
Expect the Unexpected:
Sub-Second Optimization for Segment Routing

Steven Gay
UCLouvain, ICTEAM

steven.gay@uclouvain.be

Renaud Hartert
Google, Inc.

rhartert@google.com

Stefano Vissicchio
University College London

s.vissicchio@cs.ucl.ac.uk

Abstract—In this paper, we study how to perform traffic engi-
neering at an extremely-small time scale with segment routing,
addressing a critical need for modern wide area networks.

Prior work has shown that segment routing enables to better
engineer traffic, thanks to its ability to program detours in for-
warding paths, at scale. Two main approaches have been explored
for traffic engineering with segment routing, respectively based
on integer linear programming and constraint programming.
However, no previous work deeply investigated how quickly those
approaches can react to unexpected traffic changes and failures.

We highlight limitations of existing algorithms, both in terms
of required execution time and amount of path changes to be
applied. Thus, we propose a new approach, based on local search
and focused on the quick re-arrangement of (few) forwarding
paths. We describe heuristics for sub-second recomputation
of segment-routing paths that comply with requirements on
the maximum link load (e.g., for congestion avoidance). Our
heuristics enable a prompt answer to sudden criticalities affecting
network services and business agreements. Through extensive
simulations, we indeed experimentally show that our proposal
significantly outperforms previous algorithms in the context of
time-constrained optimization, supporting radical traffic changes
in few tens of milliseconds for realistic networks.

I. INTRODUCTION

The capability to promptly answer to unexpected network
dynamics in a very short time is more critical than ever in large
(wide area) networks, like inter-datacenter or Internet Service
Provider ones. On one hand, new network architectures, as
SDN [1], enable networks to run at almost-full capacity,
and let links carry more traffic without having to heavily
overprovision networks [2], [3]. On the other hand, forwarding
optimality can be disrupted by the increasing number of
unexpected, sudden traffic surges that change demand volumes
and matrices, e.g., due to new popular content, social networks
and related flash crowds [4]: those unpredictable traffic fluc-
tuations have to be managed in addition to (and likely more
often than) traditionally-considered events like link failures.
Globally, running networks closer to their physical limits in a
highly-dynamic environment increases the risk to experience
congestion at any moment in time.

To answer this need of modern networks, recent works [2],
[3] have focused on online traffic-engineering approaches,
where network paths are re-optimized periodically, typically
every few (e.g., 5) minutes. Those works complement long-
lasting efforts to quickly re-optimize traditional networks,
e.g., running tunnelling technologies like MPLS [5] or plain

shortest-path routing [6]. By running periodically, this ap-
proach can only remove congestion after the fixed time
period, but does not avoid it completely. This also means
that the network performance can be deteriorated (e.g., with
traffic lost) for several minutes. A classic alternative is to
pre-compute a congestion-free reaction to events, e.g., pre-
provisioning backup paths in the case of failure [7], [8] or
optimizing against a set of traffic matrices [9]. However, the
latter approach is impossible to apply to all possible events,
especially the unexpected ones that unpredictably change
traffic distributions.

In this paper, we explore the feasibility of a different
approach, where a centralized network controller re-optimizes
forwarding paths as soon as the utilization of a link increases
too much, in consequence of significant traffic changes or
unexpected network failures.

Two building blocks are key in this approach. First, a
monitoring or alarming primitive to quickly detect unexpected
events. Second, a very fast and effective re-optimization of
network paths. We focus on the latter building block, as the
former can be implemented with the most recent monitoring
techniques [10], [11].

In order to achieve a proper reaction to unexpected
events, we propose an extremely-fast traffic-engineering algo-
rithm computing a limited set of quickly-implementable path
changes to avoid congestion.

To enforce path changes that can be quickly implemented by
traditional network equipment, we build upon the increasingly-
popular Segment Routing (SR) protocol [12]. SR enables
effective centralized control over network paths by configuring
ingress routers to enrich traversing packets with information
about nodes (or links) to be crossed before reaching their
respective destinations.

In contrast to prior SR traffic-engineering contributions [9],
[13], we however face additional levels of algorithmic com-
plexity, due to our strong commitment to minimizing execution
time and balancing forwarding optimality with quick imple-
mentation of path changes (e.g., by minimizing them). This
exacerbates the computational complexity of solving already-
hard traffic-engineering problems with SR — e.g., minimizing
the maximum link utilization with SR is NP-hard [14].

We tackle this algorithmic challenge by relying on Local
Search (LS), which combines two advantages. First, LS is an
anytime optimization technique, meaning that it always returns

Fig. 1: Topology of a network (Airtel) as reported in Topology
Zoo [15]. Links between nodes represent edges in both direc-
tions. All edges have the same capacity and unitary weight.

a solution no matter when the algorithm is stopped — thus
fitting our strict time constraints. Second, by considering many
small variations of a current solution, LS also tends to find
traffic-engineering paths that are structurally close from the
initial ones (those currently installed in the network). In other
words, LS naturally limits the number of path changes.

Within the LS framework, we use tailored data structures to
compute moves much faster than a simulation approach would
achieve; further, we design aggressive heuristics that quickly
converge to qualitatively-good solutions, rather than aiming to
find the global optimum.

In the rest of the paper, we first state our traffic-engineering
problem and exemplify the shortcomings of related work
for prompt reaction to unexpected events (§II). Then, we
describe the design of our LS algorithm (§III). Also, we delve
into the data structures and main implementation details that
we adopted to improve the speed of our algorithm (§IV).
Finally, we evaluate our approach in realistic time-constrained
scenarios (§V), and conclude (§VI).

II. TRAFFIC ENGINEERING WITH SEGMENT ROUTING

In this section, we introduce our network and routing model,
as well as our notation. We then formalize two variants of the
traffic-engineering problem that differently express the ability
to quickly answer unexpected events. Finally, we describe the
limitations of existing techniques to solve both variants.

For illustration, we use the network depicted in Fig. 1 with
traffic demands set as in Fig. 2.

A. Model

Network. We define a network as a strongly-connected di-
rected graph with a set of nodes N and a set of edges E that
respectively represent network routers and the physical links
between them. Each edge e ∈ E is represented by a pair of

Fig. 2: Representation of the demand matrix used in our exper-
iments on the Airtel network (see Fig. 1). Rows and columns
respectively represent demand sources and destinations. The
color intensity of every cell is directly proportional to the
traffic volume for the corresponding demand.

nodes (u, v) where u is the source of e and v is its sink. A
capacity capa(e) ∈ N and a weight w(e) ∈ N are associated
to every edge e. The capacity of an edge indicates how much
traffic that link can carry. The weight of an edge is used by
intra-domain routing protocols to decide paths followed by
traffic traversing the network (as we detail below). In Fig. 1,
for any pair of adjacent nodes u and v, edges (u, v) and (v, u)
are collapsed into a single (undirected) link, for brevity.

Traffic. We group the traffic that traverses an input network
(N,E) in demands. We indeed define a set D that contains
all the demands to be forwarded in the network. Each demand
d ∈ D has a source node src(d) ∈ N, a destination node
dest(d) ∈ N, and a bandwidth requirement bw(d). Several
demands with the same source and destination may exist,
making D potentially larger than |N|2. In the example of
Fig. 1, we assume that there is exactly one demand per pair
of nodes, as illustrated in Fig. 2.

Segment Routing. Traffic is assigned to forwarding paths,
hence to network edges, according to routing protocols and
their configuration. In order to fulfil our goal of quickly
reacting to unexpected events, we rely on Segment Routing
(SR) to compute the paths followed by every input demand.

In SR [12], the path used for any demand d ∈ D is decided
by the (ingress) router from which d enters the network. Such
an ingress router, indeed, can be configured to specify a list of
nodes that have to be traversed (in sequence) by packets in d,
before reaching the destination. We denote all those nodes to
be traversed by packets in d as segments (for d), and always
conventionally include the source and destination of d among
the corresponding segments. We also refer to the ordered list
of segments to be sequentially traversed by packets for d as
the SR path for d. Information on the SR path for d (with
the exception of demand source and destination) is added by

src(d) to the header of packets destined to d, in order to
ensure consistent forwarding across the network. For example,
in Fig. 1, we can configure router 9 to impose the SR path
[9, 11, 1] on packets for 1, i.e., forcing the demand sourced at
9 and destined to 1 to cross 11 before being delivered to 1.

The paths followed by packets derive from the concatena-
tion of shortest paths (computed according to edge weights)
between segments. For instance, the SR path [9, 11, 1] repre-
sent all paths deriving from the concatenation of the shortest
paths from node 9 to 11 with the shortest paths from 11 to
1. In Fig. 1, this implies that packets from 9 to 1 would be
forwarded over network paths (9, 7, 11, 1) and (9, 8, 11, 1).

The SR path of some demands may contain only its source
and destination: the shortest paths from the source to the
destination are used in this case.

B. Problem Statement

By imposing how demands are forwarded through the
network, configured SR paths control the traffic load on
every link. In particular, traffic volumes are assigned to edges
according to even load-balancing. A more precise definition
follows. We denote the set of links in the shortest paths from
a node s to a node t with Ss,t. For every demand d with an
SR path including [s, t] as a sub-sequence, every source of
any link in Ss,t distributes bw(d) evenly among its outgoing
edges in Ss,t. Consider again the previously-discussed case
where [9, 11, 1] is the SR path associated to a demand d. In
that case, all edges in S9,11 are assigned to a traffic volume
of bw(d)/2 — because packets for d are load-balanced over
two network paths (9, 7, 11) and (9, 8, 11). In contrast, edge
(11, 1) ∈ S11,1 is assigned to a traffic volume of bw(d).

We are actually interested in the edge utilization, that is,
the relative load of an edge with respect to its capacity. More
formally, we define the load of an edge e, denoted with
load(e), as the sum across all demands of the traffic assigned
to e, according to a given set of SR paths. In addition, we
define the utilization util(e) of an edge e as the ratio between
its load and its capacity, i.e., util(e) = load(e)/capa(e)

In this paper, we aim at studying extremely-fast traffic
engineering techniques that reduce edge utilizations upon
unexpected events. We consider two scenarios.

The first scenario is the time-constrained min-max utiliza-
tion. It consists in minimizing the maximum edge utilization,
under the constraint that the computation time has to be lower
than a given amount (e.g., 1 second). In other words, this
scenario adds a time threshold to the classic goal (considered
in early traffic-engineering works [6] as well as prior contri-
butions on SR [9], [13]) of optimizing resource allocation.

The second scenario, that we called fast-reaction TE, con-
sists in efficiently computing an SR path for every input
demand such that the resulting SR paths (1) satisfy an input
constraint defined on edge utilization, and (2) can be quickly
installed in the network. More precisely, we constrain the
edge utilization to be lower than a certain threshold (e.g., 1.0,
to avoid congestion), and we try to minimize both the path
computation time and the number of changed SR paths.

C. Shortcomings of previous approaches

Two main algorithms, respectively based on mixed integer
linear programming (2-SR MILP [9]) and constraint program-
ming heuristics (DEFO [13]), have been proposed to compute
SR paths given an input network and a set of demands. Unfor-
tunately, both algorithms exhibit limitations for our considered
scenarios, hence to quickly react to unexpected events.

We illustrate their shortcomings on the network in Fig. 1,
assuming a realistic demand matrix generated with the tech-
nique described in [16] – the resulting distribution of demand
bandwidths is represented in Fig. 2. On those network and de-
mands, we consider the time-constrained min-max utilization
scenario with a time budget of 1 second.

Results of previous algorithms and our proposal are sum-
marized in Table I. Both 2-SR MILP and DEFO return SR
paths inducing a maximum edge utilization is significantly
higher than the optimum of 0.9, computed as solution of multi-
commodity flow problem [17]. In contrast, our LS algorithm
finds SR paths leading to maximum edge utilization of 0.94,
which is much lower than previous SR algorithms and closer
to the optimum. While performance of all techniques can be
improved by relying on more powerful servers, those results
(as well as those in §V) highlight the competitive advantage
of our LS algorithm with respect to the previous ones when
run on the same hardware platform.

Lower bound 2-SR MILP DEFO Our LS
0.9 1.15 2 0.94

TABLE I: Max edge utilization of solutions provided by
candidate algorithms to solve the min-max utilization problem
defined on Airtel (see Figs. 1 and 2) in 1 second.

MILP algorithms hardly scale. A MILP model for traffic-
engineering with SR has been proposed in [9]. This model is
targeted to compute SR paths with maximum length of 3, that
is, with at most one detour from the source to the destination.

While this model has been shown to be practical for offline
traffic engineering on relatively-small networks (up to 30
nodes), it inherits the drawbacks of the MILP optimization
framework. Namely, to guarantee optimality of its final so-
lutions, it sacrifices time efficiency. Hence, despite limiting
the length of SR paths structurally reduces the search space
and improves its scalability, this approach quickly solves only
small traffic-engineering problem instances, where network
size and number of demands are limited.

As an illustration, we considered the problem instance in
Figs. 1 and 2. We ran a state-of-the-art solver (Gurobi [18])
on a variant of the original MILP model, that we subsequently
refer as 2-SR MILP, where we avoid demands to be fraction-
ally split at the ingress – which we consider unpractical. The
best solution found by the solver after 1 second has been quite
far away from the optimum. Indeed, solving the MILP model
returned a solution where the maximum link utilization is 1.15,
while the multi-commodity flow lower bound is 0.9. A much

better solution (with maximum edge utilization of 0.95) has
been found by running the same algorithm for 2 more seconds.

Those results confirm that the performance of MILP-based
techniques quickly degrades as soon as problem instances
grow, with optimization solvers unable to efficiently compute
even LP relaxations for medium-size networks (e.g., with more
than 20 nodes). Further confirmations of this intuition are
provided by our large-scale evaluation (see §V).

DEFO is relatively slow. An alternative to MILP has been
proposed in [13], where a quite different approach and feature
set has been targeted. The resulting proposal, DEFO, is a
heuristic implemented within the constraint programming (CP)
optimization framework. This heuristic is tailored to (i) address
several traffic-engineering problems, even for huge networks,
under a common framework; and (ii) sacrifice optimality
for time efficiency, by exploring randomly-chosen, distant
portions of the search space, to escape local minima.

While DEFO has been shown to have good performance
at scale, its generality and specific design choices tend to
hamper its ability to find a solution in a very short time.
Indeed, we experimentally found that DEFO typically requires
a certain amount of time to find good solutions, even for
traffic-engineering problem instances of limited size.

As an example, we ran DEFO to solve time-constrained
min-max utilization scenario on the case represented in Figs. 1
and 2. The best solution found by the solver after 1 second
has been even farther from the optimum than 2-SR MILP.
Indeed, DEFO returned a solution where the maximum link
utilization is slightly more than 2. Even with a time budget of
10 seconds, it has only been able to decrease the maximum
edge utilization to 0.96, i.e., returning a solution worse than
the one found by our LS algorithm in 1 second.

Our extended evaluation (see §V) confirms the good scala-
bility of DEFO, but also the much higher effectiveness of our
LS approach with respect to DEFO for small time budgets.

III. LOCAL SEARCH

Local search (LS) is a general optimization approach that
has been used to quickly find good solutions to (several) hard
optimization problems.

Basically, LS starts from an initial solution and iteratively
goes from that solution to another one, by applying local
changes called moves, until a stop criterion is met — e.g. the
solution is good enough, or a time limit. The neighborhood
of a solution is the set of all the solutions that can be reached
with a single move. In our context, a solution is the set of the
segment routing paths used by the demands; a move consists
in changing the segment routing path of one demand; and the
neighborhood is thus a set of solutions that only differ by a
single segment routing path.

LS algorithms must use moves that are adapted to the
problem, i.e. that are likely to improve the solution in one
iteration, and reach the optimum after a limited amount of such
iterations. When the neighborhoods are too large to explore, a
heuristic can be used to focus on the moves that most likely
lead to a better solution.

One of the simplest LS algorithms, known as hill climbing,
consists in systematically moving to the neighbor solution that
leads to the best improvement of the objective function. When
no such solution exists, we say that the search is stuck on
a locally optimal solution or local optimum; those can be
much worse than the actual optimal solution. To cope with
this problem, LS algorithms are typically guided at a higher
level by meta-heuristics (e.g., simulated annealing [19] or tabu
search [20]), that focus less on immediate improvement of the
current solution to try and escape optima.

In the following, we provide details on our proposed LS
algorithms for the time-constrained min-max utilization and
fast-reaction TE scenarios (see §II).

A. Moves and Neighborhood

We use moves that change the current SR-path of one
demand, since rerouting a demand is likely to decrease the load
on the maximally-utilized edge. Unfortunately, the number of
possible alternative SR-paths is exponential in the number of
segments. We thus focus on smaller neighborhoods defined by
the following moves:
• insert: insert a segment (in the middle of the path);
• remove: remove a segment;
• replace: replace a given segment;
• reset: remove all the segments.

Using those moves, it is possible to iteratively reach any
solution contained in the original exponential neighborhood by
applying a sequence of moves to a given path. This guarantees
that there is always a sequence of moves that connects the
current solution to the optimal solution. We say that the
solution space is connected by our neighborhoods.

Note that only the insert and remove moves are re-
quired to ensure that our neighborhoods connect the solution
space. However, replace and reset provide important
shortcuts that explore the search space more efficiently. The
reset move is particularly important to reduce the number
of demands actually using segment routing.

B. Intensification and Diversification

While the neighborhoods seem reduced, exploring them is
still an expensive task due to the large number of solutions to
evaluate. We bias this exploration by focusing on the parts of
the neighborhood that are the most likely to improve the cur-
rent solution. Our LS algorithm relies on a stochastic heuristic
to detect such parts. The intuition behind this heuristic is that
changing the path of a demand that is using one of the most
loaded edges is likely to improve the solution. To achieve this,
we first randomly select an edge and then randomly select a
demand that is routed on that edge. The probability pe of
selecting edge e is determined by its utilization and by an
intensification coefficient denoted α:

pe =
util(e)α∑
e∈E util(e)α

. (1)

High values of α increase the chance of selecting the most
loaded edges — i.e. intensification — while low values flatten

the edge distribution — i.e. diversification. Particularly, setting
α to 0 results in a uniform selection of edges. The probability
pd of selecting demand d is similarly determined by the
quantity of flow that demand d forwards on edge e and by
a second intensification coefficient denoted β:

pd =
load(d, e)β∑

d∈D(e) load(d, e)β
. (2)

where D(e) denotes the set of demands routed on edge e.
We measured the impact of both coefficients on two large

instances. Fig. 3 and Fig. 4 respectively illustrate the impact of
both coefficients on the quality of the solution returned after
1 second and 2 minutes of computation1. We observe that
preferring highly loaded edges is important while focusing
too much on heavy demands has a negative impact on the
minimization process.

0 1 2 4 8 16 32 64

0

1

2

3

Fig. 3: Impact of different values for both coefficients with a
timeout of 1 second. The darker the better.

0 1 2 4 8 16 32 64

0

1

2

3

Fig. 4: Impact of different values for both coefficients with a
timeout of 120 seconds. The darker the better.

C. Meta-heuristic

The combination of our moves and the intensification
process aggressively improve the objective function. Unfor-
tunately, we experimentally observed that the simple hill
climbing heuristics quickly reaches local optima, tends to
remain stuck inside them in many cases. To escape local
optima, we added perturbations, a meta-heuristic component
used in Variable Neighborhood Search (VNS) [21].

When stagnation is detected, i.e. after visiting several neigh-
borhoods without improvement, our algorithm tries to force a
movement, that perturbates the solution. Contrary to simulated
annealing, we do not choose the movement according to
the way it affects the objective function; instead we choose
a random move. In particular, we randomly force either a
remove or a reset move. Then, we expect the aggressive
intensification process to quickly reach a new local optimum

1Greys are computed with this formula output = (input−min
max−min

)1/2.

that might improve on the pre-perturbation solution. If it does
not, our version of VNS goes back to the best-so-far solution
after a few hundred iterations.

Our meta-heuristic is engineered to get good solutions
quickly, instead of exploring the solution space more broadly
like a simulated annealing-based algorithm would do. Using
remove and reset moves often enable to backtrack to a
configuration where a demand uses less physical links, since
it has less segments. This tends to decrease the general load
of the network despite increasing maximum utilization, freeing
some capacity for the aggressive intensification to use.

Our experiments show that our meta-heuristic tends to find
nearly optimal solutions for realistic networks (see §V).

IV. IMPLEMENTATION

One of the main concerns when implementing LS algo-
rithms is the speed of its operations. To explore the search
space, MILP relies on global LP reasoning and DEFO on CP’s
inference. Instead, LS assumes that a selection of cheap-to-
compute moves and heuristics will be enough to explore the
most interesting solutions for the input problem instance. Thus,
the sheer speed of the building blocks is central to the success
of any LS approach. For instance, computing the load of every
edge from scratch after every candidate move would result in
an overly costly O(|N||E|) effort, so we try to recompute only
the parts that are affected by changes2.

In this section, we present the data structures that we used
and the design choices that we made to implement our LS
algorithm. More precisely, we describe how to efficiently
evaluate our admitted moves, and how to select edges and
demands efficiently with cumulative trees. We also show
how to avoid some useless computation to speed up our
neighboorhood exploration.

A. Solution State

A solution of the considered traffic-engineering problems
is characterized by the SR path on which each demand is
forwarded. In our LS algorithm, we store each path as a vector
representing the sequence of nodes: for instance, a vector of
two elements corresponds to an SR path with only demand
source and destination as segments.

To maintain the state of the links, we use an array load
that maps every edge to the total amount of traffic forwarded
on that edge. This array allows us to efficiently evaluate the
impact of each move on the objective function (see below).

B. Preprocessed Data Structures

In addition to the solution state, we maintain two data
structures to manipulate shortest paths efficiently. Let Ss,t(e)
be the fraction of flow forwarded on edge e when a demand
is routed on the equal cost multi-paths from node s to node t.
The first data structure maps each pair of distinct nodes (s, t)
and each edge e to Ss,t(e) while the second data structure is
used to iterate efficiently on the edges in Ss,t.

2Similar mechanisms are used in [6] to reduce recomputation.

We implemented these data structures with arrays to perform
queries on the shortest paths with optimal time complexi-
ties. This choice however has a substantial memory cost of
O(|E||N|2). Despite the high memory cost, we are able to
use these structures to solve instances with several hundred of
nodes with less than 16GB of RAM.

C. Move Evaluation

Efficient move evaluation is the most critical operation of
our LS algorithm — and probably of any LS algorithm. To
evaluate the impact of a move acting on a demand d, we first
need to modify the state of the current solution by applying
this move. We perform such modifications in two steps:

1) subtracting d’s bandwidth requirement from the load on
the links belonging to the old paths for d;

2) adding d’s bandwidth requirement to the links in the new
paths for d.

Of course, only the load of the edges contained in the sub-
path impacted by the move has to be updated. For instance,
consider a demand d with SR path [s, a, t]. If we want to
insert a new segment m between a and t we first remove
the flow between segments a and t. This corresponds to
perform the following operations for each edge load(e) =
load(e)− Sa,t(e) · bw(d). Then, we insert the flow between
segments a and m, and the flow between segments m and
t. This corresponds to perform the following operations for
each edge load(e) = load(e) + Sa,t(e) · bw(d). We can
efficiently perform those steps using both preprocessed data
structures from the previous section by iterating exactly on
the impacted non-empty edges.

Once a move has been applied and its impact on the solution
evaluated, we need to undo the move and restore the state of
the solution in order to evaluate the next move. While this
operation can easily be performed by applying the opposite of
the move, we follow a more time-efficient approach. Before
applying any move, we indeed save the set of edges impacted
by the move, denoted by ∆, as well as their corresponding
utilizations (values in load). This way, we can easily restore
the state of the current solution by iterating on the edge in ∆
and reassigning the load of each edge to its saved value.

Maintaining ∆ has many advantages over the “opposite
move” approach. First it is faster than applying the opposite
move. Second, it reduces the potential floating point errors due
to additions and subtractions. Third, it allows us to efficiently
evaluate a move only on the part of the network actually
impacted by the move. We adopt the same approach to update
other data structures, like the cumulative tree presented below.

D. Prefiltering moves

When exploring neighborhoods, we observe that many
moves do not even decrease the current maximum edge.
Checking how a move affects a particular edge can be done
in constant time, provided we can compute any Si,j(e) in
constant time (see § IV-B). For instance, consider again an
SR path of [s, a, t], for a demand d. If we insert segment m

between a and t, the difference in load for each edge e will
be:

(Sa,m(e) + Sm,t(e)− Sa,t(e)) · bw(d).

We implemented this kind of “guard” on the insert and
replace moves by simply skipping moves that do not
decrease the maximum edge utilization.

E. Edge and Demand Selection

Efficiently selecting the next edge and the next demand to
build our neighborhood is a critical operation that threatens to
drastically reduce the efficiency of our algorithm. Selecting
edges and demands as explained in §III-B corresponds to
the roulette-wheel problem: given a list of n weighted items,
randomly select an item in the list such that the distribution
of the randomly selected items matches the distribution of
weights. Particularly, we need a fast data structure that enables
such selection, but also allows us to insert, remove and change
the weight of any item.

We propose a solution based on a cumulative tree. A
cumulative tree is a complete binary tree3 that stores weighted
items in its leaves. The weight of an internal node is the sum
of the weight of its children. Fig. 5 illustrates a cumulative
tree with 4 items. By relying on cumulative trees, we can
select a random item in O(log n) with a single randomly
generated number. Also, we can remove and insert items with
a complexity of O(log n) in time and O(n) in space.

We now detail how to perform the previous required oper-
ations on this structure:

Random selection. The first step of random selection is to
generate a random number r ∈ [0,W [where W is the sum
of the weighted items in the tree — i.e. the weight of the
root node. We then perform a binary search as follows: if r is
lower than the weight of the left child then recurse on the left
child; otherwise, subtract the weight of the left child from r
and recurse on the right child. Let us illustrate this procedure
on the tree of Fig. 5 with random number r = 4. Since the
weight of the left child of the root is 5 ≥ 4, we go left. Then,
since the weight of the left child is 2 < 4, we subtract 2 from
4 and go right which is the leaf we are looking for.

Weight change. To change the weight of an item, we just
need to change the weight of the corresponding leaf and then
propagate this change to the root by recomputing the weight
of all its ancestors. Fig. 6 illustrates this process by changing
the weight of the third leaf of the tree in Fig. 5.

Insertion. We can insert a new item by creating a new leaf
at the end of the current level of our complete binary tree. If
the current level is already full, we simply create a new level
and insert or item as the first leaf of this level. As before, we
then need to propagate this change to the root node.

Removal. We must ensure that the tree is still complete after
the removal. To achieve that, we first move the last leaf of

3This assumption simplifies the following operations and allows us to
efficiently implement our tree in an array (see binary heap in [22])

13

5 8

7132

Fig. 5: A cumulative tree
with 4 items.

16

5 11

7432

Fig. 6: Weight changes are
propagated to the root node.

the tree to the position of the removed leaf (see Fig. 7 a). We
then propagate this change starting from the new and the old
positions of the last leaf (see Fig. 7 b).

The cumulative tree that maintains our edge selection has a
fixed size of |E| items and only has to handle weight change
operations. Demand selection is more complex since it requires
each edge to maintain its own cumulative tree of demands
which are subject to both insert and remove operations. The
space complexity of demand selection is thus O(|D||E|) —
though it is much smaller in practice.

All the previous operations are built on the assumption that
we can easily access the leaf associated to an item. This
is not a problem in the context of edge selection since the
mapping between edges and leaves is static. We however need
to dynamically maintain the mapping between demands and
leaves due to insert and remove operations. We solve this
problem by maintaining the mapping with a hashtable. Note
that this does not change the complexity of our operations.

13

5 8

7 1 32

10

9 1

12 7 3

a) b)

Fig. 7: Item can be removed in O(log n).

V. EVALUATION

We now report on the extensive evaluation of the proposed
LS algorithm, and its comparison with alternative techniques.

We used 260 topologies from the Topology Zoo [15] with
sizes ranging from 4 to 197. Demand matrices (5 per topology)
were generated using a gravity model [16]. To normalize
those matrices, we divide all demands by a constant to get
a multi-commodity flow [17] lower bound (MCF) value of
0.9. However, the MCF is not the optimal value for segment
routing. Since SR cannot split traffic with arbitrary ratio, we
may not able to reach the MCF (especially in small networks).
We thus filtered out instances that cannot be put below 1.0 of
max utilization in 60 seconds by any of the evaluated solvers.
This leaves 233 topologies out of 260.

The LS algorithm was configured to only generate path with
at most one detour (3 segments). At each iteration, it selects
one of the most loaded edges (α =∞). Demands are randomly

selected such that their distribution matches the distribution of
their bandwidth (β = 1).

All our experiments were run on a 40-core 3.10GHz com-
puter with 128 GB of RAM with a Java 1.8 JVM, every
process was limited to 16 GB of memory and 4 concurrent
threads (only the MILP solver is multithreaded).

A. Time-Constrained TE

We compare our LS algorithm with the two state-of-the-
art alternatives described in §II: We refer to them as DEFO
(for the constraint programming solver described in [14])
and 2-SR MILP (for the integer linear programming approach
with even traffic splitting, inspired by [9]). We run the three
algorithms to solve a time-constrained min-max utilization
scenario with a timeout of 1 second. Note that we implemented
the algorithms such that they return the current paths if they
do not find an optimized solution in the given timeout. In
the following, we generically refer to the three compared
algorithms with the name of solvers.

Our algorithm computes in 1 second better paths than its
alternatives. Experimental results are summarized in Fig. 8.
We observed that all solvers tend to find worse solutions when
the topology size increases; hence, the figure contains three
plots, for small, medium and large topologies respectively.
Globally, they highlight that all the three solvers find good
solutions for most small instances, except for some where the
unsplittable flow assumption still make the min-max problem
hard to solve. On medium-sized topologies, 2-SR MILP some-
times returns solutions worse than initial configurations (with
no segment beyond source and destination for any demand).
DEFO improves solution quality with respect to 2-SR MILP,
but it still exceed link capacities in more than 50% of the cases.
In contrast, our LS algorithm manages to compute much better
SR paths, implying a maximum link utilization smaller than 1
in almost 95% of our experiments. On large topologies, 2-SR
MILP is never able to remove congestion, and DEFO does that
in a handful of cases. Again, our LS algorithm still removes
congestion in most of the experiments. Nevertheless, a closer
analysis of our results also shows that the biggest topologies
in our dataset represent a hard challenge even for our LS
approach, which could not lower the maximum link utilization
below 1 (for this extreme traffic engineering scenario, in 1
second) on topologies with more than 100 nodes.

B. Fast Reaction TE for Congestion Removal

In a second set of experiments, we measure the response
time of our solvers for significant traffic changes. Namely, we
take one solver and one topology at the time. We initially
feed the solver with the topology and one of the 5 demand
matrices generated for that topology. Then, we iterate over
the 5 matrices and ask the solver to bring the maximum link
utilization below 1 at every matrix change.

Our algorithm achieves sub-second congestion removal
even in large topologies. As an illustration of this set of
experiments, Fig. 9 plots the evolution of the maximum link

algorithms

m
a

x
 l
in

k
 u

ti
liz

a
ti
o

n

MILP DEFO LS

1
2

5
1

0
2

0

0.90 percentile

0.95 percentile

(a) Small topologies (<20 nodes).

algorithms

m
a

x
 l
in

k
 u

ti
liz

a
ti
o

n

MILP DEFO LS

1
2

5
1

0
2

0

0.90 percentile

0.95 percentile

.
(b) Medium topologies (20<nodes<40).

algorithms

m
a

x
 l
in

k
 u

ti
liz

a
ti
o

n

MILP DEFO LS

1
2

5
1

0
2

0

0.90 percentile

0.95 percentile

(c) Large topologies (≥40 nodes).

Fig. 8: Maximum link utilization achieved in 1 second by our LS algorithm, DEFO and 2-SR. The y-axis is in logarithmic
scale. Top and bottom of the boxes represents 25-th and 75-th percentiles, the thick line within the boxes represents the median,
and whiskers map to the minimum and maximum values. The dashed horizontal line is the lower bound (0.9 for all topologies).

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

time (sec)

m
a

x
im

u
m

 l
in

k
 u

ti
liz

a
ti
o

n

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

demands change LS optimization

Fig. 9: Even for the largest topology in our dataset (UsCarrier
with 156 nodes and 24,806 demands), our LS algorithm
provided sub-second reaction to significant demand changes.

utilization over time when we apply our LS algorithm to
UsCarrier, the biggest topology in our dataset. Our solver
finds SR-paths under 1.0 for the first traffic matrix. Then, at
time t=0, we change the demand matrix while keeping the
computed paths: This brings a maximum link utilization to
more than 1.4 as highlighted by the first “demands change”
point in Fig. 9. We then ask the solver for new paths that
deal with the change and remove congestion. After less than 1
second, our LS algorithm returns paths that induce a maximum
link utilization of 1, as reported the first “LS optimization”
point in the plot. We then change the demand matrix again
(at time t=5), display the new maximum link utilization, and
report on the second path re-optimization (around t=6). We
iterate this process for all the remaining demand matrices. For
all simulated demand changes, the reaction time of our LS
algorithm is under 1 second.

We now compare results of our LS algorithms with its alter-
natives across all the topologies in our dataset. To encompass
a simple, we also evaluate the SP heuristic, which is similar to
the constrained shortest-path first one used for MPLS routing

[23]. SP computes paths considering one demand at the time,
from the largest to the smallest. In particular, it assigns each
demand to the path that leads to the smallest increase of the
maximum utilization, using at most one additional segment.

Our algorithm systematically removes congestion in far
less time than its alternatives. Experimental results are
summarized in Fig. 10. Once again, bigger topologies make
the TE exercise harder. For all solvers, most (> 95%) small
and medium topologies are solvable under 60s, but only LS
reaches the congestion removal objective in less 1 second,
systematically across our experiments. For large topologies,
2-SR takes more than 60 seconds in more than 25% of the
experiments, while DEFO removes congestion in less than 60
seconds in most of the cases. In contrast, our LS algorithm
handles almost 90% of the experiments in 1 second – only
cases on our biggest topologies forces it to take more time.

SP takes less time than other solvers on at least half of
the instances. However, it is much less robust, returning paths
that break the 1 max utilization limit in many cases. In small
and medium topologies, SP computation time can make it a
worthy starting point if having a high number of paths with an
intermediate segment is not an issue. This possibility becomes
less and less interesting as the topology grows, as shown by
results on larger topologies.

C. Fast Reaction TE with Optimized Link Utilization

We finally track the cases that our LS algorithm can handle
when we require lower and lower link utilization. Namely, we
repeat the experiments above, but setting a target maximum
link utilization progressively closer to the MCF of 0.9.

In most experiments, our algorithm gets close to the link-
utilization lower bound in milliseconds. Table II reports
on both the computation time and the percentage of rerouted
demands. Unsurprisingly, tighter constraints on link utilization
makes our algorithm run for more time and reroute more
demands. However, for most experiments, our LS solver
achieves a maximum link utilization of 0.92 in less than 1
second, rerouting 5% of the demands on average.

algorithms

ti
m

e
 i
n

 m
s

MILP DEFO LS SP

1
1

0
0

1
0

0
0

0

0.90 percentile

0.95 percentile

(a) Small topologies (<20 nodes).

algorithms

ti
m

e
 i
n

 m
s

MILP DEFO LS SP

1
1

0
0

1
0

0
0

0

0.90 percentile

0.95 percentile

.
(b) Medium topologies (20<nodes<40).

algorithms

ti
m

e
 i
n

 m
s

MILP DEFO LS SP

1
1

0
0

1
0

0
0

0

0.90 percentile

0.95 percentile

(c) Large topologies (≥40 nodes).

Fig. 10: Time taken by the evaluated algorithms to avoid congestion. We set a timeout of 60s and add a point at 60s when
an algorithm does not find any solution before this timeout. The y-axis is in logarithmic scale. Top and bottom of the boxes
represents 25-th and 75-th percentiles, the thick line within the boxes represents the median, and whiskers map to the minimum
and maximum values. The top dashed horizontal line is the timeout of 60s, and the middle dashed line is our target of 1 second.

Max link Execution time Rerouted
utilization 50ms 100ms 200ms 500ms 1sec demands

0.92 61.8% 68.3% 72.3% 76.0% 77.8% 5.0%
0.94 68.2% 75.1% 78.9% 82.1% 83.8% 4.1%
0.96 74.4% 81.8% 85.5% 88.6% 90.8% 3.3%
0.98 78.4% 85.5% 88.5% 90.8% 92.7% 2.7%
1.0 82.0% 88.1% 91.5% 93.9% 96.0% 2.2%

TABLE II: Percentage of experiments where our LS algorithm
matches stringent link-utilization and time constraints. The last
column reports the percentage of demands that have to be
rerouted (on average, for paths computed in 1 second).

VI. CONCLUSIONS

Segment Routing is becoming a popular technology for traf-
fic engineering, with applications ranging from load balancing
[9] to link-failure recovery [8] and complex path requirements
[13]. Previous approaches can be used to address expected
network dynamics, but can be hardly adopted to deal with
unexpected events, like arbitrary traffic-volume modifications
due to sudden flash crowds. To support quick answers to
unexpected events, we propose an approach based on Local
Search (LS). With respect to previously-proposed approaches
relying on integer linear programs (MILP) or constraint pro-
gramming (CP), our LS algorithm sacrifices completeness
(of search space exploration) to guarantee that it can always
return a solution independently of its execution time — the
returned solution strictly improves with execution time. We
design our algorithm for quick computation of a limited set
of quickly-implementable path changes that re-optimize per-
link utilization upon unexpected events. Our evaluation on
(real) networks shows that our algorithm outperforms existing
traffic-engineering ones, at short time scales, across all our
experiments. Also, it is the only one that systematically react
to (even dramatic) traffic changes in less than one second.

ACKNOWLEDGEMENTS

This work has been partially supported by the ARC grant
13/18- 054 from Communauté française de Belgique.

REFERENCES

[1] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” ACM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in SIGCOMM, 2013.

[3] C.-Y. Hong et al., “Achieving High Utilization with Software-driven
WAN,” in SIGCOMM, 2013.

[4] P. Wendell and M. J. Freedman, “Going viral: Flash crowds in an open
cdn,” in IMC, 2011.

[5] A. Elwalid et al., “MATE: multipath adaptive traffic engineering,”
Computer Networks, vol. 40, no. 6, pp. 695–709, 2002.

[6] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in INFOCOM, 2000.

[7] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
fault tolerance for software-defined networks,” in HotSDN, 2013.

[8] F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing restoration with
segment routing,” in INFOCOM, 2016.

[9] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, “Optimized
network traffic engineering using segment routing,” in INFOCOM, 2015.

[10] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and Precise Triggers in Data Centers,” in SIGCOMM, 2016.

[11] O. Tilmans, T. Buhler, S. Vissicchio, and L. Vanbever, “Mille-Feuille:
Putting ISP traffic under the scalpel,” in Hotnets, 2016.

[12] C. Filsfils et al., “Segment Routing Architecture,” Internet draft, 2014.
[13] R. Hartert et al., “A Declarative and Expressive Approach to Control

Forwarding Paths in Carrier-Grade Networks,” in SIGCOMM, 2015.
[14] ——, “Solving segment routing problems with hybrid constraint pro-

gramming techniques,” in CP, 2015.
[15] S. Knight et al., “The internet topology zoo,” IEEE JSAC, vol. 29, no. 9,

pp. 1765–1775, 2011.
[16] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”

ACM CCR, vol. 35, no. 5, pp. 93–96, 2005.
[17] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow

problem,” Journal of the ACM, vol. 37, no. 2, pp. 318–334, 1990.
[18] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.

[Online]. Available: http://www.gurobi.com
[19] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by

simmulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.
[20] F. Glover, “Tabu search: a tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94,

1990.
[21] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-

puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.
[22] R. Sedgewick, Algorithms. Pearson Education India, 1988.
[23] B. S. Davie and Y. Rekhter, MPLS: technology and applications.

Morgan Kaufmann Publishers Inc., 2000.

