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Abstract—Online optimization with memory costs has many
real-world applications, where sequential actions are made with-
out knowing the future input. Nonetheless, the memory cost
couples the actions over time, adding substantial challenges.
Conventionally, this problem has been approached by various
expert-designed online algorithms with the goal of achieving
bounded worst-case competitive ratios, but the resulting average
performance is often unsatisfactory. On the other hand, emerging
machine learning (ML) based optimizers can improve the average
performance, but suffer from the lack of worst-case performance
robustness. In this paper, we propose a novel expert-robustified
learning (ERL) approach, achieving both good average perfor-
mance and robustness. More concretely, for robustness, ERL
introduces a novel projection operator that robustifies ML actions
by utilizing an expert online algorithm; for average performance,
ERL trains the ML optimizer based on a recurrent architecture
by explicitly considering downstream expert robustification. We
prove that, for any \ > 1, ERL can achieve \-competitive against
the expert algorithm and )\ - C'-competitive against the optimal
offline algorithm (where C is the expert’s competitive ratio).
Additionally, we extend our analysis to a novel setting of multi-
step memory costs. Finally, our analysis is supported by empirical
experiments for an energy scheduling application.

I. INTRODUCTION

Online optimization is a classic sequential decision problem
where the agent chooses irrevocable actions at runtime with-
out knowing the future input. Moreover, in many practical
applications, action smoothness over time is highly desired.
For example, for motion planning, a robot cannot move
arbitrarily due to velocity and/or acceleration limitations; for
data center capacity provisioning, servers cannot be turned
on/off frequently to avoid excessive wear-and-tear costs and
setup delays; and for energy scheduling in smart grids, quickly
adjusting energy production can be very costly [23]], [27], [32],
[35]. Consequently, the long list of real-world applications
have led to the emergence of online optimization with memory
costs that penalize frequent action changes over time.

Adding a memory cost provides crucial regularization
for online action smoothness, but also presents significant
algorithmic challenges. More concretely, the memory cost
essentially couples the online actions across multiple time
steps, making it very challenging, if ever possible, to obtain
optimal actions without knowing the future. Conventionally,
this challenge has been approached by expert-designed online
algorithms under various settings [24], [27], [28]], [35], [42].
These expert algorithms typically have worst-case perfor-
mance robustness in terms of guaranteed competitive ratios
even for adversarial inputs, but their conservative nature also
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means that they may not perform very well on average in many
typical cases.

More recently, the abundance of historical data in prac-
tical applications has been fueling machine learning (ML)
approaches to solve optimization problems [3[, [23]], [32].
In particular, optimizers based on offline-trained recurrent
neural networks or reinforcement learning have been emerging
for various online optimization problems, including online
resource allocation [15]], online knapsack [21f], among others.
These ML-based optimizers exploit the statistical information
about problem inputs and the strong prediction power of neural
networks, empirically achieving unprecedented average per-
formance. But, they also have a significant drawback — lack
of performance robustness. Specifically, unlike expert online
algorithms that have guaranteed robustness, the competitive
ratio of ML-based optimizers can be arbitrarily bad, e.g.,
when training-testing distributions differ, testing inputs are
adversarial, and/or the model capacity is stringently limited
(61, [23], [32]. As a result, the lack of robustness invalidates
the existing ML-based optimizers for online optimization in
many real applications, especially those high-stake ones.

To exploit the power of both ML and expert designs, ML-
augmented online algorithms have been recently proposed [7],
[11]], including in the context of online optimization with mem-
ory costs that we focus on [6], [23], [32]. The most common
goal of these studies is to achieve a finite competitive ratio (i.e.,
robustness) to bound the worst-case performance for arbitrarily
bad ML outputs and a low competitive ratio (i.e., consistency)
in order to approximately retain good average-case perfor-
mance enabled by ML models. Nonetheless, there exist sub-
stantial challenges to simultaneously achieve good robustness
and consistency for our problem setting (see broadly relevant
algorithms [6], [23], [32]), let alone that a good consistency
may not always translate into a good average performance.
Moreover, the existing ML-augmented algorithms often view
the ML model as an exogenous blackbox that is pre-trained
as a standalone model without being aware of the downstream
expert algorithm. This essentially creates a mismatch between
training and testing — the ML model is trained alone but tested
together with a downstream algorithmic procedure — which
can unnecessarily hurt the resulting average performance.

In this paper, we focus on online optimization with memory
costs and propose a novel expert-robustified learning (ERL)
approach, achieving both good average performance and guar-
anteed robustness. The key idea of ERL is to let the expert



and ML do what they are best at respectively: for guaranteed
robustness, ERL utilizes an expert online algorithm to robustify
the ML actions by projecting them into a carefully designed
robust action space; for good average performance, ERL trains
the ML model by explicitly considering the downstream expert
robustification process, thus avoiding the mismatch between
training and testing. We prove that, for any trust hyperparam-
eter A > 1 governing how much flexibility we allow for ML
actions, ERL can achieve A-competitive against the expert on-
line algorithm and hence A - C-competitive against the optimal
offline algorithm (where C' is the expert’s competitive ratio).
The added robustification step is an implicit layer, making it
non-trivial to perform backpropagation. Thus, we also derive
gradients of the robustification step with respect to their inputs
for efficient end-to-end training, thus improving the average-
case performance. We subsequently extend our analysis to a
novel setting, where the memory cost spans multiple steps.
Finally, we run experiments to empirically validate ERL for
an energy scheduling application, demonstrating that it can
offer the best average cost and competitive ratio tradeoff.

II. RELATED WORKS

Online optimization with (single-step) memory costs has
been extensively approached under various settings by expert
algorithms, such as online gradient descent (OGD) [43]], online
balanced descent (OBD) [10], and regularized OBD (R-OBD)
[17]. Additionally, expert algorithms with the knowledge of fu-
ture inputs include receding horizon control (RHC) [[13]] com-
mitted horizon control (CHC) [9], receding horizon gradient
descent (RHGD) [24], [26]. These algorithms are judiciously
designed to have bounded competitive ratios and/or regrets,
but they may not perform well on average.

ML-augmented algorithm designs have also been emerging
in the context of online optimization with memory costs [6],
[32]. Nonetheless, these algorithms simply take the actions
produced by an exogenous ML-based optimizer as additional
inputs; they still focus on on manual designs, which cannot
achieve good worst-case and average performance simultane-
ously. For example, in order to retain the good average per-
formance of ML actions by setting a hyperparameter 6 — 0,
the competitive ratio when ML actions are arbitrarily bad is

2/(6a)
as high as 12+5°(1) aT(1Fa) for a-polyhedral cost

functions [32]]. The study [23] considers a squared single-step
switching cost and trains an ML model to regularize online
actions, but its worst-case competitive ratio is unbounded.
In orthogonal contexts, by assuming a given downstream
algorithm, [16]] re-trains an ML model for the count-min
sketch problem. Therefore, the novel expert robustification
(for tunable and bounded performance robustness), end-to-end
training (for good average performance), and new problem set-
tings altogether separate our work far apart from the literature.

Learning to optimize (L20) based on offline-trained re-
current neural networks or reinforcement learning [22] has
been recently applied for online optimization, including online
resource allocation and online bipartite matching [15]], [21].

Nonetheless, even with the help of adversarial training [14],
a crucial drawback of the existing ML-based optimizers is
the lack of guaranteed performance robustness, making them
inapplicable for high-stake applications. Naive techniques that
choose whichever is better between L20 and a conventional
solver [20] do not apply to online optimization due to unknown
future inputs and irrevocable actions.

ERL is relevant to the recent decision-focused learning
framework [38]]. But, ERL goes beyond simply training the ML
model by proposing a novel expert robustification framework.
Moreover, ERL directly uses the robustified actions to deter-
mine the training loss, whereas the existing decision-focused
learning requires groundtruth labels in the training loss.

Finally, ERL intersects with conservative exploration in ban-
dits and reinforcement learning [40]. Conservative exploration
focuses on unknown reward functions (and transition models if
applicable) and uses an existing policy to guide the exploration
process for robustness. But, its design is dramatically different
in the sense that it does not need to account for future input
uncertainties when making an action for each step (or choosing
a policy for each episode in case of episodic reinforcement
learning), i.e., only the cumulative rewards matter. By contrast,
ERL must hold a reservation cost to ensure that it always
has a feasible solution given any future inputs, achieving a
guaranteed deterministic worst-case competitive ratio (rather
than probabilistic guarantees). This key point can also be
highlighted by noting that, even assuming perfect reward
functions (and transition models), the robustification rule used
by the existing conservative bandits/reinforcement learning
[40] cannot apply to our problem to achieve a guaranteed
competitive ratio. Other related problems include constrained
policy optimization and safe reinforcement learning [30],
[39]. These studies focus on constraining the average safety
costs and/or avoiding certain dangerous states (possibly with
a high probability). By contrast, ERL has a different goal
and guarantees a bounded competitive ratio in any case by
introducing a novel expert robustification step.

III. FORMULATION FOR SINGLE-STEP MEMORY COST

To facilitate readers’ understanding, we begin with a single-
step memory cost (a.k.a. switching cost [27], [28], [42]).
Consider a sequence of T' time steps as a problem instance.
At each step ¢ = 1,---,T, the agent receives a context
vector/parameter y; € ) € R™ for the hitting cost, makes an
irrevocable action x; € X C R<, and then incurs a hitting cost
of f(x+,y¢) > 0. To encourage smoothed actions over time,
the agent also incurs a memory cost d(x¢, x¢—1) > 0 defined in
terms of the distance between two adjacent actions in a metric
space. Concretely, we consider d(xs,xi—1) = ||t — z¢—1]],
where || - || denotes I, norm with p > 1. Thus, the goal of
the agent is to minimize the sum of the hitting costs and the
memory costs over a sequence of 7' steps as follows:

T
min > f(we, ) + d(ze, 4-1), (1)
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where the initial action z( is provided as an additional input.
While we can alternatively impose a constraint on the total
memory cost, our formulation of adding the memory cost as
a smoothness regularizer for online actions is consistent with
the existing literature [23[], [27], [32]], [42].

The key challenge for optimally solving Eqn. (I) comes
from the memory cost that couples online actions over time,
but y; is not revealed to the agent until the beginning of each
stept = 1,---,T. Given any online algorithm 7, we denote
its total cost for a problem instance with input context s =
(ro,y) € S = X x YT as cost(m,s) = Zthl @ ) +
d(z],x]_q), where T, ¢t =1,--- T, are the actions produced
by the algorithm 7. While s follows a general distribution
that can be well addressed by ML-based optimizers, it can
still contain adversarial cases. For simplicity, we will omit the
context parameters, and denote cost(z7;) = Y {_; f(«], i)+
d(xf,xf_y), where z7; = («f,---,x7) are the actions for
t =1,---,7 under the algorithm 7.

Definition 1 (a-polyhedral): Given a context parameter y €
Y, the hitting cost function f(z,y) : X — RT is called -
polyhedral for o > 0 if it has a unique minimizer * € X and
satisfies f(z,y) — f(z*,y) > - d(z,x*) for any z € X.

Definition 2 (Competitive ratio): For A > 1, an online
algorithm ALG is called A-competitive against the algorithm
7 subject to an additive factor B > 0 if its total cost satisfies
cost(ALG, s) < A-cost(m, 8) + B, for any input s = (x¢, y).

The a-polyhedral definition is commonly considered in
the literature [32], [42]] to derive competitive ratios against
the optimal offline algorithm. The deterministic competitive
ratio in Definition [2] is general, and the additive factor B is
independent of the problem input s = (z0,y). By setting
B = 0, it becomes the strict competitive ratio [19]], [31]], [32]].
Further, with A = 1, the additive factor B in Definition
captures the regret incurred by ALG with respect to the
algorithm 7. When 7 is not specified, the competitive ratio
is against the optimal offline algorithm OPT by default.

IV. ERL: EXPERT-ROBUSTIFIED LEARNING

In this section, we consider a single-step memory cost and
show the design of ERL.

A. A Primer on Pure ML-based Optimizers

To solve online optimization with memory costs, a nat-
ural idea is to exploit the power of ML to discover the
mapping from the available online information to actions.
More concretely, we can pre-train an ML model offline based
on a recurrent neural network (RNN) or equivalently using
reinforcement learning. We denote the ML action at time ¢ as
Zt = hy(Zt—1,yt), where w is the ML model parameter. The
recurrent nature comes from sequential online optimization
with memory costs: given the previous action Z;—; and the
current input y,;, we recurrently output an online action Iy.
With a set of training problem instances, the ML model
parameter w can be learnt by minimizing a loss function,
which can be the sum of costs in Eqn. [31.

Drawbacks: It is well-known that such ML-based optimiz-
ers have significant drawbacks — lack of robustness. Specifi-
cally, the competitive ratio can be arbitrarily bad for a variety
of reasons, such as distributional shifts, hard problem instances
or even adversarial inputs, and/or finite ML capacity [5],
(6], [32]. While distributionally robust learning can partially
mitigate the lack of robustness in an average sense [36], [41]],
it still cannot guarantee that the ML model has a bounded
competitive ratio for any problem instance.

B. Expert Robustification

There have been several expert algorithms to solve online
optimization with memory costs under different settings [25],
[42]. While these algorithms may not perform well on av-
erage due to their conservative nature, they offer worst-case
performance robustness for any input. Thus, this motivates us
to leverage an expert algorithm 7 to robustify ML actions.
For each t, we denote the pre-robustification ML action as 74,
expert action as 7, and post-robustification action as .

A naive idea is to add a proper regularizer during the
training process that imposes penalty when the total cost
exceeds A\ times of the expert’s cost. But, this will not
work, because the ML actions can still violate the robustness
requirement when bad problem instances arrive during online
inference. Alternatively, one may want to constrain the robus-
tified actions such that for any ¢t = 1,--- , T, the cumulative
cost up to time ¢ satisfies cost(xy.;) < Acost(zT,) + B,
where cost(x.¢) and cost(x],) are the cumulative costs of
ERL and the expert (assuming that the expert would run its
algorithm alone), respectively. But, this can easily result in
an empty set of feasible actions for ERL, because the actions
are coupled over time by memory costs. To see this point, let
us consider that cost(zy.t) = Acost(z7,) + B but x; # af
at time ¢. Then, at time ¢ + 1, the expert can have such
a low total cost of f(zf,,yi+1) + d(xf y,2]) that even
setting w1 = z{, (i.e., following the expert) would violate
the constraint cost(x.;41) < Acost(zT,,;) + B due to the
large memory cost d(z7, |, ;). Consequently, no actions can
guarantee robustness in this case.

We now present our novel robustification framework, called
ERL. To achieve robustness, the crux of ERL is to hedge
against the risk of deviating from the expert action to account
for future uncertainty. Specifically, at each step ¢, we project
the ML action Z; into a robust action space specified by the
expert 7 by solving:

.1 - 19
Ty = arggrélggg\\x — 24|

st cost(@re1) + f(x,m) + d(w, m 1) + d(z,27) P
< Acost(z];) + B

where A > 1 and B > 0 are hyperparameters indicating the
level of robustness requirement. We denote this projection step
as xy = proj(&y, zT, cost(x1.4—1), cost(zT,)). Importantly, the
key is to add a reservation cost d(x;,xz]) when constraining
the post-robustification cumulative cost at time ¢ in Eqn. (2).
By doing so, we ensure that if the constraint is satisfied at
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Fig. 1: ERL. Given each online input, we first run forward
inference to obtain the ML action, and then project it into an
expert-robusitfied action space as the actual action.
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Algorithm 1 Expert-Robustified Learning (ERL)

Require: A > 1, B > 0, initial zy, trained ML model
(Section [[V-C)), and expert online algorithm 7
1. fort=1,---,T
2:  Receive the context
3:  Expert chooses ] and ML chooses & < h(x:—1, y:)
4z  proj(Zs, xT,cost(x1.4—1),cost(x],)) based on
Eqn. @) //Robustification

time ¢, then it will be also satisfied at time ¢ + 1 regardless of
the input — following the expert by choosing x;y1 = x4 is
always a feasible solution.

The ERL inference process is shown in Fig. [l|and described
in Algorithm [T} At each step ¢, we run the ML model to
produce an action Z;, get the expert’s action z], and then
project Z; into a robustified action space by solving Eqn. (2).
Note that the expert online algorithm takes context y; as its
input and outputs its action z7 independently following its own
trajectory without being affected by the ML action. Next, we
formally provide the robustness analysis for ERL.

Theorem 4.1: Let 7 be any expert online algorithm for the
problem in Eqn. ([I]) For any A > 1 and B > 0, ERL is A-
competitive against 7 subject to an additive factor of B, i.e.,
cost(ERL, 8) < A - cost(m, 8) + B for any input s = (o, y).

Theorem [4.T]is proved in Appendix [B] and demonstrates the
power of ERL by showing that it can achieve any competitive
ratio of A > 1 with respect to any expert algorithm 7 for B >
0. Here, given any B > 0, the hyperparameter A > 1 can be
viewed as the trust parameter: the higher ), the more we trust
the ML action Z,, thus potentially achieving a lower average
cost at the expense of a higher competitive ratio. The additive
factor B > 0 represents a slackness, and B = 0 reduces to
the strict competitive ratio definition. If we set A = 1 and
B sublinear in 7', ERL is guaranteed to be asymptotically no
worse than the expert 7w even in the worst case as 7' — oo.

Competitive ratio of ERL against OPT. One may also
desire a bounded competitive ratio against the optimal offline
algorithm OPT. To this end, we consider a state-of-the-art
expert online algorithm, called Robust, which minimizes
the hitting cost at each step without considering the memory
cost. This simple online algorithm surprisingly achieves a good
competitive ratio of max (2, 1) against OPT for a-polyhedral
hitting cost functions [42]. By applying Theorem 4.1} we have
the following corollary.

Corollary 4.1: Consider Robust as the algorithm 7 that

chooses z; = argmingex f(x,y;) for any ¢t. Assume that
the hitting cost functions f(z,y;) are a-polyhedral. For any
A>1and B >0, ERL is A - max (2,1)-competitive against
OPT subject to an additive factor of B, i.e., cost(ERL, s) <
A-max (2,1) - cost(OPT, s) + B for any input s = (zo,y).

C. End-to-end Training

In conventional ML-augmented algorithms [6], [12f], the
ML model is trained to produce good actions on its own,
without being aware of the downstream modification (i.e.,
expert robustification in ERL). While the designed algorithm
may sometimes retain good ML actions (i.e., termed as con-
sistency [|6]), this still creates a mismatch between training
and testing processes — the training process yields good pre-
robustification ML actions, but it is post-robustification actions
that are actually being used for testing [3], [23], [29]], [38].
Thus, to improve the average performance of ERL, we need to
explicitly consider the projection step for ML model training.

End-to-end training is highly non-trivial, since the projec-
tion step itself is an optimization problem in Eqn. (Z) and
hence an implicit layer. Additionally, unlike typical differen-
tiable optimizers [1], [4]], [38], we need to derive gradients
to perform backpropagation through time due to the recurrent
nature of our online optimization problem. Let w be the weight
for each base ML model &; = hy(z;—1,y:) in the RNN
as illustrated in Fig. [T We need to derive the gradient of
cost(x1.7) with respect to w as follows:

T
Vweost(z:r) = ¥ Vo (f(xe,ye) + d(@e, 221)),  (3)

t=1

where x; = proj(Z, 7, cost(z1.4—1),cost(zT,)) is the post-
robustification action at step t = 1,---,7. Thus, the total
gradient can be calculated by summing up all the gradi-
ents over T  steps. By applying the chain rule for step t,
we have Vw(f(:vt,yt) + d(:ct,a:t,l)) = Vg, (f(mt,yt) +
d(xt,xt_l))vth + Vﬁfld(l‘t,ak_l) . Vwa:t_l, where
szt = (Vgct:z:tvwit + vcost(xl;t,l)ztvaOSt(xlzt—l))- The
gradients V, (f(z¢,y¢) + d(z¢,2,-1)) and Vg, d(zs, w4—1)
can be obtained given explicit forms of f and d, V,Z;
can be calculated easily through the backpropagation within
the ML model (e.g., a neural network), and V,cost(z1..—1)
is calculated recursively back to ¢ = 1. Thus, the key
is to derive the gradients of the projection operator z; =
proj(Zs, x, cost(x1..—1), cost(xT.,)) with respect to the ML
action Z; and cost(x1..—1). We provide the result based on
KKT conditions [8] in the following proposition.

Proposition 4.2 (Gradient by KKT conditions): Assume that
x¢ and  are the primal and dual solutions to Eqn. (2)), respec-

tively. Let Ay = I + M(V%xt (f(ze, ) + d(ze, 20-1)) +
Vzt,xtd(xt,xﬁ)), Ajp = Vg, (f(xt,yt) + d(xt,xtfl)) +
Ved(wnaf), Ao = (Ve (Fl@ey) + dlenzi) +
thd(xt,x?)>—r, Noo = f(my,yt) +d(ws, ve—1) +d(xs, 7))+



cost(z1:4—1) — [Acost(zT.,) + B]. The gradients of the projec-
tion operation x; = proj(Z, x, cost(z1.,—1), cost(zT.,)) with
respect to Z; and cost(xq.4—1) are

Vf‘l’t = Al_ll [I -+ AlgsC(A, All)ilAglAl_ll],

vcost(zlzt_l)xt = AfllAIZSC(A7 A11)_1,“7

where SC(A, All) = Agy — A21A1_11A12 is the Schur-
complement of Aj;; in the blocked matrix A =
[[Au, Aqz], [As, Azﬂ].

We remark that if the Schur-complement Sc(A, Aq;) is not
full-rank (e.g., ML action Z; lies in the boundary of the action
space in Eqn. (2))) or the hitting cost function f or memory cost
d is not differentiable for certain x;, we can still approximate
the gradients based on Proposition for backpropagation.
Concretely, the pseudo-inverse of Sc(A, A1) can be used if
Sc(A, Aqy) is not full-rank; if f or d is not differentiable
at z;, we can use its its subgradient as a substitute. This is
also a common technique to handle non-differentiable points
when training ML models, especially neural networks [18]].
For example, we often use 0 as a subgradient for ReLu(z)
at © = 0. Importantly, Proposition .2] provides a practically
convenient way to perform backpropagation.

Training. As in typical ML-based approaches for online
optimization [2], [3], [14], [21]], we train the ML model based
on pre-collected historical problem instances by using the
gradients in Proposition and explicitly considering the
projection process. Additionally, we can also update the ML
model online by collecting batches of new problem instances
during online inference. The training process can be supervised
by using the total cost ). cost,;(x1.7) as the loss where ¢ is
the index for training problem instances.

V. EXTENSION TO MULTI-STEP MEMORY COST

Motivated by smoothness in higher-order dynamics, we now
turn to a more general case where the memory cost can
span multiple steps: d(z¢, x4_q.t—1) = |lze — > iy Cize—ill,
where ¢ > 1 is the memory length and C; € R4*? is
problem-specific. For example, let us consider a robot mo-
tion planning problem where z; represents the position at
time ¢ and acceleration smoothness is highly desired. In this
case, the memory cost can be written as d(xy, &¢—04—1) =
| (2t —2t—1) = (2t-1 — 2p-2) | = |26 — 2241 + 242, fOr
which we can set Cy = —2-1, Cy = I and ¢ = 2 where [
is the identity matrix in R?*<, Note that the expert algorithm
in [35] uses the same form of multi-step memory structure,
but considers a squared memory cost along with other strong
assumptions (e.g., strongly convex hitting costs) that require
entirely different techniques [42]. To our knowledge, our work
is the first to consider multi-step memory costs in metric space.

Expert robustification. Given multi-step memory costs, the
input to our ML model includes y; and z;_,:;—1 and outputs

T, which is then robustified by solving the following:

1 ~ 12
oy = arg min §||x — |
st.  cost(z1.—1) + f(x,ye) + d(z, Bp—gii—1) S
+G (2,4t -1, 77 g) < Acost(2],) + B,

where the reservation cost G(x, x4 g:t—1,77_,,) is given by

™
G (177 Ti—q:t—1, xt—q:t)
min(q,T—t) q—k

q—k
= Z Crx + Z CrtiTi—i — Z Cryizi_;

k=1 i=1 =0

&)

The key insight for Eqn. (3)) is that we need to account for the
potentially higher memory costs incurred by ERL compared to
the expert algorithm 7 over up to future g steps. By holding the
reservation cost for the cumulative cost at each step, we can
ensure that ERL can always roll back to the expert’s actions in
the future without violating the robustness requirement. The
ERL inference process still follows Algorithm [I] except for
that the projection step for expert robustification in Line 5 is
based on Eqn. ().

Competitive ratio of Robust. Robust has a bounded
competitive ratio in the single-step memory setting [42], but
it is unclear in the multi-step setting. Here, we prove that
Robust is also competitive in the multi-step memory case.
The proof is in Appendix

Theorem 5.1: Assume that f(-,y;) X —» R
is a-polyhedral and that the memory cost is given by
(@, v—gu—1) = |lze — Yob, Cimy—y|| for t = 1,---, T,
where C; € R™? and >°7_, ||C;|| = B with ||C;|| being the
matrix norm induced by the [, vector norm. The Robust
algorithm that chooses z; = argmin,cy f(x,y;) for any

t = 1,---,T is strictly max %, 1 )-competitive against

OPT, i.e., cost(Robust,s) < max (%,1) - cost(OPT, s)
for any input s = (x0,y).

Competitive ratio of ERL. In the multi-step memory case,
Theorem still holds. That is, for any A > 1 and B > 0,
ERL is still A-competitive against any expert online algorithm
m subject to an additive factor B. Also, by combining this
result with Theorem [5.1} we obtain the following corollary
(proof in Appendix [B).

Corollary 5.1: Let the expert m be Robust that chooses
xy = argmingey f(x,y;) for any ¢t = 1,--- ,T. Under the
same assumptions as in Theorem for any A > 1 and
B > 0, ERL is )\max(ﬁ+1

==, 1)—competitive against OPT
subject to an additive factor of B where § =

1 1G]
i.e., cost(ERL, s) < Amax (%, 1) - cost(OPT, s) + B for
any input s = (g, y).

Finally, for end-to-end training, the gradients of projection
in Eqn. (@) with respect to #, and cost(z1.;—1) can be derived

and the ML model can be trained following the steps in
Section Hence, we omit them for brevity.




VI. EXPERIMENTAL RESULTS

To empirically validate ERL, we consider the dynamic
energy scheduling application in the presence of uncertain
renewables. Specifically, renewable energy such as wind and
solar energy is being massively incorporated into the power
grid for sustainability. But, their availability is highly intermit-
tent subject to a variety of factors such as weather conditions
and equipment efficiency. On the other hand, balancing the
power demand and generation is crucial to ensure grid stability
— a mismatch requires rapid offsetting using alternative and
potentially more expensive energy sources. Thus, a challeng-
ing problem faced by grid operators is how to dynamically
schedule energy production to meet net demands based on
real-time renewable availability. A mismatch between the
production x; and net demand y; needs offsetting using
expensive energy sources/storage and hence causes a hitting
cost f(x¢,y:) = allzy — y¢||, and varying the production level
over time incurs a memory cost d(xy,xi—1) = ||zt — 24—1]]
(due to generator ramp-up/-down costs). Thus, this is a typical
online optimization problem with memory cost [23]], [25]], [42].

A. Dataset

We consider intermittent renewable energy generated using
trace data and empirical equations. Specifically, for wind
power, the amount of energy generated at step ¢ is modeled
based on [33]] as Pwind,t = %’iwindQAsweptVVgin(Lt-

The sympols are explained as follows: Kying is the con-
version efficiency (%) of wind energy, o is the air density
(kg/m?), Agwept 1s the swept area of the turbine (m?), and
Viind,¢ is the wind speed (kTV/ m?) at time step t. The amount
of solar energy generated at step ¢ is given based on [37]]
as Pyolar,t = %HsolarAarrayIrad,t(l —0.05 * (Tempt - 25))
The symbols are explained as follows: kgo1ar 1S the conversion
efficiency (%) of the solar panel, Aa.ray is the array area
(m?), and Iaq is the solar radiation (kW/m?), and Temp,
is the temperature (°C) at step ¢. Thus, at time step ¢, the
total energy generated by the renewables P, ; = Pying; +
Pyolar,t- Suppose at time step ¢, the net energy demand is
y¢ = max(Ps; — P, ;,0) , where Ps; is the demand before
renewable integration. The amount of energy generation is the
agent’s online action x;. We model the hitting cost as the
scaled l>-norm of the difference between the action x; and the
context ¢, i.e. f(xt,yt) = af|ze—y¢||. Additionally, we model
the switching cost by the [;-norm of the difference between
two consecutive actions, i.e. ¢(xy, x¢—1) = ||y — x4—1||. The
hitting cost parameter is set as o = 0.2. The parameters
for wind energy are set as Kyinga = 30%, 0 = 1.23k:g/m3,
Aswept = 500,000m?. The parameters of solar energy are set
as Kwind = 10%, Aarray = 10,000m?. The other parameters,
such as wind speed, solar radiation and temperature data, are
all collected from the National Solar Radiation Database [34],
which contains detailed hourly data for the year of 2015.

To generate datasets for training and testing, we use a
sliding window to generate multiple sequences of hourly data,
with each sequence length being 25 (i.e., 24 action steps
plus 1 initial step). For each sequence of 25 consecutive

hourly data, we can calculate the contextual information for
each step/hour. We define the energy generation of the first
hour as the initial action zo. The problem can be formulated
as: ming, .pp Sory allze — yil| + |l& — x4_1]. We use the
CVXPY Library to find the optimal offline solution.

B. Experimental Setup

We use a RNN with 2 hidden layers, each with 8 neurons.
To train this model, we use the data from the first two
months (January—February) of 2015, which contains 1440
hourly weather data samples in total. Specifically, we generate
1416 data sequences using a sliding window. We train the
RNN model for 140 epochs with batch size of 50. The model
is implemented in PyTorch Library and the training process
usually takes around 3 minutes on a 2020 MacBook Air with
8GB memory and a M1 chipset. In ERL, we set the slackness
parameter B = 0 to follow the strict definition of competitive
ratio. By default, we train ERL with A = 1.4.

To evaluate the performance of different algorithms, we
divide the remaining 10 months of 2015 into five segments,
each with two months. There are three different cases: when
ML empirically works better than Robust in terms of both av-
erage and worst-case performance; ML is better than Robust
on average but worse in the worst case; and ML is worse than
Robust both on average and in the worst case. The first case
occurs for the testing segment of March—April, because the
data in both training and testing datasets well consistent due
to their similar weather patterns. Next, we focus on the other
two cases, which are more interesting and typical since data
distributional shifts between training and testing datasets are
very common in practice. This is also consistent with our main
contribution — robustifying ML-based optimizers.

While we can also re-train/update the ML models (in
ERL, ML, and ERL-NT) based on online collected data, the
existing ML-based optimizers are typically pre-trained offline
[2fl, [15]. Thus, we keep the ML model unchanged when
testing its performance, in order to highlight the role of our
expert robustification step in ERL— regardless of the testing
distributions, ERL offers a provable worst-case competitive
ratio guarantee against the expert.

C. Baselines

We compare ERL with the following baselines. Optimal
offline (OPT): OPT has all the context information to optimally
solve Eqn. (I); Robust expert (Robust): Robust is the
state-of-the-art expert that chooses x; = arg mingcx f(x, y;)
fort =1,-.-,7T with guaranteed competitive ratios [42]; Sim-
ple greedy (Greedy): Greedy greedily minimizes the total
hitting cost and memory cost at each step; Pure ML-based
optimizer (ML): ML uses the same recurrent neural network
as ERL but does not use expert robustification for training or
inference; Dynamic switching (Switch): Switch dynami-
cally switches between Robust and ML based on a threshold
hyperparameter [6]; ERL-NoTraining (ERL-NT): ERL-NT
uses Algorithm [I] for inference but the ML model is trained
as a standalone optimizer without end-to-end training.
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Fig. 2: Normalized average cost vs. empirical competitive
ratio. ML is off the charts: (left): average cost 1.45 and com-
petitive ratio 50+; (right): average cost 1.367 and competitive
ratio 11.167.

(b) May-August testing

Although Greedy may empirically perform better than
Robust, it does not have a provably-bounded competitive
ratio whereas Robust has one (see [42] for the single-step
memory case and our Theorem [5.1] for the multi-step memory
case). Thus, we use Robust as our expert in ERL.

D. Results

September-December testing. We obtain the empirical
results of average cost vs. competitive ratio in Fig. P} All the
average costs are normalized with respect to the average cost
of OPT. ML achieves a lower average cost than Robust, but
its empirical competitive ratio is way larger due to the common
drawback of ML-based optimizers — lack of performance ro-
bustness. Specifically, the training and testing distributions are
rarely identical in practice, which can lead to an extremely bad
competitive ratio for ML. While Greedy empirically performs
better than Robust in this setting, it does not have any com-
petitive ratio guarantees. We see that Switch performs badly
compared to Robust, because it imposes a hard switch based
on a pre-set threshold regardless of the actual performance
of Robust or ML. Compared to ML, ERL-NT can have a
much lower competitive ratio due to expert robustification,
but the average cost also increases dramatically and can be
even higher than Robust (because the ML model training in
ERL-NT is not aware of the robustification step). On the other
hand, ERL achieves a guaranteed competitive ratio and a much
lower average cost than ERL—NT. This highlights the benefits
of training the ML model in ERL by explicitly considering
the downstream expert robustification process. Interestingly,
we also observe that by properly setting the hyperparameter A
(around 1.4 ~ 1.8 in our case), ERL can have an even lower
average cost than ML. This is because for those hard problem
instances that ML cannot solve well, ERL has Robust as its
guidance to provide reasonably good solutions.

Cost ratio distribution. To provide further insights, we
also show in Fig. 3] the detailed comparison between different
algorithm pairs in terms of the cost ratio distribution density.
By looking at Robust vs. ML in Fig.[3(a)l we can see that ML
has low cost ratios in more cases than Robust, although it has
a long tail (not shown in the figure due to the axis limit). This
explains that ML can have good average performance than the
expert algorithm Robust, when the training-testing distribu-

tions are not very different. Nonetheless, ML still suffers from
the lack of robustness, while Robust does not. Comparing
ML with ERL-NT in Fig. we can see that expert robusti-
fication can shift the cost ratios rightwards (i.e., increasing
the average cost), but ERL-NT has guaranteed robustness.
Next, we observe from Fig. that the cost ratios of ERL
are shifted leftwards compared to ERL-NT, demonstrating the
importance of training ERL with explicit consideration of the
expert robustification process. Fig. shows that ERL has
many smaller cost ratios than Robust. Again, this shows the
importance of considering expert robustficniation during the
training process.

Impacts of A\. While both ERL and ERL-NT can guaran-
tee robustness due to the expert robustification step during
inference, the ML model in ERL is trained with explicit
consideration of the expert whereas ERL-NT simply trains the
ML model as a standalone optimizer. Thus, ERL can further
improve the average performance compared to ERL-NT. To
further highlight the necessity of being aware of the expert
robustification step in the training of ERL, we show the results
for different algorithms in Table [l By training ERL using the
same A as testing it, we can obtain both the best average
cost and the best competitive ratio empirically. In particular,
the difference in terms of the average performance is more
prominent when A = 1.4 than when A = 1.2. This can be
explained by noting that with a larger A > 1, the expert plays
a less significant role by placing less emphasis on robustness
and providing the ML model with more freedom. Then, when
A = 1.4, the average performance is better than when A = 1.2,
although its guaranteed competitive ratio is higher (which is
also empirically verified in Table [). For reference, we also
show the performance of other algorithms that are not affected
by A > 1.

May-August testing. Next, we turn to a more challenging
case in which ML is outperformed by Robust both on average
and in the worst case (May—August, due to the different
weather patterns and hence large training-testing distributional
shifts). This is not uncommon in practice, since ML models
can have arbitrarily bad performances due to the lack of
robustness. We show the results in Fig. All the average
values are normalized with respect to the average cost of OPT.

Again, ML is off the charts, with its competitive ratio
as 11.167 and average cost as 1.367 (both normalized with
respect to OPT). Like in the previous case, Switch is not as
good as Robust, since it utilizes a hard switching between
Robust and ML whenever a pre-defined threshold is reached
without looking at the actual performance of Robust or ML.
Due to the lack of robustness guarantees, Greedy is also
worse than Robust in this setting. By varying A > 1, we see
that ERL-NT can have very large average costs (even larger
than ML), although its competitive ratio is still guaranteed to be
A-competitive against the expert Robust. On the other hand,
ERL, which is trained with A\ = 1.4 and tested with different
A > 1 has a much lower average cost than ERL-NT, while
also being able to guarantee competitive ratios. This shows the
importance of being aware of expert robustification during the
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ERL-NT ERL (A =1.4) ERL (A =1.2) Switch Robust Greedy
A for Testing Avg CR Avg CR Avg CR Avg CR Avg CR Avg CR
A=14 1.6977  6.0912 | 1.3903 6.0910 | 1.4343  6.0910 | 1.7454 6.4130 | 1.5336 5.000 | 1.5030  4.800
A=12 1.6457  5.5457 | 1.4832 55456 | 1.4587 5.5456 | 1.7454 6.4130 | 1.5336  5.000 | 1.5030 4.800

TABLE I: September-December testing. “Avg” and “CR” represent the empirical average cost and competitive ratio (normalized
w.r.t. OPT), respectively. Bold texts mean the best AVG performance. ERL (A = x) means we train ERL with A = z.

training stage. Moreover, ERL has a lower average cost than
ML: even in the presence of large training-testing distributional
discrepancies, the expert can help correct many of the bad pre-
robustification actions, thus significantly improving the aver-
age performance of ERL over ML. Interestingly, the average
performance of ERL is not monotonic in the parameter of
A > 1 used for testing. This is partly because A is different
for training and testing, and partly because the large training-
testing distributional discrepancies result in irregular average
performance for the ML model used by ERL. By A = 1, we
essentially have no trust on the ML model in ERL, and hence
ERL will follow the expert Robust at each step.

Summary. Our experiments highlight the key point that
ERL guarantees worst-case robustness in terms of the compet-
itive ratio by utilizing expert robustification, while exploiting
the power of ML to improve the average performance. Natu-
rally, when training-testing distributions are reasonably similar,
we expect the average performance of ERL (and other ML-
based optimizers like ML) to be better than that of Robust.
But, even when the pure ML performs arbitrarily badly, ERL
can still offer a good average cost performance due to the
introduction of expert robustification. Last but not least, with
explicit awareness of the expert robustification process, ERL
has a much better average performance than otherwise (i.e.,
ERL-NT).

VII. CONCLUSION

In this paper, we propose ERL, a novel expert-robustified
learning approach to solve online optimization with memory
costs. For guaranteed robustness, ERL introduces a projection
operator that robustifies ML actions by utilizing an expert
online algorithm; for good average performance, ERL trains
the ML optimizer based on a recurrent architecture by explic-
itly considering downstream expert robustification process. We
prove that, for any A > 1, ERL can achieve A-competitive
against the expert algorithm for any problem inputs. We also
extend our analysis to a novel setting of multi-step memory

costs. Finally, we run experiments for an energy scheduling
application to validate ERL, showing that ERL can offer the
best tradeoff in terms of the average and worst performance.
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APPENDIX

In the more general case, the memory cost may span mul-
tiple steps (e.g. acceleration smoothness), which has not been
well studied. We first show that Robust is still an competitive
expert, by providing its competitive ratio in the multi-step
memory setup in Appendix [A] Then, in Appendix [B] we prove
that ERL is still A-competitive against any expert, and this
automatically proves Theorem ] for the single-stem memory
case.

A. Proof of Theorem [5.1]
When ¢t > ¢, Robust satisfies the following condition:
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The first and second inequalities come from the triangle
inequality of [, norm, and the third inequality comes from
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the a-polyhedral assumption of the hitting cost function. For
t < g, since ] = z} = x,Vt € [—q + 1,0], the above
inequality also holds. We sum up all the single-step costs:
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where the second mequahty holds because z] = z; =
z,Vt € [-q+ 1,0] and f(a},y¢) — f(a],y:) = 0. Thus,
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If « > 1+ 3, since 2f = wv; minimizes f(-,y;), then
F (@, y) < f(zF,y:) and, based on (6), Robust is optimal.
This completes the proof.

B. Proof of Theorem {.1| and Corollary [5.1]

We denote the accumulated cost of the first ¢; steps as
cost(z1.4,) = 2?:1 (f(xt, ye) +d(@e, Yoy C’ixt_i)). When
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q
E mtz

(xf,yt)

% < 0, the inequality (6) becomes

t =1, 27 is clearly a feasible solution to (@). Then, suppose
that for ¢t > 1, 1.1 satisfies the constraint, i.e. cost(z1.+—1)+
G(xi1,Tt—q-1:—2,27_4_1.4_1) — (Acost(zT,, ;) + B) <0.
We need to prove that x is a feasible solution of the projection
(). By the constraint in the projection, we have

q
(cost(zr:p-1) + f (@7, ye) + d(a], Z Cizy—;))

i=1
+ G(a], xy—gi—1,7]_4y) — (Acost(zT,) + B)
(Acost(zT,,_1) + B)

+ G(ZL'?, Tt—q:t—1; x?—q:t)
q q
+d@f. > Cirei) — A7, Ciaf ).
i=1 i=1

By the triangular inequality, we have d(zT, Yo Cimyy) —
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where the first inequality is because of the triangular inequality
of [, norm, the first equality is from
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Thus, Theorem [{.1] is proved by setting ¢ =
rem [5.1] we also prove Corollary [5.1]

1. By Theo-
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