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Abstract—A virtual network (VN) contains a collection of vir-
tual nodes and links assigned to underlying physical resources in
a network substrate. VN migration is the process of remapping a
VNs logical topology to a new set of physical resources to provide
failure recovery, energy savings, or defense against attack. Pro-
viding VN migration that is transparent to running applications is
a significant challenge. Efficient migration mechanisms are highly
dependent on the technology deployed in the physical substrate.
Prior work has considered migration in data centers and in the
PlanetLab infrastructure. However, there has been little effort
targeting an SDN-enabled wide-area networking environment —
an important building block of future networking infrastructure.
In this work, we are interested in the design, implementation
and evaluation of VN migration in GENI as a working example
of such a future network. We identify and propose techniques
to address key challenges: the dynamic allocation of resources
during migration, managing hosts connected to the VN, and
flow table migration sequences to minimize packet loss. We
find that GEND’s virtualization architecture makes transparent
and efficient migration challenging. We suggest alternatives that
might be adopted in GENI and are worthy of adoption by virtual
network providers to facilitate migration.

I. INTRODUCTION

Virtualization is well-recognized as a technique to share
physical resources, providing the appearance of dedicated
resources and isolation from others sharing the same physi-
cal resources. Virtual networks run over a physical network
substrate, with an allocation of physical network resources
(e.g., routers, switches, links, paths, or portions thereof) to
the virtual network. A virtual network (VN) thus contains a
collection of virtual nodes and virtual links assigned to a subset
of the underlying physical resources. A virtual link spans one
or more physical links in the substrate, and a substrate node
can host multiple virtual nodes.

Network virtualization allows significant flexibility in net-
work operation. Most important are the flexibility in the VN’s
placement (the specific mapping of VNs elements to substrate
resources [[1]) and VN agility (the ability to remap the VN to
a different set of substrate resources over time). Our interest
in this paper is on enabling VN agility through VN migration
mechanisms. This refers to the process of remapping some
or all of a VN’s logical topology to a new set of physical
resources.

VN migration research considers both policy, when and why
a VN is migrated, and mechanism, how a VN is migrated.
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Research into VN migration policy is motivated by specific ob-
jectives. These have included: efficient utilization of dynamic
resources [2f, [3]], recovery from failure [4], [5]], defending
against attacks [6]], and reducing energy consumption [7].

Our focus in this paper is on VN migration mechanisms.
The development of such mechanisms can be quite challenging
because of the desire to make them fransparent or seamless
— informally, with minimal impact on running applications. A
further challenge is that a VN migration mechanism is highly
dependent on the technology deployed in the substrate. There
is, therefore, no generic mechanism that can be used univer-
sally. Previous research has developed mechanisms for VN
migration in different environments. In the data center context,
Ghorbani et al. develop migration methods within their LIME
architecture that provably meet a transparency definition based
on valid behaviors in a migration-free setting [§f]. In the wide-
area context, Lo et al. [9] develop a tool for VN migration in
PlanetLab [10], a well-known shared infrastructure used for
network experimentation. Their PL-VNM tool implements a
migration schedule heuristic that minimizes packet loss under
ideal conditions, but in practice cannot ensure zero loss, due
in part to coarse timing control in PlanetLab.

In this paper we focus on developing VN migration mech-
anisms for GENI, a recently developed infrastructure for
sharing wide-area network resources [11]. A key technol-
ogy included in GENI is software-defined networking (SDN)
where the packet-processing rules in switches are installed and
modified from a logically-centralized controller [12]. SDNs
offer a number of advantages including ease of network
management and the opportunity for increased innovation. Our
focus on GENI is motivated by the fact that SDN-enabled
wide-area networks are likely to become an important building
block of future networking and GENI represents a fully-
functional instantiation of this technology. As such, techniques
developed for GENI will have wider applicability. Further,
because SDN technology is at a stage where its future can
be influenced, lessons we learn about the capability of such
technology in supporting network agility can have significant
value on future developments.

Our work focuses on migrating an entire VN from the initial
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Fig. 1: VN migration process from VNI to VN2:In step 1, setup VNI
and connect virtual switches in VNI to the SDN controller. In step 2,
setup VN2 and connect virtual switches in VN2 to the SDN controller.
In step 3, the migration controller clones flow tables from VNI to
VN2 based on the mapping. In step 4, connect VN2 with the hosts
and disconnect VNI.

placement to the final placement, without moving the hosts [ﬂ
Figure |I| illustrates the migration steps assuming an SDN-
enabled infrastructure. A migration controller interacts with
the SDN controller to initialize and schedule the migration
process. Prior to migration, virtual switches on the VNI
are controlled by the client application running on the SDN
controller, and VN1 is used to deliver traffic (Step 1). When the
migration starts, VN2 is setup (Step 2) and flow tables on the
virtual switches in VN1 are cloned to the virtual switches in
VN2 based on the mapping (Step 3). The migration controller
issues commands to reconnect hosts from VN1 to VN2 in Step
4 and to disconnect VNI.

This paper addresses several challenges in realizing the
basic VN migration steps above. In addressing these chal-
lenges we make the following contributions: (1) We develop
approaches that enable VN agility in the SDN-enabled GENI
infrastructure; (2) Develop and evaluate options for dealing
with the dynamic allocation of resources inherent in migration,
where the initial mapping to physical resources is known but
the future mappings necessitated by migration may not be;
(3) Propose an approach for managing the hosts that connect
to the VN and will remain in place when the VN migrates;
(4) Develop techniques to mitigate the disruption caused by
live VN migration, to minimize packet loss observed by the
application in the data plane and to maintain the topological
view in the control plane (as observed by the application
running on the SDN controller). We carefully manage process
steps and flow table migration sequences to achieve this; (5)
Evaluate, using an implementation running on GENI, how the
performance of live VN migrations as a function of design
decisions and network parameters; and (6) Expose some
limitations of the GENI infrastructure and propose approaches

! Note that this model for hosts differs from the data center context where
hosts are migrated with the VN. In shared wide-area infrastructure, we assume
the hosts are customer-premise equipment and remain in place when the VN
moves.

TABLE I: GENI Context vs. Virtual Components

Component GENI Context
Substrate networks GENI testbed
Virtual Network(s) GENI slice
Physical location GENI aggregate
Virtual links within a VN LANs
Virtual links between VNs Shared VLAN
Virtual links connecting different physical locations Stitched links
Mapping between VN to physical substrate Rspec file

to their mitigation.

The remainder of the paper is structured as follows. In
Section [l we develop a framework for enabling VN agility
within the context of the GENI substrate technology. We
highlight a decision regarding VN migration related to the
allocation of resources in or across GENI slices. Section [III]
proposes mechanisms to address the challenges associated
with VN migration on GENI to meet the goals of efficiently
and transparency and our solutions. We develop a controller
architecture and describe the deployment of our VN migration
mechanism within GENI in Section [Vl In Section [V] we
present results from experiments conducted using our proto-
type with the aim of evaluating its performance. Section
discusses GENI limitations that were exposed by our research
and approaches to address them. Related Work is covered in
Section We conclude the paper in Section VIII.

II. ENABLING FULL VN AGILITY IN GENI

GENI is relatively mature shared infrastructure. As such
GENI provides support for for sharing, isolation, resource
allocation, and multiple physical substrate “owners”. GENI,
however, was not designed specifically to support our desired
transparent and efficient VN agility. Our work, therefore,
involves the development and evaluation of options to support
VN agility within GENI. This section explores some critical
aspects of providing agility support. Because GENI uses its
own unique terminology, Table [ summarizes how the general
VN terminology maps to GENI terms.

A. Allocating VNs to Slice(s)

GENI is a “sliced” platform that allows concurrent ex-
periments on shared infrastructure. A GENI slice is a unit
that contains all the resources for an experiment, including
computing resources and network links. This is already a form
of network virtualization used primarily to isolate experiments
in GENL. In a real-world GENI-like substrate, slicing would be
used to isolate commercial network providers sharing the same
physical substrate. Slices exist in one or more aggregates; each
aggregate is an independent collection of physical resources
often operated by the same entity (e.g., a specific university).
Figure [2] shows two slices on the GENI infrastructure. Slice 1
has three virtual nodes in Aggregate A, while Slice 2 has six
virtual nodes across Aggregate A and Aggregate B connected
with stitched link through the backbone network. Each slice is
an isolated environment where virtual nodes and virtual links



Slice 1

£l¢

Slice 1

Sra

Stitch link User Interface

GENI
Infrastructure
Backbone
Network

Aggregate A Aggregate B

Fig. 2: An example of GENI architecture

can be added. Each virtual node in a slice can be accessed by
the user who creates the slice with corresponding SSH key.

Slices are meant to be deployed for the long term and
are thus not agile. To enable agility, VNs will need to be
deployed within slices as an additional layer of virtualization.
We consider two options for mapping VNs to slices with
an eye to migration. The first option is to build all VNs
(original and future) and hosts for migration within the same
slice. This approach follows the common usage model for
GENI to include all resources for an experiment within a
single slice. However, this option has three disadvantages: 1)
There is no clear isolation between the different VNs. 2) Most
GENI resources cannot be modified after the reservation. Once
resources are reserved on a slice, no partial modification (e.g,
add a virtual link or a virtual node) is allowed. In the case of
migration, this restriction requires us to reserve all resources
for hosts and VNs, including those that will be migrated to
in the future, at the outset. 3) When a VN or a host fails, we
need to rebuild the whole virtual topology.

Alternatively, it is possible to allocate a single VN to a
slice, starting with the original VN and later allocating a VN
to migrate to. Deploying a VN on one slice is straightforward.
The challenge for deploying and migrating a VN between
two slices is caused by the difficulty to enable the inter-slice
communication during migration. We cannot create a virtual
link to connect virtual components in different slices directly.
Instead, we can set up a VLAN, a broadcast domain at the data
link layer, to connect virtual components in different slices.
All virtual components in the same VLAN will receive the
broadcasting packets even when the virtual components are in
separate slices. Compared with deploying all VNs on one slice,
this second design provides clear separation between VNs and
gives more flexibility in resource reservation. We can reserve
one VN first and create another VN when needed. However,
it complicates the virtual topology during migration. We will
talk further about shared VLANs and migration in Section

B. Mapping Virtual Switches to Physical Machines

GENI uses a Resource Specification (RSpec) document to
describe a requested virtual topology and its physical substrate,
including ID of the virtual machines (VM), virtual network
interface configuration, VLAN tags assigned to links, and
corresponding hardware information. The RSpec is submitted
with the GENI aggregate manager API to aggregates in
order to reserve resources. The requested virtual topology is

translated to a request Rspec file by Rspec generation tools,
and GENI aggregates automatically allocate resources to the
requested VN based on the Rspec file.

While GENI aggregate’s automatic assignment of resources
can meet the requirements of most experiments, it may be
necessary to have the flexibility of mapping virtual nodes to
specific physical resources for VN migration research. Al-
though Rspec generating tools do not directly support resource
assignment, we are able to map a virtual node to a specific
machine by manually modifying the request Rspec. The Omni
tool [[13] provides commands to obtain information about
all reserved and available resources at a specific aggregate,
including machine ID, machine status, hardware types, and
OS types. We can locate the component name for a specific
physical machine in the resource information returned by
Omni and copy its component ID to the request Rspec file
to achieve a fixed mapping.

C. Assigning VNs to Substrates

In VN migration, it might be necessary to migrate be-
tween different physical substrates, or aggregates in GENI
terminology. A GENI aggregate comprises a set of resources
under common control including storage resources, comput-
ing nodes, and OpenFlow switches [11]. Experimenters can
reserve multiple aggregates within the same slice and connect
them with stitched links (See Figure [2). It is also possible to
allocate each VN to a different aggregate and connect them
with both shared VLAN and stitched links. We will show how
to use shared VLAN and stitched links together in Section [[TI}

III. DEALING WITH VN MIGRATION CHALLENGES

After VN agility is enabled in GENI as discussed in the
previous section, we are still faced with several challenges as
we strive to meet the goals of efficiency and transparency.
In this section we investigate three distinct challenges and
propose mechanisms to deal with them. The challenges are:
(1) how to manage inter-slice communication that connects the
hosts to both VNs temporarily during the migration; (2) how
to minimize packet loss by scheduling the flow table migration
sequence; and (3) how to provide a seamless interface to SDN
applications during and after migration. The first challenge is
specific to a sliced platform like GENI and the other two
challenges can be generalized to other SDN environment.
In the section following this one we use the solutions for
each challenge to inform the design of a migration controller
architecture.

A. Inter-slice Connection

We described two VN-to-Slice allocation options in Section
In the first option, all hosts, the old VN, and the new
VN are located within the same slice. We will not discuss
the first design in detail since it follows the common usage
of the GENI testbed. We will focus on the second design,
where the old VN, the new VN, and the hosts are assigned
to three different slices. The challenge in the second design
is to direct traffic from one slice to another given the current



GENI constraints which do not support virtual links between
slices. It should be noted that the dynamic tunnel implemented
in LIME [8]] does not apply for our case. The tunnel uses the
control plane for data links and cannot guarantee performance
such as bandwidth and latency. Moreover, the control plane is
a shared channel on GENI and should not be used to send a
large amount of data.

1) Broadcasting problem in a virtualization environment:
To enable inter-slice communication, it may seem natural to
use a shared VLAN to connect a host slice to VN slices. The
traffic is broadcast within the same VLAN, no matter in which
slice a switch is located. The connection/disconnection of the
VNs with the hosts are controlled by turning up/down the
network interfaces on virtual switches. Figure [3] presents an
example of this approach. The topology includes three hosts,
the old VN (VN1), the new VN (VN2), and the controller
slice. In our virtual topology, each host connects to both VN1
and VN2 with a shared VLAN. When hostl sends data to
host2, the data will be broadcast to both OVS1 and OVS1’.
When VNI is in use, the network interfaces of OVS1 is up and
the network interfaces of OVS1’ is down. After the migration,
we redirect traffic from VN1 to VN2 by turning down the
interfaces of OVS1 and turning up the interfaces of OVSI’.

VN1 Slice

Hosts Slice Controller

Slice

Shared VLAN 1
- - - - Shared VLAN 2

Shared VLAN 3
<===> Control Link

Fig. 3: An example of using shared VLAN to connect the host and
the VNs

Unfortunately, this approach can violate the correctness
of the migration in a virtualized environment. GENI uses
XEN [14] as a virtual machine monitor to allow multiple
virtual machines to share the same hardware resources. Xen
only allows a privileged virtual machine called domain O to
access the physical Network Interface Card (NIC). Domain
0 communicates with other virtual machines through a set
of back-end interfaces. All the packets destined to a virtual
machine will be first transferred to domain O and then destined
to the virtual machine. The packets stored in domain O are not
dropped when the network interfaces in the virtual machine
is turned down. When the virtual network interface goes up
again, these buffered packets will be copied from domain O
memory to the receiver virtual machine’s memory.

We illustrate why this small number of buffered packets can
be a problem through a one-node VN example as shown in
Figure [d In our virtual topology, hostl connects two switches
with shared VLANI and host2 connects two switches with
shared VLAN2. In actual substrate network, there is a rack
switch residing in the shared VLAN to broadcast packets to
all switches in the same VLAN. Before migration, we connect

Connected Shared VLANL

Connected Shared VLAN2 Q

"+ Virtual Network

Virtual Nodes Substrate

Rack Switch .
—  Flow from host1 to host2

®O

Fig. 4: an example of a VN and its substrate

VN1 with the hosts by turning up the network interfaces ethl
and eth2 and disconnect VN2 by turning down the network
interfaces ethl’ and eth2’. The data from hostl to host2 is
broadcast by Rack_SW1 to ethl and eth2, and then broadcast
by Rack_SW2 to eth2’ and host2. Although we turn down the
virtual network interface ethl’ and eth2’, a small number of
packets are still stored in the XEN domain O.

During the migration, we switch from VNI to VN2 by
turning up ethl’ and eth2’ and turning down ethl and
eth2. Previously buffered packets in domain O are transferred
through eth1’ and eth2’ to the virtual machine that hosts SW2.
These packets have the same matching fields (e.g, same source
and destination IP) but request different actions(e.g, send
through different ports). In the standard SDN implementation
of the learning switch, this is considered as an error. The
switch will install rules to drop all packets for several seconds,
resulting in a much longer disconnection time than normal
migration process. In the worst case, when conflicting rules
are installed on the openflow switch, the switch may stop
forwarding packets, which requires manual configuration to
recover.

2) Mitigate the broadcasting problem — gateway design: To
avoid the broadcasting problem, we propose a gateway design
which establishes additional SDN switches as ‘gateways’ to
switch traffic from the old VN to the new VN. The gateways
are layer 2 devices that sit between hosts and VNs, hiding
changes in VNs from end hosts. Figure [5 presents an example
of the gateway design that enables migration within the same
aggregate. Each host is connected with a gateway, and each
gateway uses two different shared VLANS to connect to the
two VNs. The gateway switch is responsible for forwarding
packets from hosts to a certain VN. In the process of VN
migration, the migration controller issues commands to the
gateway switches, asking them to redirect traffic from VNI
to VN2 after all flow tables in VN1 are cloned to VN2. The
controller sends SDN commands to the gateway switches to
update the flow tables, redirecting traffic from VN1 to VN2.

The gateway design can be extended to enable migration
across substrates. As mentioned earlier, we use GENI ag-
gregates to represent substrates in different locations. Virtual
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components in different aggregates are connected with a
special link called stitched links. Unfortunately, a stitched link
cannot be part of a shared VLAN. We use additional nodes to
serve as a bridge to connect stitched links and shared VLANS.
A cross-aggregates example is shown in Figure [§] The hosts,
VNI, and VN2 are located in three different aggregates. GENI
does not provide inter-slice stitched links to connect gateway
switches in the host slice with SDN switches in two VNs
directly. To connect gateways with VN1, we put three more
additional nodes in the host slice. These three nodes are in
the same aggregate with VN1 and we use the stitched link to
connect them with the gateway switches. Then we use shared
VLANSs to connect those three nodes to the virtual switches
in VNI1. Those three additional nodes serve as a bridge to
connect the host slice with VN1. We do the same to connect
the hosts with VN2.

B. Minimizing Packet Loss

In our migration mechanism, packet loss may occur when
the migration controller issues commands to gateway switches
to disconnect the old VN and reconnect the new VN. In a tra-
ditional network without SDN features, unicast Reverse Path
Forwarding (uRPF) [[15]] in strict mode drops traffic received
on an interface that is not used to forward the return traffic. We
illustrate why VN migration always introduces packets loss in
symmetric routing through a two-node topology.

In Figure m there are two hosts and two VNs, each VN
containing two virtual nodes. Each host connects to both VN1
and VN2 through a gateway switch. We define f| , as the traffic
flow from hostl to host2, and f,; as the traffic flow from host2
to hostl. We migrate the virtual network from VNI to VN2.

1
1 GW2
N VN2 2
N

N
Gw 1 [In_Port_| Out_Port In_Port | Out Port | GW2
2 3
1 3 1
Drop Before 2 Drop
Migration i;
In_Port | Out_Port In_Port | Out_Port
1 3 After [2 3
3 1 Migration 2
2 Drop Drop

Fig. 7: The topology of two-node VN on GENI

Before migration, GW1 directs f;, from in-port 1 to out-port
2, directs f,; from in-port 2 to in-port 1, and drops any traffic
from in-port 3 to disconnect VN2. The same applies for GW?2
to control traffic from/to host2. When the migration begins,
our migration controller issues commands to GW1 and GW2
and updates their flow tables to redirect traffic from VNI to
VN2. We assume GW1 finishes update at time t;, and GW2
finishes at time t, ;. We define d; as the latency from GW1
to GW2 and d, as the latency from GW2 to GW1. The data
rate of f;, is r; and the data rate of f;; is r,. We therefore
calculate the number of dropped data c;, for f;, and c,; for
f,1 as follows:

if tg1 —t12>d1

{(tm —t12) —dq) X 71,
C12 = .
otherwise

(ti,2 —t2,1) +di) x 11,

ift19—121 >do

(to,1 —t1,2) +d2) X ro, otherwise

_ {(tlz —t21) —da) X 12,
C21 =
It is obvious that to1 —t12 = dq (d1 >= 0) and tlyg — tg’l =
da(de >= 0) cannot be both satisfied. At least one of ¢,
and cp; is larger than O, which means additional packet loss
is unavoidable in this setting.

1) Flow Migration Sequence: SDN shows promise to en-
able lossless migration with an optimized sequence of rule
installation. We propose a scheduling sequence to remove the
additional packet drop introduced by VN migration. Algorithm
[T] shows pseudocode for the traffic redirection process. We
install rules to let traffic coming from the new VN to go
through the gateway switches. Then we update rules on
gateway switches to direct traffic from hosts to the new VN.
Finally, we insert drop rules to disconnect the old VN. By
following this sequence, we avoid dropping packets buffered
in the old VN.

Algorithm|T] also applies to partial VN migration when only
part of the old VN is remapped to different physical machines.
In the partial VN migration, the traffic redirection occurs at
the neighboring nodes of the partial network instead of the
gateways. In this case, all neighboring nodes of the partial
network should be treated as gateway switches and the same
algorithm can be applied to minimize the packet loss.



Algorithm 1 Traffic Redirection Algorithm

1: for gateway € gatewayList do

2 Portsy <Ports on gateway that point to hosts

3: for Port € Ports;, do

4 install new rule r where r.inPort = PortToV N2

and r.outPort = Port

for gateway € gatewayList do

6: for Port € Portsy, do

7: update rule r set r.out Port = PortToV N2 where
r.outPort = PortToV N1 and r.inPort = Port

8: for gateway € gatewaylList do

: for Port € Ports;, do

10: update rule r set r.action = dropPkt where

r.outPort = PortToV N1 and r.inPort = Port

W

2) Remote Scheduling Methods: We have two implemen-
tations for issuing migration commands to disconnect the old
VN and connect the new VN. The first option is to control VN
connection by turning up/down network interfaces using SSH
sessions. We refer this type of scheduling as SSH scheduling.
With this scheduling method, there is a lag between the
time when the command is issued and the time when the
command is actually executed in the remote node. Besides,
GENI requires SSH key-based authentication before executing
commands on a node, which might lead to a longer lag time.

The second implementation, called OpenFlow-message
scheduling, redirects traffic by installing flows on gateways
based on the OpenFlow messages from the migration con-
troller. This method does not support complicated operations
such as executing a monitoring script. We expect this method
to be faster than SSH scheduling because it does not introduce
authentication overhead.

C. Seamless Migration

Our migration mechanism should ensure the illusion of a
consistent VN for the client SDN applications during and
after the migration. We discuss possible inconsistencies in the
migration process and our solutions.

1) Topology Changes: As mentioned in Section|[II] both the
old and the new VN are connected during the migration. To
present the client SDN applications with a consistent view of
a single VN, our migration controller intercepts all OpenFlow
events, changes the datapath ID of the events based on the
mapping between the old and the new VN, and passes the
modified events to the client SDN applications. No events
about the topology changes in the VN2 should be passed to
the client SDN applications.

2) Switch State Changes: A switch maintains information
about its ports and flow tables. Ideally, a switch should present
the same switch Information including datapath ID, serial
number and ports in the old and the new VN. Unfortunately,
GENI does not allow users to assign virtual network interfaces
to the virtual switch and the ports number are randomly
assigned during reservation stage. It is highly likely that the
virtual switch has different ports status in the new VN. Since
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Fig. 8: Migration controller architecture

the flow tables contain the port information, our migration
controller modifies the flow tables based on the port mapping
when it clones flow tables from old switches to new switches.

IV. MIGRATION CONTROLLER ARCHITECTURE

The migration controller stands in the center of our migra-
tion architecture and is responsible for the migration process.
It clones the flow tables from the old switches to the new
switches, schedules the migration sequences and switches
traffic between VNs. We implement our migration controller
on GENI using the POX controller platform [16]. The mi-
gration controller runs on the POX controller while other
client applications keep operating normally. The controller
architecture is shown in Figure [§]

Mapping Module: specifies how to map the switches in
the old VN to the switches in the new VN. It also includes
mapping of the virtual network interfaces in the old switches
and in the new switches. When reserving resources on GENI,
we cannot specify virtual network interfaces in the request
Rspec file and GENI aggregate arbitrarily assigns virtual
network interfaces to VMs. We need to query the virtual
network interface corresponding to a certain IP address and
store that information in the Mapping Module.

Flow Table Manager: When a request for VN migration
is initiated, the Flow Table Manager polls switches that are
affected by migration, translates flow tables from the old VN
based on the mapping information stored in the Mapping
Module, and installs the flows into the new switches.

Scheduler: calculates the sequence of rule installation based
on our traffic redirection algorithm to minimize the packet loss.

Traffic Redirector: After all flows are successfully in-
stalled, the Flow Table Manager notifies the Traffic Redirector
to generate traffic redirection commands. The traffic Redirector
retrieves the sequence of rule installation from the Scheduler
and redirects the traffic from the old VN to the new VN.

VN Presenter: intercepts events from switches, translates
them based on mapping information from the Mapping Mod-
ule, and presents a consistent VN topology to client applica-
tions. This module hides all migration process from clients.
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Status Monitor: collects dynamic network statistics and
decides where and when to migrate based on the VN place-
ment algorithm. Our focus is to migration mechanisms, thus
we have not implemented the Status Monitor.

Migration API: Migration APIs are similar to OpenFlow
controller APIs so that client applications adapt to the new
APIs easily. The migration APIs allow client SDN applica-
tions to configure migration parameters such as migration
destinations and triggering requirements. The client SDN
applications should use migration API to retrieve virtual switch
information, the connections to virtual switches, and events
from virtual switches to get a consistent view of the VN.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our migra-
tion mechanism in terms of the migration time, packet loss
during migration, latency, and the controller overhead. More
evaluation results can be found in the accompanying technical
report [].

A. Migration Time

1) SSH vs. OpenFlow-messaging: We evaluate whether
OpenFlow-message scheduling performs better than SSH
scheduling in terms of the time difference between com-
mand issue and command execution. We use our migration
controller to issue command to turn down/up a network
interface using SSH session for 50 times. We repeat the
same experiments with OpenFlow-message scheduling. Figure
shows the CDF of the time difference between the time
when migration commands are issued by the controller and
the time when the migration finishes with SSH scheduling
and OpenFlow-message scheduling. All OpenFlow-message
scheduling completes within 0.1 second, but about 50% of
SSH scheduling takes Is or longer to finish. This confirms
our earlier assessment that OpenFlow-Message scheduling is
much faster and has lower variance than SSH scheduling.

2) Migration Duration: Figure shows how migration
time changes as the flow table size grows with 95% confidence
level upper and lower bands. The migration time is negligible
when flow table size is small. It takes less than 1s to finish the
migration when the flow table size is smaller than 1000. The
migration duration increases roughly linearly with the number
of rules per switch and can take 7s when there are 10,000
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Fig. 10: Migration time as flow table size per switch grows

rules. The migration time depends on the number of rules and
the number of switches but is independent of the topology.

B. Packet Loss During Migration

1) Move a Complete VN within a Substrate: We build a
prototype of the basic migration controller using the POX
controller platform [16] and evaluate its performance through
experiments on the topology illustrated in Figure [5] with
three hosts and six virtual switches. All virtual switches are
Open vSwitches [[17]. We use iperf to generate UDP traffic
for 10 seconds between all pairs of hosts and migrate VN
from its initial position to final position at time t=5s. We
vary the data sending rate to see whether our migration
controller works well in relatively high data rate. We perform
three sets of experiments: (a) a baseline experiment where
no migration occurs, (b) migration with symmetric routing,
where traffic redirection commands are issued at the same
time by controller, and (c) migration with asymmetric routing,
where traffic redirection commands are issued in an optimized
sequence. We repeat the experiments for 30 times for each data
rate and measure the migration time and data loss rate.

We only present results for forwarding and reverse flows
between hostl and host3 due to space constraints. In Fig-
ure [I1] the percentage of average packet loss on y-axis is
based on the measurement of UDP traffic for 10s, and the
x-axis shows baseline experiment, symmetric routing, and
asymmetric routing for different data sending rates. For both
the forwarding and the reserve flows, the packet loss rate in
asymmetric routing is almost the same with that in a migration-
free setting. It demonstrate that asymmetric routing prevents
hosts from experiencing significant increase in packet loss
during migration.

2) Impact of RTT: During the migration, packet loss occurs
when packets buffered in the old VN are dropped by gateway
switches because of the traffic redirection. As shown in Figure
the performance of the symmetric routing is much worse
than that of the asymmetric routing, especially when the flow
table size is large. The average packet drop rate for symmetric
routing increases linearly with the increase of the RTT while
the packet drop rate for asymmetric routing is very close to
zero for any RTT values.
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C. Control-Plane Overhead

Our migration controller intercepts the events, modifies the
datapath ID based on the mapping between the old and the
new virtual switches, and passes the new events to the client
application. These operations cause overhead at the controller.

To evaluate the controller performance, we use the cbench
program [[18]], which creates and sends a large number of
OpenFlow messages to the controller. Figure [T3] shows per-
formance of the unmodified POX controller and our migration
controller from one switch to 64 switches. The y-axis shows
the number of flows that a switch can handle within a second.
Our migration controller processes roughly 3% fewer flows
per second than the unmodified controller does.

VI. MITIGATING GENI LIMITATIONS

When we started our work, our goal was to design, im-
plement, and evaluate an efficient VN migration mechanism
in GENI as an example of a future SDN-enabled wide-area
network. While it is possible to deploy virtual networks on
GENI and use proper remote scheduling implementation to
enable live migration, we observe that some GENI limitations
complicate the design. These constraints are not only particular
to our VN migration research, but may also apply to other
types of experimentation. We summarize the features that are
not well supported by GENI. This will aid in future GENI
development and also in informing the designs of GENI-
inspired SDN-enabled wide area infrastructure.

A. Interaction with the Substrate Network

GENI deploys virtualization architectures to share physical
resources for simultaneous experiments. It provides multiple
models of virtualization to cater for different levels of per-
formance and isolation requirements. However, experimenters
are only free to select from the provided virtualization models,
and do not have the privilege to modify the model or build an
alternative one. In particular, we have the following constraints
if our experimentation explores the interaction between the
virtualized architectures and the substrate networks.

a) Little knowledge about substrate networks: Under the
current GENI context, we only have access to limited infor-
mation about the substrate network such as the geographical
information about GENI aggregates and VM load on each
physical machine. Without sufficient real-time information
about the physical substrate, it is difficult or impossible to
implement an algorithm that has interaction with the sub-
strate network. For example, some VN migration research
may require real-time statistics about the substrate network
to determine when to trigger the migration and where to
migrate a VN. More generally, to support experimentation
where the placement of the virtual topology is affected by
the performance of the substrate network, we expect GENI
to expose more network statistics such as link utilization,
throughput, and latency.



b) Difficulty in debugging: The virtualization techniques
are deployed on GENI to support simultaneous experiments
on limited physical infrastructure. However, virtualized ar-
chitecture not only implies a trade-off between performance
and isolation, but also makes debugging challenging. The
virtualization architecture may bring unexpected problems,
and the limited access to physical substrate further increases
the difficulty in debugging. In our VN migration research,
we had a hard time finding the cause of the duplicated
packets when shared VLANs are used. We can only debug
by observing the traffic in virtual topology and infer what
is happening in the physical substrate. We expect GENI to
develop efficient debugging tools to make the debugging
process easier. Besides, it is impossible to debug without
a deep understanding of the mechanisms (e.g., how shared
VLAN works). Most GENI tutorials only introduce how to
use their features. It would be helpful if GENI can include
more architecture design of GENI features in its tutorials.

c) No control of substrate networks: We have flexibility
to assign bandwidth to our virtual links in the reservation
stage, but we cannot adjust parameters for the substrate
network. Therefore, it is difficult to evaluate an algorithm
with bandwidth constraints. This constraint makes it difficult
to observe how dynamics in physical substrate such as changes
in bandwidth or latency can affect the performance of a
virtualized architecture.

B. Multi-domain Network Research

In GENI, a slice is a unit that contains all computing and
networking resources for an experiment. The common usage
of GENI is to reserve all resources for an experiment within an
slice and isolate different slices. One possible design for multi-
domain network experiment is to place all domains within
the same slice and build different administrative controllers to
handle different domains. The disadvantage is obvious: there
is no isolation among domains, and we are unable to add more
domains to dynamically scale up the networks. Alternatively,
we can place one domain on one slice with isolated adminis-
tration. To enable inter-slice communication, we need to use
shared VLANS to connect slices, which complicate the virtual
topology and makes it difficult to scale up. Neither of the
two designs are ideal solutions for experiments that involves
multiple domains.

C. Dynamic Resource Reservation

The GENI platform requires experimenters to reserve all
resources on GENI slices before running their experiments.
Most GENI resource does not provide flexibility to partially
modify the resources. In our work, we take advantage of
the shared VLAN feature to make resource reservation more
dynamic. This resource reservation method requires the exper-
imenters to consider which virtual links in the first slice should
be converted to shared VLAN at the beginning when they
design their experiments. Each design is particular to a specific
topology: whenever we need a new virtual topology, we need

to reconsider the shared VLAN. The restriction in resource
reservation makes it difficult to scale up an experiment.

VII. RELATED WORK

Some of the VN embedding solutions suggest reconfigura-
tion or remapping of the VN [2]-[6]]. However, all of those
works use simulation to demonstrate the effectiveness of their
solutions. It remains a challenging task for network researchers
to move their experiments to a real infrastructure when there
is a lack of effective migration mechanism.

There has been some work addressing the challenges of
VN migration in a real infrastructure. Prior work [9] proposes
an orchestration mechanism for VN migration on PlanetLab,
using the same technology to move a single virtual router
without disrupting current traffic traversing the virtual network
presented in [19]]. Other work [8]], [20] shows how to migrate
VN within software defined networks. Pisa et al. considers
the basic migration scenario for migrating virtual network
in traditional network and software defined network [20].
Ghorbani et al. [8]] move the whole SDN network with the
hosts in the data center context. It concentrates on low level
configuration including packet-in events, traffic statistics and
rule timeout to handle correctness violation [21].

VIII. CONCLUSION

In this paper we consider the design, implementation and
evaluation of virtual network migration on GENI as a working
example of a future SDN-enabled wide-area infrastructure.
VN migration adds network agility to the repertoire of net-
work functions and provides a mechanism that enables the
deployment of important policies for resource management,
energy conservation and attack defense. We show how agility
can be enabled on top of GENI’s slicing approach, enumerate
and address challenges in the design of efficient VN migra-
tion mechanisms, and develop and deploy an implementation
of a controller architecture that achieves our VN migration
objectives. We perform a set of experiments that help us
understand the implications of various design decisions and
network parameters on VN migration performance. Our work
also exposes some limitations on the current design of GENI.
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