Decryption

During the decryption process, the nonce vector is first
recovered by computing

m′
i = (ci ×M),

where m′
i = (m′′

i, sd+1 + ||mi||2,w, zi), and
m′′

i = (s1 − 2mi,1, · · · , sd − 2mi,d). The individual data
elements are recovered as

mi,j =
sj −m′′

i,j

2
. (2)

III. COA ATTACK ON THE SCHEME OF SANYASHI ET AL.

We consider a semi-honest adversarial model in our attack.
The adversary follows the protocol as in the COA indistin-
guishability game but tries to glean more information than is
available per the protocol. In this section, we give a quick
recap of the COA indistinguishability game, followed by our
attack on [4].

A. Recap of COA Indistinguishability Game

The COA indistinguishability game [9], illustrated in Fig.
1, involves the following steps:

• Firstly, the adversary submits two multi-messages (sets
of messages), denoted as a and b, to the verifier.

• The verifier then randomly selects b ∈ {0, 1}.
• Next, the verifier generates the key utilizing the key

generation method outlined in Section II-A. The verifier
encrypts a if b = 0, otherwise encrypts b, using the
encryption procedure detailed in Section II-B.

• The ciphertexts are then sent to the adversary.
• The adversary applies its resources and outputs b′, which

is subsequently returned to the verifier.
The encryption scheme is COA secure, if the probability of

(b′ = b) ≤ 1
2 + negl(), where negl() is a negligible function

of the security parameter [18].

B. Our COA Attack

The main idea behind our attack is as follows. Since the
matrix-vector multiplication is a linear function, the difference
of ciphertexts results in an approximate encryption of the
difference of the underlying plaintexts with the secrets s
and w now being canceled. Note that if the two message
vectors are identical, then the difference of such ciphertexts
results in an approximate encryption of the 0 vector with the
ciphertext being the difference of randomly chosen vectors

https://github.com/Santosh-Upadhyaya/ICCN-INFOCOM-24/blob/main/coa-attack.ipynb
https://github.com/Santosh-Upadhyaya/ICCN-INFOCOM-24/blob/main/coa-attack.ipynb


Fig. 1. COA Indistinguishibility Game

from the subspace spanned by the last ϵ columns of the secret
matrix M. Note that if the distinguisher sees many (ciphertext)
vectors from the subspace, then it can readily recover the
basis of the subspace. Using this information, it can then
readily determine if a new difference ciphertext belongs to the
subspace, and hence, whether it is an approximate ciphertext
of the 0 vector. On the contrary, if the underlying message
vectors are distinct, then the resulting ciphertext will not be
from the above subspace. This is the basis of our COA attack.

Consider two multi-messages a = (a1,a2, · · · ,an) and
b = (b1,b2, · · · ,bn), n > η and each ai, bi ∈ Rd. Encryp-
tion of a (or b) results in a set ca (or cb) of ciphertexts. The
adversary has access to one randomly picked set of ciphertexts
c ∈ {ca, cb} and let c = (c1, c2, · · · , cn). We note here that
each individual message encryption, namely ci, is a vector of
size η. Just as required in the COA indistinguishability game,
the adversary in our attack is given access to one of two sets
of ciphertexts, and the semantic security of the underlying
cryptosystem is determined by whether the adversary can
correctly determine to which of the two multi-messages the
set of ciphertexts correspond to.

As per the indistinguishability game, the adversary picks
two multi-messages a and b in the following way and sends
them to the verifier. Let each individual message, ai ∈ a,
be a 0 vector of size d, and each bi ∈ b be a vector of
size d with elements drawn randomly from R, such that every
bi is distinct from one another. As mentioned before, after
encryption, the adversary is given only one set of ciphertexts
(either the encryption of a or that of b, randomly picked and
unknown to the adversary).

Computing Differences of Ciphertexts: We know that each
ci ∈ Rη , is an encryption of a message in Rd. We pick η
number of pairs (ci, cj), (i > j), from the total of nC2

possible pairs with n > η. Consider the µth pair (ci, cj),
1 ≤ µ ≤ η, in some random ordering, and let δµ = (ci − cj),
the difference of ciphertexts. Similarly, we compute δ1 to δη .

W.l.o.g consider one such difference δµ= (ci− cj). Let ci, cj
be the encryptions of messages mi,mj ∈ Rd, respectively.
In other words, ci is the encryption of (mi,1,mi,2, · · · ,mi,d)
and cj is the encryption of (mj,1,mj,2, · · · ,mj,d). Then, from
Eqn. (1), we see that

ci = (s1 − 2mi,1, · · · , sd − 2mi,d, sd+1+

||mi||2,w, zi)×M−1, (3)

cj = (s1 − 2mj,1, · · · , sd − 2mj,d, sd+1+

||mj ||2,w, zj)×M−1, (4)

therefore,

δµ = (−2mi,1 + 2mj,1, · · · ,−2mi,d + 2mj,d,

||mi||2 − ||mj ||2,0, zi − zj)×M−1. (5)

In other words, in each δi the secrets s and w get canceled,
resulting in the form given in Eqn. 5.

In the following, we use δi to mean a particular instance
of the encryption difference, with 1 ≤ i ≤ η. Recall that δi
∈ Rη , η = d+ 1 + c+ ϵ, c = |w| and ϵ = |z| and δi can be
written (from Eqn. 5) as

δi = (r1, r2, · · · , rd, rd+1,0, z
′)×M−1 (6)

In the case that encryption of a was provided to the adversary,
then ri = 0, 1 ≤ i ≤ d + 1, whereas if the encryption of b
was provided to the adversary, then ri ∈ R, 1 ≤ i ≤ d + 1
are expected to be randomly distributed. This is because the
corresponding message vectors were randomly chosen, and,
hence, their difference is expected to be random.

Remark: Just by looking at the δi vectors in Eqn. 6, the
underlying ri values remain unknown to the adversary as they
are masked by the secret matrix M−1 and z′.

Description of our attack: We pick ϵ number of δis, in no
particular order, and form a set β = (δ1, · · · , δϵ). We initialize



two counters in span and not in span to 0. Then, we start
with δϵ+1 and check if it is in the span of β. If not, then we add
δϵ+1 to β and increment not in span counter. Otherwise, we
increment in span counter. We repeat this process for δϵ+2

to δ3ϵ, a total of 2ϵ − 1 times. Finally, if in span > ϵ, our
algorithm returns 0, else it returns 1.

Analysis of our attack: If the encryption of a was provided
to the adversary, and since each of the ri in Eqn. (6) are 0s, the
first d+1+c elements of δi would just be a linear combination
of z′ combined with the last ϵ columns of M−1. When we
consider ϵ number of linearly independent δi, they would
constitute a basis for the vector space of z′. Since we have η
number of δi and η >> ϵ, we will be able to find ϵ number
of linearly independent δi vectors with a high probability. To
simplify this check, we start with the set β as described above,
and then we verify if every new δi vector that we pick is in
the span of β, which would be the case if β had only linearly
independent vectors. Otherwise, we add this vector to β and
after ϵ many iterations, we are guaranteed to have at least ϵ
linearly independent vectors in β and all subsequent ϵ many
δi vectors would be in the span of β resulting in in span ≥ ϵ.

On the other hand, if the adversary were given the en-
cryption of b, then the first d elements of each δi would
be random. Therefore, with a high probability each of the δi
vectors are expected to be linearly independent of the vectors
of β, even if |β|= 2ϵ, and so they will not be present in the
span of β. Hence, with a high probability, we would have
in span < ϵ and not in span ≥ ϵ. Our attack method is
given in Algorithm 1.

Given the fact that a random matrix is used to multiply
a vector consisting of affine-shifted data and nonces, it is
natural to expect that the resulting vectors (ciphertexts in this
case) are sufficiently randomized. Similarly, multiplication by
a random matrix was expected to provide randomness even
when differences in ciphertexts are obtained, thus rendering
them indistinguishable from random. However, our method
above shows that this is indeed not the case.

IV. RESULTS

The proof-of-concept code for the attack is written in
SageMath [19] to simulate the COA indistinguishability game.
Our code consists of Key Generation, Encryption and CoA
attack algorithms as outlined in Sections II and III-B. An
auxiliary wrapper function reads the iteration count which
is a user-defined value to mean the number of trials of the
experiment to be repeated. In the experiment, values d, c,
ϵ are considered as configurable global parameters and η =
d+1+ c+ ϵ. In each iteration, a choice bit, 0 or 1, is picked
uniformly random. If 0 is chosen, a multi-message of size
(η + 1) consisting of vectors of all 0s is used for encryption,
otherwise, a multi-message of size (η+1) with distinct vectors
with random elements is used for encryption. This part mimics
the role of the verifier and outputs the ciphertext.

The attack algorithm obtains the ciphertext from the verifier
and executes the method described in Sec. III-B. It finally
outputs a bit as the result which is returned to the verifier.

Algorithm 1 Attack on Encrypted Data
Require: c1, · · · , cn {Ciphertext of a multi-message of length

n (n > η >> ϵ)}
1: Initialize not in span cnt← 0, in span cnt← 0
2: for i = 0 to n− 1 do
3: δi ← ci+1 − ci {Compute difference of ciphertexts}
4: end for
5: β = {}
6: for i = 0 to ϵ− 1 do
7: ADD δi to set β {Pick ϵ number of differences}
8: end for
9: for i = ϵ to 3ϵ− 1 do

10: if δi in LINEAR SPAN(β) then
11: in span cnt← in span cnt+ 1
12: else
13: not in span cnt← not in span cnt+ 1
14: ADD δi to set β
15: end if
16: end for
17: if in span cnt ≥ ϵ then
18: return 0
19: else
20: return 1
21: end if

Thorough testing of the code was done with various values
of d and we iterated the experiment 512 times. Our goal was
to validate the accuracy of our attack algorithm. This testing
involved setting c = 5 and ϵ = 5. The attack algorithm
successfully distinguished the ciphertexts with 100% accuracy.
As stated in Sec. 2.2 of [3], the value of d is expected to be
100, and our testing was conducted with d values ranging from
8 to 128. As given in Sec. 7.1 of [4], the security parameters
c and ϵ can be set to 5, and our experiments with various d
values were conducted with c = ϵ = 5. The average execution
time for a single attack is provided in Table I.

TABLE I
PERFORMANCE OF ATTACK ALGORITHM

Value of d Average Execution time of
attack (sec)

8 0.08
16 0.09
32 0.26
64 0.94
128 3.83

V. CONCLUSION

The primary focus of this research was to devise a COA
attack on the scheme used in [4], based on the multi-message
COA indistinguishability game. The proposed attack revealed
that the attacker’s distinguishing advantage is ≈ 1. This invali-
dates the assertions made in Lemma 2 in [4]. This investigation
highlights the necessity for comprehensive security assess-
ments in the design of cryptographic systems. It would be



interesting to explore modifications to the encryption scheme
of [4] that would thwart our attack. More importantly, such
a proposal should be accompanied with a rigorous security
analysis based only on the hardness assumptions of well-
established problems.
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