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Model-based clustering with Hidden Markov Model regression fa
time series with regime changes

Faicel Chamroukhi, Allou Samé, Patrice Aknin, Gérard Gaolvae

Abstract— This paper introduces a novel model-based clus- Generative models have been developed by Gaffney & Smyth
tering approach for clustering time series which present canges 3], [4] which consist in clustering time series with mixéur
in regime. It consists of a mixture of polynomial regres- of regressions or random effect models. Liu & Yanig [5]

sions governed by hidden Markov chains. The underlying . .
hidden process for each cluster activates successively eesl proposed a clustering approach based on random effecesplin

polynomial regimes during time. The parameter estimation regression where the time series are represented by Besplin
is performed by the maximum likelihood method through basis functions. However, the first approach does not agldres

a dedicated Expectation-Maximization (EM) algorithm. The the problem of changes in regimes and the second one re-
proposed approach is evaluated using simulated time series ¢ires the setting of the spline knots. Another approachdas

and real-world time series issued from a railway diagnosis i - d with clusteri | led
application. Comparisons with existing approaches for tine N SP!INES IS concerned with clustering sparsely sample

series clustering, including the stand EM for Gaussian mixares, ~ time series[[2]. We note that all these approaches use the
K-means clustering, the standard mixture of regression mods EM algorithm to estimate the model parameters. Another

and mixture of Hidden Markov Models, demonstrate the clustering approach consist in the evolutionary clusterin
effectiveness of the proposed approach. approach [[6], however, in this paper, the structure of the
. INTRODUCTION model is fixed over time.

HE work presented in this paper relates to the diagnosisIn th'z tpap:er,t atlspecmq generatn;e m|xtgre T]Odd IS
of the railway switches which enable trains to be guide roposed to cluster time series presenting regime chafiges.

from one track to another at a railway junction. The switc IS r_n_|xture mo_del, each comp_onent density IS the one of a
is controlled by an electrical motor and the considered tim e?'f'c regression mod_e_l that Incorporates a hidden Mar_kov
series are the time series of the consumed power durifg®" allowing for transitions between different polynai

the switch operations. These time series present Changesr élqérr?zsslogn 2}32?]';0?1\/5; ttggerﬁc:;jheel C%Z?gr?r?d amogc?;c%ags% €
regime due to successive mechanical motions involved 9 app 9

a switch operation (see Figuré 4). The kind of time serie'g“)(tu.re .Of standard H.MMS mtro_duceq by Smyth [7], by
%on5|der|ng a polynomial regression Hidden Markov Model

studied here may also be referred to as longitudinal dat . .
functional data, curves or signals. The diagnosis task ean ther than a standqrd HMM.‘ In add|t|o_n, owing _to the fact
at the real time series of switch operations we aim to model

achieved through the analysis of these time series issoed fr it of X h d traint iah
the switch operations to identify possible faults. HowevercOnSIS O SUCCESSIVE phases, order constrainis are Iimpose
n the hidden states.

the large amount of data makes the manual labeling ta This paper is oraanized as follows. Section 2 brovides
onerous for the experts. Therefore, the main concern of pap 9 ) P

this work is to propose a data preprocessing approach ) account of the model-based clustering approaches using

allows for automatically identifying homogeneous groups i mg(élé:: cggg?gisg'%?r? dOd;lz ?hned TcI)th;ee(;)frT%ggﬁga'\g:ék?%e
a set of time series. Thus, the founded groups can th ' ! ! u prop '

. . . ries clustering and its parameter estimation via a detica
be easily treated and interpreted by the maintenance Stéﬁﬂ . . ) . .
in order to identify faults. This preliminary task can be algorithm. Finally, section 4 deals with the experiménta

achieved through an unsupervised classification (clusjgri Situgysgﬁg'segfotﬁé Osgv;é?uéatggt}ggz tso egizezntdherearlgwgrslg d
approach. In this paper, we focus on model-based cIusterié1 t0ach by comparing it ts existing time series clpstgr'n
approaches for their well established statistical progeend P y. paring | Xisting 4 es clustening
o . oo . approaches, in particular, the mixture of regression aggro
the suitability of the Expectation-Maximization algorritHZ1] .
: . [3], [8] and the standard mixture of HMMS&I[7].
to this unsupervised framework.
In this context, since the time series present regime |l. M ODEL-BASED CLUSTERING FOR TIME SERIES
changes, basic polynomial regression models are not &litaby  n1odel-based clustering
An alternative approach may consist in using cubic splines _ , :
to approximate each set of time series [2] but this requires Model-based clustering [9]. [10]. [11], generally used for

the setting of knots which may a combinatory complex tasl{puIt|d|m.enS|or’1aI data, |s. b_ased_ on the finite mixture model
ormulation [12]. In the finite mixture approach for cluster
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parameters of the assumed mixture model (e.g, estimatingParameter estimation is performed by maximizing the
the mean vectors and the covariance matrices in the caseobferved-data log-likelihood o¥:

Gaussian mixtures). The parameters of the mixture density n K

are generally estimated by maximizing the observed-data E(‘I’):Zbgzak N(yi; XBy, 021 m). )
likelihood via the well-known Expectation-Maximization = =1

(EM) algorithm [1], [13]. After performing the probability This log-likelihood, which can not be maximized in a closed

density estimation, the obtained posterior cluster priitiais form, is maximized by the EM algorithni[1]. The details of

are thenl used to determlpe the clugter_ memberships thro%lg EM algorithm for the mixture of regressions models and
the maximum a posteriori (MAP) principle and therefore Qe corresponding updating formula can be foundn [3], [8].

provide a partition of the data inti clusters. Once the model parameters are estimated, a partition of the

Model-based clustering approaches have also been intigs, s then computed by maximizing the posterior cluster
duced to generalize the standard multivariate mixture hodg,jpapilities defined by:

for the analysis of time series data, which are also referred

to as longitudinal data, functional data or sequences.dh th
case, the individuals are presented as functions or curved P
rather than a vector of a reduced dimension. In that context,
one can distinguish the regression mixture approaches [%A
[8], including polynomial regression and spline regressio
Random effects approaches that are based on polynomial

gression([4] or spline regressidn [5]. Another approacketas ) cture d t add ¢ ically th .
on splines is concerned with clustering sparsely samplé gression mixture does not address automatically thenegi

time series[[2]. All these approaches use the EM algorith anges as the knots are generally fixed in advance and the

to estimate the model parameters. In the following sectio?1ptlmlzatlon of their location needs a strong computasiona

we will give an overview of these model-based clusterin%cflzd;:a?;}ez(f3 t%ﬁ’gg:ﬁzsm?é’séﬁir:foga:a\g :Irlwmrt:tli?:es I‘Ir']o
approaches for time series. P 9 9 gime.

Let Y = (y1,...,yn) be a set ofn independent time v croome these limitations, one way is to proceed as in the

. : case of sequential data modeling in which it is assumed
series and legh,, . .., hn) be the associated unknown CIUSterthat the observed sequence (in this case a times series) is
labels with h; € {1,...,K}. We assume that each time q

. . . overned by a hidden process which enables for switching
seriesy; consists ofm measurements (or observations
. . _from one state to another amoiiystates. The used process
vi = (yi1,-.-,Yim), regularly observed at the time points. . : . )
. in general is ank state Markov chain for each time series.
t=(t1,...,tm) With 1 < ... < tp,.

This leads to the mixture of Hidden Markov Models [7]
. . . which we describe in the following section.
B. Related work on model-based clustering for time series 2) Mixture of HMMs for clustering sequencesn this

1) Mixture of regression modelsin this section we de- section we describe the mixture of Hidden Markov Models
scribe time series clustering approaches based on polahom(HMMSs) initiated by Smyth [[F] and used for clustering
regression mixtures and polynomial spline regression mixsequences, which can therefore be applied to time series.
tures [3], [8]. The regression mixture approaches assuate ttsince the model in this case includes an HMM formulation,
each times series is drawn from one &f clusters of time let us first recall the principle of HMMs.
series which are mixed at random in proportion to the redativ a) Hidden Markov Models (HMMs)Hidden Markov
cluster sizes(a,...,ax). Each cluster of time series is Models (HMMs) are a class of latent data models appropriate
modeled by either a polynomial regression model or a splirfer sequential data. They are widely used in many applioatio
regression model. Thus, the conditional mixture densitg of domains, including speech recognition, image analysis ti

apN (v X84, 03l m)
Yoo awN(yi; X8, 021 m)
The mixture of regression models however do not address
e problem of regime changes within times series. Indeed,

ey assume that each cluster present a stationary behavior
escribed by a single polynomial mean function. The spline

(hi = klyi, t; ¥)= (3)

time seriesy; can be written as: series predictiori [14][[15], etc. In an HMM, the observatio
sequence (or a time serieg) = (yi1, - - -, Yim ) iS @assumed to
K be governed by a hidden state sequeace: (z;1, - . ., Zim)
Flyilt; ‘I’):Z ar N (yi; XBy, 07l m). (1) where the discrete random variablg € {1,..., R} repre-
k=t sents the unobserved state associated witrat instantt;.
where theay's defined bya, = p(h; = k) are the The state sequenag is generally assumed to be a first order

non-negative mixing proportions that sum to 3, is the homogeneous Markov chain, that is, the current state given
(p+ 1)-dimensional coefficient vector of thigh polynomial the previous state sequence depends only on the previous
regression model, being the polynomial degree, ang is  state. Formally we have :

the associated noise variance. The maXiis them x (p+1)
design matrix with rowst; = (1,;,t3,...,t7) for j =
1,...,m andl,, is the identity matrix of dimensionn. The transition probabilitieg(z;;|z; j—1) do not depend on
The model is therefore described by the parameter vectbin the case of an homogeneous Markov chain. An HMM
U= (ag,...,a5, P1,..., ¥g) with &, = (8, 07). is therefore fully determined by the initial state disttion

p(zirlzij-1, 2i -2, -, zin) = p(2ijlzij—1) Vi > 1. (4)



w© = (m,...,mgr) Whererw, = p(z; = r) satisfying the complete-data log-likelihood. The resulting clustgri
>, m = 1, the matrix of transition probabilitesA with scheme consists of assigning sequences to clusters at each

elementsA,, = p(z;; = r|z; ;-1 = ) satisfying) " A, = iteration and using only the sequences assigned to a cluster
1 and the parameter@lq,..., ¥r) of the emission prob- for re-estimation of its HMM parameters. The soft clustgrin
abilities p(y;;|z:;; = r; ¥,). The distribution of a particular approach is described in [16] where the model parameters are
configuration of the latent state sequence-= (z;1,...,2:,) estimated in a maximum likelihood framework by the EM
is is given by: algorithm.
m In this standard mixture of HMMs, each state is repre-
p(zi; 7, A) = p(zi1; ) Hp(zij|zi,j,1;A), (5) sented by its scalar mean in the case of univariate time
j=2 series. However, in many applications, in particular imsig

and from the conditional independence property of thBrocessing or time series analysis, as in the case of the time
HMM, that is the observation sequence is independent giv&§T€S issued from the switch operations, it is often useful

a particular configuration of the hidden state sequence, tif2 TéPresent a state by a polynomial rather than a scalar
conditional distribution of the observed sequence is floege (CONStant function of time). This assumption should be more
given by: suitable for fitting the non-linear regimes governing thedi

series. In addition, when the regimes are ordered in time,
m the hidden process governing the time series can be adapted
p(yilzs; ) = Hp(yiﬂzij; o). (6) by imposing order constraints on the states of the Markov
=1 chain. These generalizations are integrated in the pradpose
From [8) and [(6), we can then get the following jointmixture of HMM regression models which we present in the

distribution p(y;, z:; ¥) = p(z:; ™, A)p(yi|z:; ©). following section.

b) Mixture of Hidden Markov ModelsThe mixture of
HMMs integrates the HMM into a mixture framework to 11l1. THE PROPOSED MIXTURE OFHMM REGRESSION
perform sequence ClUStering [7_' |_16] In this prObab"lﬁSt MODELS FOR TIME SERIES CLUSTERING

model-based clustering, an observation sequence (indbis c

a time series) is assumed to be generated according toAa Model definition

mixture of K cor_nponen?s, egch.colmponent being an HMM. 1pq proposed model assumes that each time sgriés
Formally, each time serieg; is distributed according to the ;sc,ed from one ofi clusters where, within each cluster
following mixture distribution: k (k = 1,...,K), each time series is generated By

K unobserved polynomial regimes. The transition from one
flyi; ®) = Z ar fr(yi; W), (7)  regime to another is governed by an homogeneous Markov
k=1 Chain of first order. Formally, the distribution of a times
where the component densitf,(y;; 1) = p(yi|h; = seriesy; is defined by the following conditional mixture

k;®,) is assumed to be ak state HMM, typically density:

with univariate Gaussian emission probabilities in this K

case of univariate time series. The HMM associated with Filt; ®) = o fulyilt; ¥r), €)
the kth cluster is determined by the parametabs = k=1

(ks Aky kil s - - s kR, iy - - -, 02 ) Wherem, is the initial

A ) : where each component densjfy(.) associated with théth
state distribution for the HMM associated with cluster cluster is a polynomial HMM regression model (sée [17] for

; : " : 5
:r’; 'rsesthsct(i:\?geiﬁgngé:%tgstnf:g;, Zl?(tjni(h:mv%ﬁégég) of d(reltails on HMM regression for a single time series). In this

> resp v ) ) . . austering context with HMM regression, given the cluster
univariate Gaussian density associated with sttie state in hi — k, the time series; — (y; ) is assumed to be
clusterk. By using the joint distribution ofy andz which " * ™ i = Wi, - - -, Yim

can be deduced fron](5) and (6), the distribution of a timgenerated by the following regression model :

series issued from theth cluster is therefore given by: yij = 5;2injtj Vo ey (G=1,...,m) (10)
m
Feyi @)= p(zisme) [ [ plijlzij-1; Ar) % where3,,. is the (p + 1)-dimensional coefficients vector of
z; j=2 the rth polynomial regression model of clustey o2, is its
i ) associated noise variance and ¢heare independent random
HN(yijszw'ijkzu)- (8)  variables distributed according to a Gaussian distriloutio
j=1 with zero mean and unit variance. The hidden state sequence
Two different approaches can be adopted for estimating = (z;1,...,2m) iS assumed to be Markov chain of

this mixture of HMMs. Two such techniques are the hardparametergm;, A;). The proposed model is illustrated by
clusteringK -means-like approach and the soft-clustering EMhe graphical representation in Figure 1. Each component
approach. TheK-means-like approach for hard clusteringdensity is therefore parametrized by the parameter vector
have been used in][7] in which the optimized function is¥, = (my, Ak, B1s---,Brr:0t1,---,04r) and is given



4 N estimation is performed by maximizing the observed-data

hf log-likelihood of W :
(b % ) L(®)=logp(y1, .- -, yalt; ¥) =log [ [ p(yilt; ¥)
=1
Zil Zi2 Zim n K m
=Y log > ar Y plznim) [ [ p(iglzig-1; Ar)x
i=1 k=1 2 J=2
L Tt ) jl;[lN(yz‘j;ﬁgzwtjﬁ%zij)- (12)
N nxj
_ The maximization of this log-likelihood cannot be perfoane
Fig- 1 in a closed form. We maximize it iteratively by using a
GRAPHICAL MODEL STRUCTURE FOR THE PROPOSED MIXTUREOF  dedicated EM algorithm. With this specification of the EM
HMM REGRESSION MODELSMIXHMMR). algorithm, the complete-data for the proposed model consis
of the observed set of curve¥ = (yi1,...,yn), their
corresponding cluster labéis= (hq, ..., h,) and the matrix
of regime (state) labelZ = (z1,...,2,), z; being the

in a similar way as for[(8) by: hidden state sequence associated withThe complete-data

m likelihood of W is therefore given by:
Fe(yilt; ) = > p(zin; i) [ [ p(2is1205-15 Ar) %

Z; j=2 p(YahaZ|t7‘I’):p(h)p(Y7Z|hut7‘I’)
- =p(h)p(Z[h, t; ¥)p(Y|h, Z,t; ¥)
[TV Wi Biz. b5, 0%..)- (11) b
j=1 =[ [ p(hi)p(zilt; wn,, An)p(vilzi, t; On,).

B. A HMMR with order constraints =t

Since the time series we aim to model here consist Ofhen by using some elementary calculation details, we get
successive contiguous regimes, we impose order constraifife complete complete-data log-likelihood:

on the hidden states by imposing the following constraints

on the transition probabilities for each clustér These — .
constraints imply that no transitions are allowed for theﬁc(‘l’) kfp(Yn’h’Z't’\P) n R
phases whose indexes are lower than the current phase and :Z [Z hir log auy, + Z Z R zi1kr 108 Ter
no jumps of more than one state are possible. Formally, we 1 il

have: n m R

+ Z Z Z hirZijhr 2i(j—1) ke 108 Aker

i=1 j=2r =1

i=1 r=1

Aper = p(zijk = T|2i(jfl)k =/l h; = k) =0ifr<?¢
n m R
e + DD hanzijee log N (yig: Bty o) | (13)
Ager = p(zije = 7|zigj—1yp = Lhi =k) =0if r > £+ 1. i=1j=1r=1
where we have used the following indicator binary vari-

Wibles for indicating the cluster memberships and the regime
meberships for a given cluster, that is:

This constrained model is a particular case of the well kno
left-right model [14].

e hy = 11if h; = k (i.e., y; belongs to clustek) and
hir. = 0 otherwise.

The particular case for which the proposed model is , zijer = 1 if 25, = r (i.e., theith times seriesy;
defined with a single regiméz = 1 for each clusterk, belongs to clustek and itsmth observationy;; belongs
corresponds to the polynomial regression mixture model. to regimer) and z;jx, = 0 otherwise.

The next section presents the parameter estimation by th
maximum likelihood method.

C. Remark: Link with the polynomial regression mixture

®rhe next section gives the proposed EM algorithm for the
mixture of HMM regression models.
1) The dedicated EM algorithmThe EM algorithm for
the proposed MixHMMR model starts from an initial pa-
The proposed MixHMMR model is described by the pairameter\II(O) and alternates between the two following steps
rameter vectol = (a1,...,ak, ¥1,..., ¥k). Parameter until convergence:

D. Parameter estimation



a) E Step:Compute the expected complete-data logwhere the conditional probability distribution of the time
likelihood given the time serie¥, the time vectot and the seriesy; given a clusterk, which can be expressed in
current value of the parametdr denoted by®(?: function of the forward variables,; ;. (L4) as:

Q(T, TD)=E[L(¥)]Y, t; T (14)

R
. . N D A ) =i, vt ) =S i,
It can be easily shown that this conditional expectation is

given by: is therefore obtained after the forward procedure.

(q) K b) M-step: In this step, the value of the parametér

QT T7) = Q1w +Z {QQ Tk, Ar) +Q3(5krv0kr)} is updated by maximizing the expected complete-data log-
k=1 likelihood with respect tol, that is:

where

x

gl — arg max Q(¥, v, (20)

— Z Z (CZ) log o,
=te=t The maximization ofQ can be performed by separately
maximizing the functiong), Q- and@s. The maximization

([ ) . : .
2(7k, Ar) Z an 71y log i, +Z qukev log Aker],  of Q1 w.r.t the mixing proportions, is the one of a standard

r=teEt j=2 =1 mixture model. The updates are given by:
ﬁkrvakv Z Z Z (q)’yl(_;lll’l‘ logN(yij; ﬁfrtjvgzr') ak(q+1) _ Zz 1 z(lg) . (21)
r=14i=1 j=1 n
where The maximization ofQ, w.rt the parametergm, Ay)
. T(,f) = p(hi = kly:, t; ®(9) is the posterior probability correspond to a weighted version of updating the parameters
of clusterk; of the Markov chain in a standard HMM. The weights in

. »yfj‘?lir = p(zijk = r|yi,t;\11,(f)) is the posterior proba- this case are the posterior cluster probabiliigs and the
bility of the kth polynomial regime for théth cluster, updates are given by:

i(]('Ierl = p(zijk = TZiG-1)k = £|y“t,‘I’](gq)) is the " (q) (@)
joint probability of having the regime at timet; and platl) > i1 Tik Vitkr (22)
the regimef at timet;_; in clusterk. kr T
As shown in the expression @, this step requwes only d
- o) (@) an
the computation of the probab|l|t|e§(k » Yijhr @Nd gmm Sy 70 ¢(@)
(a) A(q+1) i=1 22j=2 Tik Sijker 23
The probab|I|t|es'yZ ). and &7, for each time seriey; ker ) = NONON (23)
(t=1,...,n) are computed as follows [14]: 2im1 2jie Tik Vijhr
al@ pl@ Maximizing Qs with respect to regression parametgrs.
%‘(ﬁr — LW() (15) fork=1,...,K andr = 1,..., R consists in analytically
Zz 1 ngbqug solving K x R weighted least-squares problems where the
and weights consists in both the posterior cluster probaeditj,
@ (0T, (@20 and the posterior regimes probabiliti%%’,zr for each cluster
5(q) o Z?J 1)¢ ur/\/(%gﬁ ot qu )bi?kr k. The parameter updates are given by:
iktr R () (@) ()T (@)2y 1(a)
Zré z A TN(yl7 T tﬁo—r )bzr
1%i(j—1)ek ke I Pkr 20 Tk (JfG) (q+1) [XT Zr(q)wzg)r } XT ZT Q)W(kryl
where the quantities:;;,» and b, are respectively the (24)
forward probabilities and the backward probabilities, ethi (2) . . .
R . . whereW ' is anm by m dlagonal matrix whose diagonal
are in this context given by: ikr
elements are the We|gh{3y”,w,] =1,...,m}.
Aijer = P(Yi1s - - - Yij» Zijk = 7|t Pr), (17) Finally, the maximization ofQ3 W|th respect to noise
and varlances%(qﬂ) consists in a weighted variant of the

problem of estimating the variance of an univariate Gaussia
density. The updating formula is given by:

and are recursively computed via the well-known forward-

bijkr = P(Yij+1s - - - Yim|2ije = 15 [t; T) (18)

backward (Baum-Welch) procedure [)18], [14]. NPT D O WE (v — XBE)|2 (25)
The posterior cluster probabﬂnuaé,j that the time series fer s Z(,f)trace{WM) ’

y; belongs to clustek are computed as follows:
where| - | is the euclidian norm.

(a) AC) . .
() o fr(yilt; ©,7) (19) The pseudo codd 1 summarizes the EM algorithm for the
FSE A oyt B proposed MixHMMR model.




Algorithm 1 Pseudo code of the proposed algorithm. 3) Time complexityThe proposed EM algorithm includes

Inputs: (¥1,---s¥Yn)s (t1,--.,tm), K, R,p  forward-backward procedures 18] at the E-step to compute
the joint posterior probabilities for the HMM states and
1- Initialize: ¥© — (ag())’ 3 .70[5;?)’\1,50), - _,\1;?) the conditional distribution (the HMM likelihood) for each
2 fix a thresholde > 0 time series. The time complexity of the Forward-Backward
3: setq «+ 0 (EM iteration) procedure used at the E-Step at each EM iteration is the
4: while increment in log-likelihood> € do one of standard? state HMM for univariaten observation
5. E-Step sequences of siz&. The complexity of this step is therefore
6: fork=1,...,K do of O(R?*nm) per iteration. In addition, in this regression
7: forward-backward procedure: context, the calculation of the regression coefficientshia t
8 forr=1,...,R do M-step of the EM algorithm requires an inversion of a
9: computeyi(quzr fori=1,...,nandj=1,...,m (p+1)x(p+1) matrix andn multiplications associated with
using Equation[{15) each observation sequence of lengthwhich is done with a
10: for t=1,...,R do complexity of O((p + 1)?nm). The proposed EM algorithm
11: computeéﬁh for i = 1,...,n andj = hastherefore a time complexity S (Iem K2R (p+1)*nm)
1,...,m using Equation[{16) where Igy is the number of EM iterationsK being the
12: end for number of clusters.
13: end for ( _ _ E. Approximating each cluster with a single mean time series
14: computeri,f) for i =1,...,n using Equation[{19) 0 . .
15 end for ~ Once _the model_pargmeters are estimated, we derlvg a
16 M-Step time series approxmanon from the _proposed_ model. This
17 fork=1... K do appromma_tlon provides a “mean” times series for each
, ) : cluster which can be considered as the cluster representati
18: computeq, using Equation[{21) B - . .
1o: for forr — 1.... R do or the clus.ter .centr0|d. Each time pqmt of the clustgr
»0; Computeﬂ_’(qﬂs using Equation[(22) representative is computed by combining the polynomial
: ’gﬂ) ) _ regression components with both the estimated posterior
2L computeA(Mll) us_mg Equa’gon[(ZS) regime probabilitiesy; ;. and the corresponding estimated
22: computeB, " using Equation[(24) posterior cluster probability;,. Formally, each point of the
23: computeo, " using Equation[{25) cluster representative is given by:
24: end for S sy R s BT .
25 g+—q+1 L i=1Tik 2_p=1 Vijkr POk, Uj . __
26: end for ks = S Fik U= Lem) (@7

27 gnd while
28 @ — (0@, w@ . w)

) )

WhereBkl,...,BkR are the polynomial regression coeffi-

cients obtained at convergence of the EM algorithm. This

mean time series can be seen as a weighted empirical mean

of then smoothed time series. The smoothed time series are
2) Model selectionThe problem of model selection is the computed as a combination between the mean polynomial

one of estimating the optimal values of the number of clssteregimes and their posterior probabilities. Finally, theteeial

K, the number of regime& and the polynomial degree  formulation of each cluster approximation is written as

The best value$K, R, p) can be computed by maximizing

nooa R X e
the BIC criterion [19] defined by: cp = iz ik Zj;:{w—ierﬁkr. (28)
i1 Tik
BIC(K, R,p) = L(¥) — @ log(n), (26) IV. EXPERIMENTAL STUDY

A. Experiments with simulated time series

where W is the maximum likelihood estimate of the param- In this section, we study the performance of the developed
eter vector® provided by the EM algorithmy (K, R,p) = MixHMMR model by comparing it the regression mixture
K-1+4KR+KR+R—-1)+KR(p+1)+ KR is the model and the standard mixture of HMMs. We also consider
number of free parameters of the MixHMMR model whichtwo standard multidimensional data clustering algorithms
is respectively composed of the free mixing proportionthe EM for Gaussian mixtures arfd-means algorithm. The
(K — 1), the number of initial state probabilities<(R), models are evaluated in terms of clustering using experisnen
the number of free transitions probabilities (R + R — 1), conducted on synthetic time series with regime changes.
the number of regression coefficient8 R(p + 1)) and the 1) Evaluation criteria: Two evaluation criteria are used
number of variancesK R), n being the sample size. Thein the simulations to judge performance of the proposed
BIC values are computed fak” varying from1 to Kmax  approach. The first criterion is the misclassification error
R from 1 to Rmax and p from 0 to pmax. Then, the values rate between the true simulated partition and the estimated
(K, R, p) which maximize BIC are chosen. partition. The second criterion is the intra-cluster irgert



Zszl Z?:l Bik")’i — &2, where (;le) indicates the esti- Misc. error rate  Intra-cluster inertia

ted clust bershi dé. = (¢ . StandardiK-means 15 % 503.8434
mated cluster membersnip of and¢, = (Ckﬂ')j:}»---»m IS Standard EM for GMM 13 % 467.9951
the estimated mean series of clusterEach point of the  Mixture of regressions 7 % 495 7951
mean series is given by: Mixture of HMMs 6% 387.9656
AT . . o .
e ¢xj = PByt; for the standard mixture of regression Proposed approach 3 % 366.2492
models, TABLE |I
o Cpj = % 2?21 Tik 25:1 YijkrYij for the standard MISCLASSIFICATION ERROR RATES AND THE VALUES OF
mixture of I—iVIIC\/IMs INTRA-CLUSTER INERTIA OBTAINED WITH ALL THE ALGORITHMS.
~ N R “ ~T
o Crj =y DUy Tik 2y Yijhr By, 85 for the pro-
posed model.

2) Simulation protocol:The simulated data consisted:f the iteration number reaches 1000. We u&euns of EM and
time series ofn = 100 observations regularly sampled overthe solution providing the highest log-likelihood is chose
the time rangég0, 5]. Each time series is generated randomly 4) Obtained resultsTablel gives the obtained misclassi-
according to a particular mixture model with uniform mixingfication error rates and the intra-cluster inertias avedayer
proportions {/K). Each component of the mixture is @10 randomly drawn samples. It can be clearly observed that
piecewise polynomial function corru.pted by noise. The useghe proposed approach outperforms the other approaches as i
simulation parameters are shown in Table | and Fiddre goyides more accurate classification results and smad-int

shows an example of simulated time series. class inertias. Indeed, applying the proposed approach for
clustering time series with regime changes provides ateura
Cluster parameters . X e
k=1 B, =62 B,=55 B.=6 o=025 results, with regard to the identified clusters, as well as
k=2 B,=6 By, =53 B;=63 0=025 for approximating each set (cluster) of time series. This is
k=3 B,=55 pB,=6 B;=55 0=025 attributed to the fact that the proposed MixHMMR model,
TABLE | thanks to its flexible formulation, addresses the betteh bot

the problem of time series heterogeneities by the mixture
formulation and the dynamical aspect within each homo-
geneous set of time series, by the underlying unobserved
Markov chain. We can also observe that the standard EM
for GMM and standard-means are not well suitable for

E this kind of longitudinal data. Figufd 3 shows partition lét
time series obtained with the three regression mixturedase
approaches and the corresponding cluster representatives

SIMULATION PARAMETERS.

B. Clustering the real time series of switch operations

This section is devoted to the application of proposed

Fig. 2 clustering approach to real time series.
A THREE-CLASS SIMULATED DATA SET OFn = 60 SIMULATED TIMES 1) The used databas8he used time series in this section
SERIES OF SIz&n = 100. are the real switch operations. These time series present

regime changes (see Figure 4) due to the operating process
for the switch mechanism which is composed of several

3) Algorithms setting:The EM algorithm for the proposed electromechanical movements.

MixHMMR model and the EM (Baum-Welch) algorithm for
Hidden Markov Model Regression are initialized as follows.
The parameterg,, ando? for k = 1,...,K andr =

1,..., R are initialized from a randomly drawn partition of
the time series. For each randomly drawn clugtewe fit R
polynomials of coefficientg3,, from R uniform segments

of the time series of this cluster and then we deduce the
value ofs?,. The initial HMM state probabilities are set to
7 = (1,0,...,0) and the initial transition probabilities are
set to Ay = 0.5 for £ < r < £+ 1. For the regression
mixture model, the parametef$, and o; are directly es- Fig. 4

timated by fitting R polynomial regression models to the TIME SERIES OF THE SWITCH OPERATION$115CURVES).
randomly drawn clusters of data. All the EM algorithms

are stopped when the relative variation of the optimized

log-likelihood function between two iterations is below a As we mentioned it in the introduction, the aim is to

predefined threshold, that |§%| < 1075 or when detect non-normal times series for a diagnosis prospective

Power (Watt)




Fig. 3
CLUSTERING RESULTS FOR THE SIMULATED TIME SERIES SHOWN IRIGURE[ZIOBTAINED WITH (K = 3,p = 9) FOR THE REGRESSION MIXTURE
(LEFT), (K = 3, R = 3) FOR THE MIXTURE OFHMM S (MIDDLE) AND (K = 3, R = 3,p = 1) FOR THE PROPOSED APPROAC(RIGHT).

K-means EM for GMM MixReg MixHMM  MixHMMR
827.34 715.19 732.25 728.56 695.87

TABLE IlI
INTRA-CLUSTER INERTIA FOR THE REAL DATA

An important preliminary task of this diagnosis task is
the automatic identification of groups of switch operations ° ' fmewd ) e seco
having similar characteristics. For this purpose, we use th
proposed EM algorithm for clustering these time series.

With this diagnosis specificity, we assume that the database
is composed of two clusters, one corresponding to an oper-
ating state without defect and another corresponding to and
operating state with a defect, thatis = 2. The number of

regression components of the proposed algorithm was setto ° ' fmeoewn  © °

R = 6 in accordance with the number of electromechanical Fig. 5

phases of a switch operation and the degree of the polynomial ¢, ystering RESULTS FOR THE SWITCH OPERATION TIME SERIES
regressiorp was set to 3 which is more appropriate for the OBTAINED FORK = 6 AND p = 3.

different regimes in the time series.

2) Obtained resultsFigurel® shows the graphical cluster-
ing results and the corresponding clusters approximaton f
the time series of the real switch operation curves. Sinda regime. The experimental results demonstrated the kienefi
the true class labels are unknown, we only consider thaf the proposed approach as compared to existing alteenativ
intra-class inertias which are given in Talplel lll. It can bemethods, including the regression mixture model and the
observed on Figullg 5 that the time series of the first obtainstandard mixture of Hidden Markov Models. At this stage,
cluster (middle) and the second one (right) does not have tiee only gave the theoretical approach for selecting a model
same characteristics since their shapes are clearly eliffer structure trough the BIC criterion. Current experiments ar
Therefore they may correspond to two different stated of theoncerned with this problem and future works will discuss
switch mechanism. In particular, for the time series bellogg the problem of model selection.
to the first cluster (middle), it can be observed that somethi
happened at around 4.2 Second of the switch operation.
According to the experts, this can be attributed to a default [1] A P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likeood

. from incomplete data via the EM algorithmJournal of The Royal

the measurement process. We note that the average running gyaissical Society, Bvol. 39(1), pp. 1-38, 1977.

time of the EM algorithm for this experiment is about 40 S.[2] G. M. James and C. Sugar, “Clustering for sparsely sadflectional
data,” JASA vol. 98, no. 462, 2003.
[38] S. Gaffney and P. Smyth, “Trajectory clustering with toibes of
V. CONCLUSION AND FUTURE WORKS regression models,” iProceedings of the fifth ACM SIGKDDACM
) ] ) Press, 1999, pp. 63-72.
In this paper, we introduced a new model-based clusterin@#] S. J. Gaffney and P. Smyth, “Joint probabilistic curvastéring and
approach for time series. The proposed model consists i aignment” inin Advances in NIPS2004.

. f | ial . del d b ] X. Liu and M. Yang, “Simultaneous curve registration acidstering
a mixture of polynomial regression models governe for functional data,"CSDA vol. 53, no. 4, pp. 1361—1376, 2009.

hidden Markov chains. The underlying Markov chain allows[6] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “On evoanary

for successively activating various polynomial regreBsio spectral clustering,ACM Transactions on Knowledge Discovery from
t fi Th del is th f ticularl Data, vol. 3, no. 4, November 2009.

components over time. € model I1s theretore particular 317] P. Smyth, “Clustering sequences with hidden markov nmten

appropriate for clustering times series with various clegng Advances in NIPS,91996, pp. 648-654.
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