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Abstract—With the increasing adoption of private blockchain
platforms, consortia operating in various sectors such as trade,
finance, logistics, etc., are becoming common. Despite having
the benefits of a completely decentralized architecture which
supports transparency and distributed control, existing private
blockchains limit the data, assets, and processes within its closed
boundary, which restricts secure and verifiable service provision-
ing to the end-consumers. Thus, platforms such as e-commerce
with multiple sellers or cloud federation with a collection of
cloud service providers cannot be decentralized with the exist-
ing blockchain platforms. This paper proposes a decentralized
gateway architecture interfacing private blockchain with end-
users by leveraging the unique combination of public and private
blockchain platforms through interoperation. Through the use
case of decentralized cloud federations, we have demonstrated
the viability of the solution. Our testbed implementation with
Ethereum and Hyperledger Fabric, with three service providers,
shows that such consortium can operate within an acceptable
response latency while scaling up to 64 parallel requests per
second for cloud infrastructure provisioning. Further analysis
over the Mininet emulation platform indicates that the platform
can scale well with minimal impact over the latency as the
number of participating service providers increases.

Index Terms—Blockchain; Interoperability; Multifaceted net-
works; Open interfacing

I. INTRODUCTION

Business-to-Business (B2B) and Business-to-Consumer
(B2C) online marketplaces have gained much attention nowa-
days within various sectors, including e-commerce, ride-
hailing, cloud service provisioning (e.g., cloud federations),
supply-chain management, etc.. However, there has been a
continuing debate about the market-monopoly and unfairness
they created in the digital economy [1], [2]. Such platforms
typically work as the central agent or broker to interconnect
various businesses and consumers. In such a firm-controlled
marketplace, supporting trustworthiness and unbiased business
transactions is always a concern. Blockchain is a natural
extension to help trustworthy and bias-free business by allow-
ing the stakeholders to interact over a decentralized market-
place. Therefore, various recent works advocate for developing
blockchain-based electronic marketplaces [3]-[8]. However,
there is a fundamental limitation of the current blockchain
technologies to support this, as discussed next.

An electronic marketplace is typically a multifaceted net-
work with one or more closed business networks collaborating
through B2B transactions and, finally, an open consumer

network having B2C operations [9]. For example, in a typ-
ical supply chain, manufacturers, wholesalers, and retailers
form different closed business networks, and finally, the end-
customers create an open consumer network. Another example
is cloud federation platforms like OnApp [10], where small
cloud service providers (CSPs) construct a closed consortium
to provide cloud resources to customers. Depending on cus-
tomer requests, the transactions flow from the open consumer
network to various closed business networks, and the service
is finally delivered back to the open consumer network.

Emerging blockchain networks such as IBM Food Trust
[11], TradeLens [12], Marcopolo [13], etc., use private (per-
missioned) distributed ledger-based systems like Hyperledger
Fabric [14] and Corda [15] to form closed consortia of
businesses. However, a key limitation of the existing private
blockchain platforms is the restriction of their applicability
within only closed consortia where data and assets are not
required to be communicated outside the network boundary.
Thus, Fabric, Corda, or other existing private blockchains do
not support any interface or protocols for interacting with the
open network outside, which is crucial for building consortia
of service providers acting together to deliver services to the
consumer network.

However, there are challenges in designing such interfacing.
First, the businesses, as well as the consumers, can exhibit
byzantine behavior in the absence of a firm-controlled market-
place. Therefore they can collude to deceive and take control
over the consortium decisions. Second, the consumers’ service
requests need to be agreed upon by the businesses within the
closed consortium along with their ordering, before they can be
processed. Otherwise, any malicious business can take priority
over a profitable service request, thus affecting the fairness of
the system. Although private blockchain can ensure transaction
execution order within the closed network, they do not support
transactions from outside the closed network pertaining to
Sybil attacks from the open network participants [16]. Third,
the service responses from the closed consortium also need
to be transferred back to the consumer who requested the
service. Such information must be verifiable by the consumers
against the valid consensus at the business network. Further,
the privacy of the information must be ensured.

Thus, towards developing a decentralized collaborative ar-
chitecture for service providing consortia, we introduce Col-
labFed, which addresses the above challenges by building a



novel decentralized interface between the private blockchain
networks and the open network of consumers. CollabFed
ensures multi-party consensus validation and considers threats
such as Sybil attacks and byzantine behaviors of the par-
ticipants. The decentralized interface is engineered through
a unique combination of the public blockchain and private
blockchain networks by enabling interoperability between
them to support trusted and secure data transfer in both the
directions, that is (a) from the consumers to the businesses and
(b) from the businesses to the consumers (Contribution-1).
Our Consensus on Consensus mechanism handles the transfer
of data from the open network into the private blockchain in a
secured and verifiable manner (Contribution-2). We employ
a novel mechanism based on collective signing (CoSi) tech-
nology [17] to generate verifiable results from the consortium,
which is accessed securely by the consumers (Contribution-
3). Moreover, CollabFed facilitates the collaboration among
the participating businesses and enables fair scheduling of
requests through a distributed consensus. Performance in terms
of latency is of utmost importance here, so we analyze the
effect of order-execute and execute-order transaction execution
workflows on the performance of request scheduling.
Considering a use case of a decentralized brokerless cloud
federation, we have done a proof-of-concept (PoC) implemen-
tation of CollabFed using Ethereum as the public blockchain
platform and Hyperledger Fabric, and Burrow as the two
different candidates for the private blockchain platform, and
tested it with three emulated CSPs (Contribution-4). The
experiments prove the viability of CollabFed as a platform
for service provisioning consortia, which supports interaction
between a private blockchain network and the end-consumers.
Evaluation of the performance shows acceptable overhead on
the federation, and a Mininet-based emulation with 32 CSPs
also validates its scalability over a large geo-distributed setup.

II. RELATED WORK

One of the most compelling use cases of blockchain tech-
nology is in industries and enterprise environments where
multiple authoritative domains such as companies, organiza-
tions, and governments form a consortium without any central
trusted mediator’s involvement. Research on enabling such
applications have been carried out in sectors like energy
trading [18], supply chain [19], cloud [20]-[22], and many
more [23]. However, almost all existing solutions consider a
closed consortium of organizations that do not require com-
munication with the outside. Some blockchain-driven systems
which enable businesses to interact with consumers have
been proposed, such as BlockV [5], a ride-sharing appli-
cation ensuring fairness, and ArtChain [6] - a blockchain-
based art marketplace. Similarly, Savi et al. introduced a
public blockchain-based cloud brokerage platform [24] using
Ethereum for sharing spare fog resources. Although connect-
ing businesses and consumers, these platforms are based on the
public blockchain only, and thus are not suitable for enterprise
use cases that involve sensitive data exchange between the con-
sortium members. Moreover, public blockchains are not ideal

for complex business logic-based smart contracts since they
have to be replicated and executed over the entire network,
thus hampering performance.

Using private blockchain for such use cases will require
some mode of interoperability with the public blockchain.
Several prior works focus on cross-chain communication [25]
for different applications such as cross-network asset exchange
or asset transfer. Most of them such as, Tesseract [26],
Herlihy [27], Xclaim [28], AMHL [29], focus on public-public
blockchain interoperability for exchange of cryptocurrency,
asset transfer, and payment channel networks. On the other
hand, Omniledger’s Atomix [30], Chainspace [31], Fabric
Channels [32] enable interoperability and transactions between
different shards of the same blockchain platform. Abebe et
al. [33] proposed a protocol for trusted and verifiable data
transfer across private blockchain networks using endorsement
collection. Cash et al. [34] proposed a two-tier public-private
blockchain architecture for secure data sharing. However, none
of these existing works address the interoperability and data
transfer between private and public blockchain platforms.

To the best of our knowledge, CollabFed is the first at-
tempt to address the issue of communication of consumer re-
quests, and processed responses between a private blockchain-
based consortium and the open network through public-private
blockchain interoperability.

III. SYSTEM MODEL AND DESIGN CHALLENGES

We consider the interconnecting network between the con-
sumers and the closed consortium to be partially synchronous
where there is an upper bound A on the time of message
delivery [35], [36]. If a message is not received within the
time-bound A, then it is considered as a message fault. The
intuition is that in a realistic communication, the messages
must have arbitrary but bounded delay. This results in chal-
lenges such as unordered message delivery and message drops.
Additionally, we consider different types of attacks that might
affect the above operations, as follows.

A. Threat Model

A decentralized consortium is prone to the following types
of attacks, which we take care of in the design of CollabFed.
Byzantine participants: We consider that at most % of the
participants, both for businesses and consumers, may exhibit
byzantine behavior [37]-[40]. A consumer can try to deceive
the consortium by sending different requests to different busi-
nesses, while the businesses can collude themselves to alter the
decision protocols’ results to take control of the consortium.
Sybil attacks: BFT consensus protocols assume that each
participant has only one distinct identity [36], [38], [39]. If
somehow one participant can generate multiple identities, then
using such redundancy, it can launch a “Sybil Attack” [16].
The consumers thus can launch a Sybil attack to the closed
consortia by using multiple identities.

Impersonation attacks: As a decentralized architecture, the
consortium does not have a single spokesperson responsible



for communicating with the open network consumers. Ex-
ploiting this, a malicious business from the closed consortium
might try to deceive a consumer by posing as the consortium’s
spokesperson and providing false information.

Leakage of sensitive information: The business and the
consumers communicate over an open, unsecured channel
through message passing. Therefore, sensitive information like
credentials, contact information, etc., might get leaked.

B. Design Philosophy and Challenges

CollabFed’s primary objective is to develop a mechanism
through which any closed consortium designed using a pri-
vate blockchain platform can interface with open consumer
networks. Considering the threat model as discussed above
and the possibility of unordered message delivery along with
message drops, in CollabFed, the following two guarantees
need to be ensured at the consortium interface.

Definition 1. Consortium Interface Safety - The interface
should ensure that all the correct consortium members agree
on the same set of incoming consumer requests in same order.

Definition 2. Consortium Interface Liveness - The interface
must ensure that all the correct consumer requests are eventu-
ally be processed and committed by the closed consortium.

Thus, a mechanism is needed such that the interface meets
the safety and liveness guarantees, and the consortium mem-
bers are in a consensus on each request. To achieve consensus
over the ordering of consumer requests from the open network,
we propose to use public blockchain platforms [41]-[43] for
interfacing the closed consortium to the consumers of the open
network. The consensus algorithms over a public blockchain
setting are designed to be resistant to Sybil attacks. Therefore,
using a public blockchain platform, the consumers’ requests
from an open network can be ordered. However, merely
clubbing together any public and private blockchain is not
enough to enable the targeted consortium interface; there are
open challenges that need to be solved.

(i) Passing consensus of one network to another: The
public and the private blockchain networks run their own
consensus protocols independently. The interface should
pass the consensus information from one network to an-
other by ensuring (i) security, and (ii) accountability. The
interface should guarantee that the consensus information
of one network is verifiable at the other network.
Transferring sensitive information from the closed
network to the consumers: Once a consumer request
is scheduled and processed by the closed consortia, the
associated service information such as access credentials,
invoice, shipping information, etc., need to be passed to
only the targeted consumer who has requested for the
service. Therefore, merely putting the information to the
public blockchain will not help, as anyone will access
it. Protocols need to be designed to share such sensitive
information with the targeted consumer only.
Verifiability of the consortium decision: The consor-
tium’s decision of scheduling, service provisioning, etc.

(i)

(iii)

comes through a consensus over the private network.
However, once this information is forwarded to the
public network, the consumers should be able to verify
such decisions to avoid any byzantine behavior from the
colluded consortium members.

IV. DECENTRALIZED CONSORTIUM INTERFACE

The functionality of CollabFed Consortium Interface is
broadly two-fold: (a) transferring consumer requests from the
open network to the closed consortium members (Fig 1), (b)
transferring consortium responses to the open network con-
sumers in a secure and verifiable way (Fig 2). The Consortium
Interface Safety is achieved using two rounds of consensus
over the consumer requests — (1) regular consensus (mining)
of the public blockchain, and (2) A Consensus on Consensus
mechanism. The details follow.
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Fig. 1: Transferring Consumer Requests from Public Blockchain to
the Consortium Members (CMs)
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Fig. 2: Secure and Verifiable Data Transfer from CMs to Consumers

A. Regular Consensus (Mining) over Public Blockchain

Before scheduling and processing any consumer request,
the consortium members must reach a consensus on the same.
Moreover, there needs to be a consensus on the order in
which the requests are to be considered to ensure Consortium
Interface Safety. This ensures that a malicious member of
the consortium cannot collude the network by triggering the
scheduling of an invalid consumer request or take priority on a
specific consumer request. CollabFed uses public blockchain
in conjunction with the private consortium to support this.
However, for supporting interoperability between the two
networks, the consensus has to be propagated between them.

To interact with the consortium, consumers send their
requests through the public blockchain. These requests are
formed as transactions to a smart contract - User Request
Contract, deployed in the public blockchain. Just like a web



interface of a central firm-controlled platform, this smart
contract acts as the communicating point for the consumers
to reach the consortium, albeit in a decentralized way. The
“consumer request” transactions are then committed to a
block in the ledger through the public blockchain platform’s
mining/consensus process. For example, Ethereum uses a
modification of the most popular consensus protocol: “proof of
work” (PoW) [44], while there are many alternate consensus
protocols, such as Proof of Stake [43], Bitcoin-NG [45],
Byzcoin [46], Algorand [42] etc. These consensus protocols
have different safety and liveliness assumptions of their own;
however, their common objective is to reach consensus on a
block of transactions. Moreover, since these are permissionless
blockchain protocols, they are designed to resist Sybil attacks.

Once a block is mined and committed in the public
blockchain, this ensures that there is a consensus on the
particular block and their order in which they are committed,
since each block is linked to the previous one through its
cryptographic hash. Moreover, the set of transactions in each
block also has a fixed packing order for the smart con-
tracts’ deterministic serial execution. Despite these properties,
public blockchain consensus itself is not enough to satisfy
Consortium Interface Safety, and consortium members cannot
simply pick user requests from the public blockchain and
start processing them. The reasons are as follows. (1) Due to
the partially synchronous network, some consortium members
might not get the mined block in time and thus cannot par-
ticipate in its scheduling. (2) Malicious consortium members
may introduce and schedule invalid consumer requests that
are not mined at all. (3) Public blockchain consensus protocol
like PoW, often goes through temporary forks [47], resulting
in conflicting consumer requests or conflicting ordering in
different members. Thus, CollabFed has to carry out a second
round of consensus, which we call Consensus on Consensus.

B. Consensus on Consensus

In [25], the authors have shown an interesting result that
states that cross-chain communication is impossible without
a trusted third party. To circumvent this impossibility result,
CollabFed uses a novel idea where the private consortium
members also participate in the public blockchain to represent
themselves as their own trusted agent. Whenever a new block
is committed in the public blockchain, the trusted agents
corresponding to the private consortium members get an event-
trigger, which in turn invokes a Propagation Contract in the
private blockchain network. Before invoking the Propagation
Contract, the transactions of the public blockchain can be
verified individually by the consortium members by existing
methods such as Simplified Payment Verification (SPV) as used
in standard public blockchain like Bitcoin [44].

The task of the Propagation Contract is to collect verifica-
tion endorsements from consortium members for each con-
sumer request. The verification endorsements are the digitally
signed certificates from the consortium members, indicating
that the corresponding members agree on the processing of a
consumer request committed over the public blockchain. As

per the standard BFT protocols [38], [46], a consumer request
can be committed for scheduling in the private consortium if
the majority (%rd) of the consortium members endorse the
request transaction. The endorsement protocol used in the
Propagation Contract is shown in Fig. 3. The details follow.
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Fig. 3: Propagation Contract: Consensus on Consensus

Endorsement Initialization: Whenever a consortium member
receives a “‘consumer request” transaction through the event
listener of the public blockchain, it checks whether there
is already an endorsement available in the private ledger
corresponds to that transaction. If no endorsement is available,
it initiates the endorsement collection process for that partic-
ular request by initiating the endorsement—-count (EC)
variable set to 1, and committing the signed endorsement in the
private ledger. The request is also accompanied by a sequence
number for representing its order. This sequence number is
formed as {blocknumber, offset}, indicating the block
in which the request transaction is committed in the public
blockchain, and its packing order inside the block.

Endorsement Propagation: As other consortium members
also get the same consumer request and with the same
{blocknumber, offset} through the event listener of
the public blockchain, they also execute the Propagation
Contract for it, which adds their signed endorsements while
incrementing the EC. Each execution of the Propagation Con-
tract is also a transaction. Therefore, each endorsement also
goes through the consensus process of the private blockchain.
Commitment: Thus, the number of endorsements for a request
goes up until it reaches greater than two-third of the number
of consortium members (EC > 2|consortium|). At this point,
the majority of the consortium participants have consensus on
the request through endorsements, and each such endorsement
has a consensus of the network. Thus, the consumer request
is marked as approved and ready to be scheduled.

Theorem 1. The Consensus on Consensus mechanism ensures
consortium interface safety and consortium interface liveness.

Proof: Whenever a transaction is committed in a block
in the public blockchain, it implies all its correct partici-
pants including consortium members agree on it, along with



the (blocknumber, of fset). The Consensus on Consen-
sus mechanism endorses the transactions from the public
blockchain and then commits the endorsements in the private
blockchain. A transaction is scheduled only when more than
% of the consortium members endorse the transaction. Given
that each endorsement transaction also undergoes consensus
in the private blockchain, and the given verifiability property
of the private ledger, a transaction from the public blockchain
is executed only when the majority of the consortium mem-
bers endorse it. Further, the transactions are executed in
the order of (blocknumber, offset) parameters of the
public blockchain ensuring agreement on the order. Thus the
Consensus on Consensus mechanism ensures interface safety.

Consortium interface liveness depends on the liveness of the
public blockchain. The event-listeners for correct consortium
members eventually trigger the propagation contract when a
transaction is committed in the public ledger. Even if there is
a temporary fork, the propagation contract is executed when
the transaction is finally committed in the public ledger. ®

The Propagation Contract triggers Scheduling Contract that
schedules the requests based on a predefined business logic.
After a request is scheduled and processed over the closed
consortium, the service results have to be transferred back to
the consumers. The details follow.

C. Secure and Verifiable Response Transfer

A consortium is operated collectively by its participant
businesses. Hence, any data/information provided by it has
to be the result of the collective consensus process. Thus, in
the absence of a central coordinating platform, this consensus
has to be collected and verified by the consumers, without
depending on any trusted agent. There can be two variations
of information originating from the consortium. (1) Consor-
tium information such as information about the participating
businesses, service catalogs, etc., and (2) Request responses
that are the results of scheduling and processing consumer
requests such as a digital document.

Both of these kinds of data are generated collectively by
the consortium members through the private blockchain’s
consensus process. However, this consensus information has
no manifestation outside this closed network. Thus, consumers
being outside the consortium and not participating in the con-
sensus protocol cannot verify the correctness of the data that
is committed through transactions in the private blockchain.
A separate protocol has to be designed through which infor-
mation transfer from the consortium to the consumers can be
validated outside the private network concerning the consensus
of the participating businesses. Moreover, although consortium
information can be considered publicly available, the Request
responses to the consumers may contain sensitive information
that should remain confidential while being transferred across
the open network of the public blockchain.

In CollabFed, we use the concept of Collective Signing
(CoSi) [17] where a set of consortium members collectively
sign a valid information to make it verifiable. We utilize
Boneh-Lynn-Shacham (BLS) cryptosystem [48] for collecting

and aggregating signatures from the individual participating
businesses. Similar to Byzcoin [46], which uses CoSi to reach
to a BFT consensus, a piece of information posted by the
consortium through the public blockchain is considered to be
valid, if and only if it has been signed by at least %rd of the
consortium members. The details follow.

1) BLS Signatures: A BLS signature is computed as
Si(M) = H(M)Se:, where M is the message that is to
be signed, H(.) is a cryptographic hash function, and S¢, is
the secret key of the consortium member C;. The property
that makes BLS signatures special is that they can readily
be extended to multi-signatures. Therefore, for n members
participating in the consortium, Ci,Cs,-,C,, the aggregated
multi-signature can be calculated as follows.

S1.m(M) = H(M)%e1 TS t+Sen — HH(M)SQ
i=1

n (L
= S1(./\/l) X SQ(M) X ..

This aggregated multi-signature S; (M) can be verified
with the help of the public keys of the individual consortium
members. This verification is done by comparing the pairing
operation between the aggregated signatures and the aggre-
gated public keys. The aggregated public key for n members
is calculated as []}"_; Pe,, where Pg, is the public key of C;.

2) Posting information using BLS: Any information about
the consortium is communicated to the consumers by posting
the same in the public blockchain. Such information originates
from the result of the Collaboration Contract in the private
blockchain, which is responsible for reaching consensus on
them. This resultant data like updated information or updated
catalog, etc. must be collectively signed by at least %rd of the
participating consortium members. This again has two differ-
ent levels of security requirements for Consortium information
and Request responses.

Posting Consortium Information to the Public
Blockchain: Let Z be a piece of public consortium
information that is meant to be seen by all consumers. Z is
proposed by a consortium member in the private blockchain
where consensus is reached over it. To post this information
over the public blockchain, the consortium members over
the closed network construct a Signing-Request message
as sign{H(Z),B,[H(Z)]s,} and forward it to all other
consortium members. Here B is a bitmap indicating which
members have signed the message and [H(Z)]s, is the
aggregated collective signature on the hash of the message 7.
Every consortium member, upon receiving this message, adds
its own signature through multiplication, as shown in Eq. (1),
updates B and sends back the response. Once signatures
from majority of the members have been aggregated, the
final response message {Z,H(Z),B, [H(Z)]s,} is posted in
the public blockchain. The authenticity of this message can
be easily verified using the public keys of the members
who have signed the message, and the integrity can be
checked by computing and comparing the hash of Z. This



verification process is carried out by the Consumer Client
and is transparent to all the consumers. The Consumer Client
only accepts those messages which have the required number
of signatures (> %|consortium\) along with the proper hash.

Posting Private Information for a Consumer: Posting pri-
vate information to a consumer through the public blockchain
requires some mechanism to preserve confidentiality. This is
done by encrypting the message using the public key P, of
the consumer {/. The message is also similarly authenticated
using the aggregated multi-signature of the consortium mem-
bers. Thus the final message which is posted in the public
blockchain is {< M >p,, H(< M >p,),B, [H(< M >p,
)]sy P> Where < M >p,, denotes a message M encrypted
using the key Pp,. Thus, only the consumer I/ can decrypt the
message using its secret key Sy;. The Consumer Client handles
the decryption and verification of authenticity.

D. Optimizing the Latency for Signature Collection

Since the messages to be transferred from the consortium
to the consumers already have to be committed in the private
blockchain, the multi-signature collection process is decoupled
and carried out off-chain to improve the latency. Thus the con-
sortium members communicate through peer-to-peer messages
to form the verifiable signed message. This multi-signature
mechanism’s latency depends on the way the members forward
the messages and collect back the signatures to generate the
final payload by aggregating them. Thus a communication tree
is formed along which the singing request and the signatures
are exchanged. One extreme case of this is when one of the
members acts as the leader, and the other members sign their
messages and forward them back to it. The leader constructs
the collective signature by including its own signature and
validates other members’ signatures against their public keys.

This strategy is likely to have low latency because of its
star topology with a path length of at most one but will
have high signature combination computation overhead for the
leader. Another extreme is to consider a linear chain of con-
sortium members through which the above round of messages
propagate; this will have less computation overhead for each
member but will have high network latency. CollabFed uses
a M-ary tree structure to propagate multi-signature collection
messages through which individual signatures are collected,
and the multi-signature is constructed following Eq. (1). In-
terestingly, the latency for multi-signature generation changes
with the value of M, which we analyze in Section VI.

Handling denial of service: Off-chain multi-signature
collection improves the latency of the process. However, it
introduces the risk of denial of service. Although the message
to be signed is first committed in the private blockchain
through the consensus process, some malicious consortium
participants may try to halt the consortium through denial
of service attack by not responding to signature collection
requests. As a result, to prevent that and detect the faulty
members to hold them responsible, CollabFed resorts to a
blockchain contract-based signature collection after the off-
chain protocol fails (possibly with a timeout). For a message,

Algorithm 1: Fair Request Scheduling Contract

Input: R;, K, W
Result: Scheduled CSP: Cg
for C; € F do
\* Initialize current proportion of scheduled requests of C; to 0 *\
gcj 0
for | < 1 to |[W| do

if W[l] = C; then

‘ Ge; < Ge; +1

® 9 o A W=

end
end
ge.
J
| Gy T
10 Dc7 — ch — K:Ci

11 end

12 Cy argmaxcie}—(ch)
13 enqueue(W, Cs)

14 if |[W| > R then

15 | dequeue(W)

16 end

17 return Cg

the Signature Collection contract is initialized in a similar
way as Propagation Contract, and gathers BLS signatures of
the members. Thus any non-cooperating member is detected
through this transparent process, who can be held responsible.

V. USE CASE IMPLEMENTATION: CLOUD FEDERATION

To evaluate the potential of CollabFed, we have imple-
mented a use-case of cloud federations like OnApp, where
a group of CSPs participate in a single marketplace to offer
cloud infrastructure such as virtual machines (VMs) as a ser-
vice (IaaS) to the consumers. Traditionally cloud brokers [49]
or centralized marketplaces like OnApp coordinate all interac-
tions between the CSPs and the consumers. To design a fully
trustless decentralized architecture for cloud federations, we
use CollabFed to implement a private network of CSPs and a
public network of consumers, called CollabCloud. Apart from
the basic functionalities of CollabFed, CollabCloud imple-
ments a Fair Scheduling Contract within the CSP consortium
to schedule the VM requests among the participating CSPs
while ensuring fairness in terms of profitability of the CSPs
and quality of service (QoS) for the consumers.

The Fair Request Scheduling Contract takes into account
the contribution of the individual CSPs in the federation and
schedules consumer requests in proportion to it. We define the
federation F = {C1,Cs,...,C,} as a collection of CSPs C;.
A CSP C; can support certain VM configurations which are
represented by V& = {V;,V,,...,V,,}. Thus the catalog of
the federation is the union of all such VM configurations being

offered by the individual CSPs, represented as C = |J V¢,
C;eF
Similar to the catalog, the contribution of each CSP C; is a set

of VM offerings, denoted by Q% = {01, O, ..., O0,,}. AVM
offering is defined as a three-tuple: O = {V, k,c}, where V
denotes a VM configuration, k£ denotes the quantity of the VMs
of the particular configuration the CSP can offer, and ¢ denotes
the expected pricing of that VM type. A consumer request for
a VM is defined as a four-tuple: R = {R;q, Py, V;, D}, where
R;q is the unique identifier of the consumer request, Py, is the
public key of the consumer making the request, V; € C is the



VM configuration selected from the catalog C, and D is the
duration for which the VM is requested.

The fair scheduling smart contract is shown in Algorithm 1.
The input to the algorithm is a consumer request R;, the
proportions of contribution of all CSPs in the federation

= {Ke¢,| C; € F}, and an array W consisting of the
results of this algorithm for last |W| scheduled requests.
We define infrastructure contribution K¢, of each CSP C;
as Ke, = > peges O-V.CPU x O.k, that is the weighted
sum of the quantities of its VM offerings indicating the
amount of TaaS capacity (hardware resources) contributed.
Thus, each time the catalog is updated, the proportion of
contributions are also changed. The contribution proportion
is thus ICAC = ﬁ for each CSP C;.

In essence, the scheduler works similarly to a weighted fair
queue [50] which ensures that the rate of consumer requests re-
ceived by each CSP C; is proportional to ICAcq For this purpose,
the scheduling contract keeps track of a window (W) of the
past scheduled results. We implement W as a queue containing
results for past requests that is R; 1, R;—2,..., R;_w|. Here
each result corresponds to some CSP to which the past request
was scheduled. The algorithm first computes the proportion
of requests scheduled to a particular CSP as Gc; and then
computes the proportion deficit as D¢, . The request R; is then
scheduled to the CSP, having the maximum deficit in its share
of past scheduled requests. Then the window W is updated by
inserting the new result, and also removing the oldest result if
|[W| > some threshold 8.

Verifiability of the Scheduling Algorithm: R; is obtained
from the public blockchain, and K is available in the private
ledger. Finally, the past scheduled requests are obtained from
the previous results of the Fair Resource Scheduling contract
in the private blockchain. Thus, each CSP has access to all
the information from the two blockchains. For verifiability, it
must be ensured that all the CSPs act on the same version of
information. With each execution of Fair Resource Scheduling
contract, the value of W is altered. Therefore, the CSPs must
know which version of W is applicable for which transaction.
This is ensured in two different ways — order-execute and
execute-order based executions of the contracts [14].

Case (i): order-execute — The transactions are ordered first,
and the consensus is achieved on this ordering. The transac-
tions are then executed sequentially based on the agreed order,
and W is updated. Thus every CSP applies the transactions in
the same sequence on W, starting from the initial version.
Case (ii): execute-order — Each transaction is first simulated
on a particular version of W, and this version number is
also included in the transaction. Then the simulation result
(an updated version of W) is sent for consensus. In the
case of multiple such parallel transactions acting on the same
version of W, only one transaction is agreed upon during the
consensus and accepted. The rest of them are rejected.

VI. EVALUATION

In order to test the feasibility and practicality of Col-
labFed, we have implemented a PoC of CollabCloud de-
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Fig. 4: CollabCloud modules and Testbed setup

centralized cloud federation. Each component of CollabFed
along with the additional cloud federation specific functional-
ities are developed, and the end-to-end system is deployed
in a testbed (Fig. 4). Since CollabFed needs one public
blockchain platform for providing the Consortium Interface,
we have chosen Ethereum [41]. For the private blockchain, we
have tested with Hyperledger Fabric and Burrow platforms.
The public blockchain smart contracts are implemented us-
ing Solidity (v0.5.0) (https:/solidity.readthedocs.io/
en/v0.5.0/) language, and they are executed on the Ethereum
Virtual Machine (EVM). We have used Truffle (https:
/Iwww.trufflesuite.com/) for the development and testing of the
Ethereum contracts. Two test networks (https://docs.ethhub.io/
using-ethereum/test-networks/), Ropsten and Rinkeby are
used to run the consortium interface. Ropsten uses Proof
of Work (PoW) whereas Rinkeby uses Proof of Authority
(PoA) [51] for consensus. We evaluate CollabFed, as well as
the cloud-federation functionalities from two different setups.
First, we develop an in-house testbed with three emulated
CSPs over six cloud servers (each CSP having two servers).
Next, to analyze the scalability of different components of
CollabFed, we perform an emulation-based evaluation over
the Mininet virtual emulation network [52].

A. Platform Setup

To test the end-to-end functionality and performance of
CollabFed along with its various components, we set up a PoC
testbed of cloud federation emulating 3 CSPs participating in
the federation. Fig. 4 shows the setup where each CSP has
two cloud servers — one 4-core Intel Core 15-4590@3.30GHz
server with 8GB memory (Ubuntu 18.04, Linux Kernel 4.15)
for running CollabFed services, and another 88-core Intel
Xeon Gold 6152@2.10GHz server with 256GB memory (Cen-
tOS 7.7, Linux Kernel 3.10) for running the CSP’s usual
services including VM placement and hosting the VMs. All
the services are run in Docker (https://www.docker.com/)
containers, and the networking is established through a Docker
swarm overlay network.

For implementing the CPS functionalities, we have
used VirtualBox (https://www.virtualbox.org/) for creating



VMs, and a Flask (https://flask.palletsprojects.com/en/1.1.x/)
server for accepting VM placement requests and interfacing
with VirtualBox. Since each CSP has only one emulated
data center, which is the host server itself, the placement
algorithm does not affect our system’s evaluation. However,
each CSP has its own set of supported VM specifications
that it offers, resulting in different catalogs. We use the Fair
Request Scheduling contract that allocates requests based on
the proportionality of the virtual CPU (vCPU) contribution in
the federation by each CSP.

Apart from the testbed, to evaluate the scalability of differ-
ent components of CollabFed, we also created a Mininet-based
network topology for emulation. We created test scenarios with
several CollabCloud CSP nodes ranging from 2 to 32 and the
latency between them ranging from 50ms to 400ms to capture
their performance in real-world deployments.

B. End-to-end Testbed experiments

In these experiments, we used the PoC testbed to eval-
uate each component’s performance while doing end-to-end
consumer request processing for VM provisioning. We used
emulated consumers with numbers ranging from 4 to 64
and programmed them to send parallel requests at the same
instance of time. We have evaluated the latency and overheads
of processing these requests in each CollabFed module.
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Consortium Interface: Each consumer request encounters
the public blockchain twice, first when it propagates from the
public blockchain to the consortium, and then in the Resource
Response Contract, when the processed result is transferred
back from the private blockchain to the public one. Fig. 5
shows the distribution of latency for processing the consumer
requests over the public Ethereum blockchain. The processing
latency over Ethereum test networks varies widely at different
times depending upon the usage by other Ethereum users
across the globe. We have collected the data for two weeks at
different times of the day, and the same has been plotted in
Fig. 5. We observe that the PoW-based consensus process of
Ropsten test network has a higher transaction processing time
compared to the PoA-based Rinkeby network.

Each contract in the public blockchain requires some
transaction fees proportional to its computational complex-
ity or storage requirements. In Ethereum, this is measured
as “Gas”. Fig. 6 shows the gas consumption of the smart
contracts of CollabFed, along with the cloud federation spe-
cific contracts. We observe that the Resource Provisioning
contract is of the highest complexity since it has to store

the multi-signatures for each transaction and the encrypted
resource access information. To understand whether this Gas
requirement is too high or too low, we benchmark these
values concerning the Gas consumption by CryptoKitties
(https://www.cryptokitties.co/) which is a common Ethereum
application, and found that they are comparable.
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Request Scheduling over Private Ledgers: Fig. 7 shows
the time required for executing fair scheduling contracts in the
private blockchain. We observe that the transaction processing
time for Fabric is much higher than that of Burrow. The
reason for this result is specific to the type of processing
required by the Fair Request Scheduling. The key difference
between Burrow and Fabric is the transaction execution work-
flow followed by them. Fabric follows execute-order flow,
while Burrow follows order-execute. Executing first and then
committing the results introduces a new problem for the type
of contracts that read and change the system’s common state,
just like the Fair Request Scheduling uses a history of the
already scheduled requests at different CSPs. The reason is as
follows. While executing multiple transactions in parallel, let’s
assume that they get executed on the same current state S,
and thus the output is based on S,.. After that, once any one
of the transactions is committed, the current state is changed
to S.. This state change also might change the output of other
transactions that would be executed after it. As a result, when
the other parallelly executed transactions are processed for
committing, they fail in the ordering and validation phase since
their execution results do not match with the execution result
on S!. Fabric does not retry to execute the failed transactions
by itself, so CollabFed over Fabric reschedules the failed
transactions, thus increasing the latency.

To validate our hypothesis regarding the source of higher
overhead caused by Fabric, we also tested with a naive
scheduling contract that schedules the requests based on a
static rule depending on its ID. This contract does not depend
on the current state of the blockchain. In Figure 8, we can
see that the scheduling latency of Fabric has dramatically
improved. We also noticed that there are no transaction failures
due to inconsistent execution results. Moreover, we saw no
such latency improvements for Burrow with such a naive
scheduling contract. It may be noted that for more parallel
requests, Burrow still performs marginally better than Fabric.
Consequently, we can conclude that the choice of private
blockchain technology depends heavily on the fair scheduling
contract’s business logic.
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After a request is scheduled, a VM is provisioned accord-
ingly, and the access information is signed through collections
of BLS multi-signatures. Fig. 9 shows the distribution of
the time taken for VM Provisioning. This increases with the
increase in number of parallel requests, mainly due to the
limited processing capability of the hardware of our setup.
This latency is specific to the cloud federation application of
CollabFed, and thus does not count towards its performance.
Fig. 10 shows the distribution of latency for multi-signature
collection. We see that the multi-signature collection latency
remains fairly consistent.

Resource Consumption: CollabFed consumes CPU, mem-
ory, and network bandwidth, which are an additional overhead
to normal operations of a consortium. Fig. 11 shows the
box-plot distribution of CPU usage by CollabFed server for
executing the private blockchain transactions in Fabric and
Burrow, and for multi-signature collection. We observe that the
CPU consumption is reasonably low, below 10% in most cases
for all the services. Similarly, Fig. 12 depicts the distribution
for memory requirements which stays below 200MB.
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due to an increase in the number of CSPs or inter-CSP network
latency is not very high, which indicates the scalability of the
proposed approach.

Fig. 14 presents the mean and the standard deviation of
multi-signature aggregation latency with a varying number
of nodes and inter-CSP latency values. We observe that the
mean latency is below 2 seconds for 16 SPs and about 3.5
seconds for 32 SPs. This also indicates the scalability of the
signature aggregation scheme. However, the multi-signature
collection latency can have a big impact due to the collection
tree structure. To study it, we constructed a complete M-ary
communication tree with 32 SPs. Table I shows the multi-
signature collection latency for different values of M. The
inter-CSP latency for this test is kept fixed at 400ms. We can
observe a sharp improvement in the latency from linear (M=1)
to binary tree (M=2) structure. The latency is more or less
stable from M = 4. However, the multi-signature combination
complexity for individual CSPs increase with the value of M.
Therefore, the value of M in a real deployment can be chosen
based on this trade-off.

TABLE I: Effect of communication tree on multisig collection latency

# parallel requests

M 1 2 4 6 8 16 31
Mean Latency (s) 29.9 5.0 3.2 2.3 24 3.0 2.9
Standard Deviation 1.8 0.3 0.2 0.1 0.2 0.6 1.3

Fig. 11: CPU Usage Fig. 12: Memory Usage

C. Mininet scalability experiments

The public blockchain platforms being open networks have
been designed to be scalable, and extensive research has been
done to study their performance [42], [46]. We focus on
the scalability of the private network and the multi-signature
collection. For this, we set up an experiment with 32 emulated
CSPs over a Mininet [52] topology, which forms a CollabFed
consortium. We also changed the inter-CSP network latency to
emulate the CSPs’ spread across different geographic regions.

Fig. 13 shows the distribution of Burrow propagation con-
tract execution and commitment latency. The experiment has
been done with inter-CSP latency varying in each case, from
50ms to 400ms. We observe that the median transaction
latency lies around 2.5 seconds with 32 nodes and 400ms inter-
CSP latency. Further, the increment in the transaction latency

VII. CONCLUSION

Towards a fully trustless decentralized architecture for
an electronic business consortium providing services to
consumers, CollabFed introduces a public-private hybrid
blockchain architecture with a unified interface between the
consortia and the open network. To the best of our knowledge,
this is the first attempt to fill a critical gap in the application of
blockchain in the enterprise and business use cases. CollabFed
is flexible in terms of the choice of public and private
blockchain networks; however, the performance and security
guarantees depend on the assumptions of those underlying
blockchain technologies and consensus protocols. The PoC
implementation of CollabFed indicates that the system is
scalable and performant with Hyperledger and Ethereum — one
of the most popular private and public blockchain platforms,
respectively. The analysis of the impact of different blockchain
protocols on the architecture is an exciting direction for our
future works to develop a more robust system.
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