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Regularized Maximum-Likelihood Estimation of
Mixture-of-Experts for Regression and Clustering

Faicel Chamroukhi and Bao Tuyen Huynh

Abstract—Mixture of experts (MoE) models are success-
ful neural-network architectures for modeling heterogeneous
data in many machine learning problems including regression,
clustering and classification. The model learning is in general
performed by maximum likelihood estimation (MLE). For
high-dimensional data, a regularization is needed in order to
avoid possible degeneracies or infeasibility of the MLE related
to high-dimensional and possibly redundant and correlated
features in a high-dimensional scenario. Regularized maximum
likelihood estimation allows the selection of a relevant subset
of features for prediction and thus encourages sparse solutions.
The problem of variable selection is challenging in the modeling
of heterogeneous data, including with MoE models. We consider
the MoE for heterogeneous regression data and propose a
regularized maximum-likelihood estimation with possibly high-
dimensional features, based on a dedicated EM algorithm which
integrates coordinate ascent updates of the parameters. Unlike
state-of-the art regularized MLE for MoE, the proposed model-
ing does not require an approximate of the regularization. The
proposed algorithm allows to automatically obtaining sparse
solutions without thresholding, and includes coordinate ascent
updates avoiding matrix inversion, and can thus be scalable.
An experimental study shows the good performance of the
algorithm in terms of recovering the actual sparse solutions,
in parameter estimation, and in clustering of heterogeneous
regression data.

I. INTRODUCTION

Mixture of experts (MoE) models are successful neural-
network architectures for modeling heterogeneous data in
many machine learning problems including regression, clus-
tering and classification. They have been mostly studied
Mixture-of-Experts (MoE) models introduced by [1] are
widely used in statistics and machine learning. MoE is
a fully conditional mixture model where both the mixing
proportions, i.e, the gating network, and the components
densities, i.e, the experts network, depend on some input co-
variates. This makes MoE more capable in use than standard
unconditional mixture distributions, while having a neural-
network interpretation. A general review of the MoE models
and their applications can be found in [2], [3]. For continuous
data, which we consider here in the context of regression
and clustering, MoE usually use Gaussian experts. While the
MoE modeling with maximum likelihood inference is widely
used, its application in high-dimensional problems is still
challenging due to the known problem of the ML estimation
(MLE) in such a setting, and hence there is a need to select a
subset of the potentially large number of features, that really
explain the problem. Indeed, in high-dimensional setting, the
features can be correlated, present redundancy, etc, and thus
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the actual features that explain the problem lie in a low-
dimensional space. This can be achieved by regularizing the
objective function so that to encourage sparse solutions.

In related mixture models, including mixture of lin-
ear regressions (MLR), where the mixing proportions are
constant, [4] proposed regularized ML inference, includ-
ing MIXLASSO, MIXHARD and MIXSCAD and provided
some asymptotic properties corresponding to these penalty
functions. Another L1 penalization for MLR models for high-
dimensional data was proposed by [5] and an adaptive Lasso
penalized estimator with oracle inequality which includes
the setting p � n was presented. [6] provided an L1-
oracle inequality by a Lasso estimator for finite mixture of
Gaussian regression models. This result can be seen as a
complementary result to [5], by studying the Lasso for its
L1-regularization properties rather than considering it as a
variable selection procedure. This work was extended later
in [7] by considering a mixture of multivariate Gaussian
regression models. When the set of features can be seen
as to be splitted into groups, [8] introduced the two types
of penalty functions called MIXGL1 and MIXGL2 for MLR
models, based on group Lasso. An MM algorithm [9] version
for MLR with Lasso penalty can be found in [10]. Their
method allows for an avoidance of matrix operations. In
[11], the author extended his MLR regularisation to the
MoE setting and provided a root-n consistent and oracle
properties for Lasso and SCAD penalties and developed an
EM algorithm [12] for fitting the models. However, as we
will discuss it in section III-A, this is based on approximated
penalty function, and uses a Newton-Raphson in the updates,
which requires matrix inversion.

In this paper, we consider MoE models with regularisa-
tion as in [11] and propose a regularised maximum-likelihood
inference which doesn’t require an approximate of the reg-
ularisation. We develop a hybrid EM and coordinate ascent
algorithm for model fitting. The proposed algorithm allows
to automatically select sparse solutions without thresholding,
and includes coordinate ascent updates avoiding matrix in-
version. The rest of this article is organized as follows. In
Section II we present the regularised maximum-likelihood
strategy or the MoE model and the proposed EM algorithm
with coordinate ascent in section III-B. An experimental
study on simulated and a real-data example are given Section
IV. Finally, in Section V, we draw concluding remarks.

II. MODELING WITH MIXTURE-OF-EXPERTS (MOE)

Let ((X1,Y 1), . . . , (Xn,Y n)) be a random sample
of n independently and identically distributed (i.i.d) pairs
(Xi,Y i) ∈ X × Y , (i = 1, . . . , n) where Yi ∈ X ⊂ Rd
is the ith response given some predictor vector Xi ∈
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X ⊂ Rp. These data may be discrete or continuous.
We consider the mixture of experts modeling framework
for the analysis of a heteregeneous set of such data. Let
D = ((x1,y1), . . . , (xn,yn)) be an observed data sample.
The mixture of experts model assumes that the observed
pairs (x,y) are generated from K ∈ N (possibly un-
known) tailored probability density components (the experts)
governed by a hidden categorical random variable Z ∈
[K] = {1, . . . ,K} that indicates the component from which
a particular observed pair is drawn. The latter represents the
gating network. Formally, the gating network is defined by
the distribution of the hidden variable Z given the predictor
x, i.e., πk(x;w) = P(Z = k|X = x;w), which is in general
given by gating softmax functions of the form:

πk(xi;w)=P(Zi = k|Xi = xi;w)

=
exp(wk0 + x

T
i wk)

1 +
∑K−1
l=1 exp(wl0 + xTi wl)

(1)

for k = 1, . . . ,K − 1 with (wk0,w
T
k ) ∈ Rp+1 and

(wK0,w
T
K) = (0,0) for identifiability [13]. The experts

network is defined by the conditional densities f(yi|xi;θk)
which is the short notation of f(yi|X = x, Zi = k;θ). The
MoE thus decomposes the probability density of the observed
data as a convex sum of a finite experts weighted by a
softmax gating network, and can be defined by the following
semi-parametric probability density (or mass) function:

f(yi|xi;θ) =
K∑
k=1

πk(xi;w)f(yi|xi;θk) (2)

that is parameterized by the parameter vector θ ∈ Rνθ (νθ ∈
N) defined by

θ = (wT
1 , . . . ,w

T
K−1,θ

T
1 , . . . ,θ

T
K)T (3)

where θk (k = 1, . . . ,K) is the parameter vector of the kth
expert.
The experts are chosen to sufficiently represent the data for
each group k, for example tailored regressors explaining
the response y by the predictor x for continuous data, or
multinomial experts for discrete data. For example, MoE
for non-asymmetric data [14] and robust MoE [15], [16],
[17] have been introduced. For a complete account of MoE,
types of gating networks and experts networks, the reader is
refereed to [2].

The generative process of the data described before as-
sumes the following hierarchical representation. First, given
the predictor xi, the categorical variable Zi follows the
multinomial distribution:

Zi|xi ∼ Mult(1;π1(xi;w), . . . , πK(xi;w)) (4)

where each of the probabilities πzi(xi;w) = P(Zi = zi|xi)
is given by the multinomial logistic function (1). Then,
conditional on the hidden variable Zi = zi, given the
covariate xi, a random variable Yi is assumed to be generated
according to the following representation

Y i|Zi = zi,Xi = xi ∼ p(yi|xi;θzi) (5)

where p(yi|xi;θk) = p(yi|Zi = zi,Xi = xi;θzi) is the
probability density or the probability mass function of the
expert zi depending on the nature of the data (x,y) within

the group zi. In the following, we consider MoE models for
regression and clustering of continuous data.

A. MoE for regression and clustering

Consider the case of univariate continuous outputs Yi. A
common choice to model the relationship between the input
x and the output Y is by considering regression functions.
Thus, within each homogeneous group Zi = zi, the response
Yi, given the expert k, is modeled by the following noisy
linear model:

Yi = βzi0 + β
T
zixi + σziεi, (6)

where the εi are standard i.i.d zero-mean unit-variance
Gaussian noise variables, the bias coefficient βk0 ∈ R and
βk ∈ Rp are the usual unknown regression coefficients
describing the expert Zi = k, and σk > 0 corresponds to
the standard deviation of the noise. In such case, (6) Y is
equivalent to

Yi|Zi = zi,xi ∼ p(yi|xi;θzi) = N (βzi0 + β
T
zixi, σ

2
zi)

B. Maximum likelihood parameter estimation

Assume that, D = ((x1,y1), . . . , (xn,yn)) is an ob-
served data sample generated from the MoE (2) with un-
known parameter θ. The parameter vector θ is commonly
estimated by maximizing the observed data log-likelihood

logL(θ) =

n∑
i=1

log

K∑
k=1

πk(xi;w)f(yi|xi;θk) (7)

by using the EM algorithm [12], [1] which allows to it-
eratively find an appropriate local maximizer of the log-
likelihood function. In the considered model for Gaussian
regression, the maximized log-likelihood is given by

logL(θ) =

n∑
i=1

log
[ K∑
k=1

πk(xi;w)N (yi;βk0 + β
T
k xi, σ

2
k)
]
.

(8)
However, it is well-known that the MLE may be unstable of
even infeasible in high-dimension due to possibly redundant
and correlated features. In such a context, a regularization of
the MLE is needed.

III. REGULARISED MOE MODELING (RMOE)

Regularized maximum likelihood estimation allows the
selection of a relevant subset of features for prediction
and thus encourages sparse solutions. In mixture of experts
modeling, one may consider both sparsity in the feature
space of the gates, and of the experts. We propose to infer
the MoE model by maximizing a regularized log-likelihood
criterion, which encourages sparsity for both the gating
network parameters and the expert parameters and does
not require any approximation, along with performing the
maximization by coordinate ascent, so that to avoid matrix
inversion.
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A. Regularised maximum-likelihood estimation of the MoE

The proposed regularization combines a Lasso penalty
for the experts parameters, and an Elastic-Net like penalty
for the gating network, defined by:

PL(θ) = L(θ)−
K∑
k=1

λk‖βk‖1−
K−1∑
k=1

γk‖wk‖1−
ρ

2

K−1∑
k=1

‖wk‖22.

(9)
A similar strategy were proposed in [11] where the author
proposed a regularized ML function like (9) but which is
then approximated in the model inference algorithm. The
devoloped EM algorithm for fitting the model follows indeed
the suggestion of [18] to approximate the penalty function
in a some neighbourhood by a local quadratic function.
Therefore, the Newton-Raphson method could be used to
update parameters in the M-step. The weakness of this
design is that once a feature is set to zero, it may never
reenter the model at a later stage of the algorithm. To
avoid this numerical instability of the algorithm due to the
small values of some of the features in the denominator
of this approximation, [11] replaced that approximation by
an ε-local quadratic function. Unfortunately, these strategies
have some drawbacks. First, by approximating the penalty
functions with (ε-)quadratic functions, almost surely none
of the components will be exactly zero. Hence, a threshold
should be considered to declare a coefficient is zero and this
threshold affects the degree of sparsity. Secondly, it cannot
guarantee the non-decreasing property of the EM algorithm
of the penalized objective function. Thus, the convergence
of the EM algorithm cannot be ensured. Finally, one has to
choose ε, which becomes an additional tuning parameter in
practice. Our propoal gives and answer to overcome these
limitations.

B. Parameter estimation with a block-wise EM algorithm

We propose a block-wise EM algorithm, which inte-
grates a coordinate ascent algorithm for updating the model
parameters, to monotonically find local maximizers of (9).
More specifically, in the M-step of our method, we propose
using coordinate ascent algorithm to update w and the β’
parameters. The EM algorithm for the maximization of (9)
firstly requires the construction of, in this case, the penalized
complete-data log-likelihood

logPLc(θ) = logLc(θ)−
K∑
k=1

λk‖βk‖1−
K−1∑
k=1

γk‖wk‖1−
ρ

2

K−1∑
k=1

‖wk‖22

(10)
where

logLc(θ) =
n∑
i=1

K∑
k=1

Zik log [πk(xi;w)f(yi|xi;θk)] (11)

is the standard complete-data log-likelihood, Zik is an indi-
cator binary-valued variable such that Zik = 1 if Zi = k
(i.e., if the ith pair (xi,yi) is generated from the kth expert
component) and Zik = 0 otherwise. Thus, the EM algorithm
for the RMoE in its general form runs as follows. After
starting with an initial solution θ(0), it alternates between
the two following steps until convergence (e.g., when there
is no longer a significant change in the relative variation of
the regularized log-likelihood).

1) E-step: The E-Step computes the conditional expecta-
tion of the penalized complete-data log-likelihood (10), given
the observed data D and a current parameter vector θ(s):

Q(θ;θ(s))=E
[
logPLc(θ)|D;θ(s)

]
=

n∑
i=1

K∑
k=1

τ
(s)
ik log [πk(xi;w)fk(yi|xi;θk)]

−
K∑
k=1

λk‖βk‖1 −
K−1∑
k=1

γk‖wk‖1 −
ρ

2

K−1∑
k=1

‖wk‖22 (12)

where

τ
(s)
ik =P(Zi = k|yi,xi;θ

(s))

=
πk(xi;w

(s))f(yi|xi;θ
(s)
k )∑K

l=1 πl(xi;w
(s))f(yi|xi;θ

(s)
l )

(13)

is the posterior probability that the data pair (xi,yi) is
generated by the kth expert, with

f(yi|xi;θ(s)k ) = N (yi;β
(s)
k0 + βTk x

(s)
i , σ

(s)2
k )·

This step therefore only requires the computation of the
posterior component memberships τ (s)ik (i = 1, . . . , n) for
each of the K experts.

2) M-step: The M-Step updates the parameters by max-
imizing the Q function (12), which can be written as

Q(θ;θ(s)) = Q(w;θ(s)) +Q(β, σ;θ(s)) (14)

with

Q(w;θ(s))=

n∑
i=1

K∑
k=1

τ
(s)
ik log πk(xi;w)

−
K−1∑
k=1

γk‖wk‖1 −
ρ

2

K−1∑
k=1

‖wk‖22, (15)

and

Q(β, σ;θ(s))=

n∑
i=1

K∑
k=1

τ
(s)
ik logN (yi;βk0 + x

>
i βk, σ

2
k)

−
K∑
k=1

λk‖βk‖1. (16)

The parameters w are therefore separately updated by max-
imizing the function

Q(w;θ(s)) =
n∑
i=1

K−1∑
k=1

τ
(s)
ik (wk0 + xTi wk)−

n∑
i=1

log
[
1 +

K−1∑
k=1

ewk0+xTi wk
]

−
K−1∑
k=1

γk‖wk‖1 −
ρ

2

K−1∑
k=1

‖wk‖22. (17)

3) Coordinate ascent algorithm for solving the M-Step:
For that, we use a coordinate ascent algorithm. Indeed, based
on [19], [20] with regularity conditions, then the coordinate
ascent algorithm is successful in updating w. Thus, the w
parameters are updated in a cyclic way, where a coefficient
wkj (j 6= 0) is updated at each time, while fixing the other
parameters to their previous values. The update of wkj is
performed by maximizing

Q(wkj ;θ
(s)) = F (wkj ;θ

(s))− γk|wkj |, (18)
2018 International Joint Conference on Neural Networks (IJCNN)



where

F (wkj ;θ
(s))=

n∑
i=1

τ
(s)
ik (wk0 +wTk xi)−

n∑
i=1

log
[
1 +

K−1∑
l=1

ewl0+wTl xi
]

−
ρ

2
w2
kj . (19)

Hence, Q(wkj ;θ
(s)) can be rewritten as

G(s)(wkj |wm) =


F (wkj ;θ

(s))− γkwkj , wkj > 0

F (0;θ(s)) , wkj = 0

F (wkj ;θ
(s)) + γkwkj , wkj < 0

.

Fortunately, both F (wkj ;θ(s))− γkwkj and F (wkj ;θ(s)) +
γkwkj are smooth concave functions. Thus, one can use one-
dimensional Newton-Raphson algorithm with initial value
w0
kj = w

(s)
kj to find the maximizers of these functions and

compare with F (0;θ(s)) in order to update wmkj by

wm+1
kj = argmax

wkj
Q(wkj ;θ

(s)),

where m is denoted for the mth loop of the coordinate
ascent algorithm. In fact, updating the estimation of wkj
in Newton-Raphson loop with initial value w(0)

kj = wmkj as
follows

w
(t+1)
kj = w

(t)
kj −

∂Q(wkj ;θ
(s))

∂wkj

∣∣∣
w

(t)
kj

(∂2Q(wkj ;θ
(s))

∂2wkj

)−1∣∣∣
w

(t)
kj

,

(20)
where
∂Q(wkj ; θ

(s))

∂wkj

=

U(wkj) − γk ,G(s)(wkj |w
m) = F (wkj ; θ

(s)) − γkwkj
U(wkj) + γk ,G(s)(wkj |w

m) = F (wkj ; θ
(s)) + γkwkj

,

(21)

with

U(wkj) =

n∑
i=1

xijτ
(s)
ik −

n∑
i=1

xije
wk0+x

T
i wk

Ci(wkj)
− ρwkj ,

and

Ci(wkj) = 1 +
∑
l 6=k

ewl0+x
T
i wl + ewk0+x

T
i wk ,

is a univariate function of wkj when fixing other parameters.

∂2Q(wkj ;θ
(s))

∂2wkj
= −

n∑
i=1

x2ije
wk0+x

T
i wk (Ci(wkj)− ewk0+x

T
i wk )

C2
i (wkj)

−ρ.

For other parameter we set wm+1
lh = wmlh.

Similarity, for wk0 a univariate Newton-Raphson algorithm
with initial value w0

k0 = w
(s)
k0 can be used to update wmk0 by

wm+1
k0 = argmax

wk0
Q(wk0;θ

(s)),

where Q(wk0;θ
(s)) is a univariate concave function given

by

Q(wk0;θ
(s)) =

n∑
i=1

τ
(s)
ik (wk0+x

T
i wk)−

n∑
i=1

log
[
1+

K−1∑
l=1

ewl0+xTi wl
]
,

(22)
with

∂Q(wk0;θ
(s))

∂wk0
=

n∑
i=1

τ
(s)
ik −

n∑
i=1

ewk0+xTi wk

Ci(wk0)
(23)

and

∂2Q(wk0;θ
(s))

∂2wk0
= −

n∑
i=1

ewk0+x
T
i wk (Ci(wk0)− ewk0+x

T
i wk )

C2
i (wk0)

.

(24)
The other parameters are fixed while updating wk0.
Next, we fix σk, and update βkj in

Q(β, σ;θ(s))=
n∑
i=1

K∑
k=1

τ
(s)
ik logN (yi;βk0 + β

T
k xi, σ

2
k)

−
K∑
k=1

λk‖βk‖1; (25)

using a coordinate ascent algorithm, with initial values
(β0
k0,β

0
k) = (β

(s)
k0 ,β

(s)
k ). We obtain closed-form coordinate

updates which can be computed for each component follow-
ing the results in [21, sec. 5.4] and are given by

βm+1
kj =

S
λkσ

(s)2
k

(∑n
i=1 τ

(s)
ik r

m
ikjxij

)
∑n
i=1 τ

(s)
ik x

2
ij

, (26)

with rmikj = yi−βmk0−βTk xmi +βmkjxij and S
λkσ

(s)2
k

(.) is a soft-
thresholding operator defined by [Sγ(u)]j = sign(uj)(|uj | −
γ)+ and (x)+ a shorthand for max{x, 0}. For h 6= j we set
βm+1
kh = βmkh. At each iteration m, βk0 is updated by

βm+1
k0 =

∑n
i=1 τ

(s)
ik (yi − βTk x

m+1
i )∑n

i=1 τ
(s)
ik

. (27)

In the next step, we take (w
(s+2)
k0 ,w

(s+2)
k ) = (w

(s+1)
k0 ,w

(s+1)
k ),

(β
(s+2)
k0 ,β

(s+2)
k ) = (β

(s+1)
k0 ,β

(s+1)
k ), rerun the E-step, and update

σ2
k as follows

σ
2(s+2)
k =

∑n
i=1 τ

(s+1)
ik (yi − β(s+2)

k0 − β(s+2)
k

T
xi)

2∑n
i=1 τ

(s+1)
ik

. (28)

The algorithm is iterated until the change in PL(θ) is small
enough. The proposed algorithm, at each iteration, clearly guaran-
tees to improve the optimised penalised log-likelihood function (9);
Also we can directly get zero coefficients without any thresholding
like in [11], [22].

C. Algorithm tuning and model selection

In practical, appropriate values of the turning parameters
(λ, γ, ρ) should be chosen. To select the turning parameters , we use
a modified BIC (Bayesian information criterion) with a grid search
scheme. First, assume that K0 ∈ {K1, . . . ,KM} whereupon K0 is
the true number of components. For each value of K, we choose a
grid of tuning parameters. Consider grids of values {λ1, . . . , λM1},
{γ1, . . . , γM2} scaled by

√
n and ρ ≈ O(logn). In practical, the

value ρ = 0.1 logn is used for the ridge turning parameter in the
simulations. For a given triad (K,λi, γj), we obtain the maximal
penalized log-likelihood estimators θ̂K,λ,γ using our EM algorithm
presented about, then compute the modified BIC criterion

BIC(K,λ, γ) = −2L(θ̂K,λ,γ) +DF (λ, γ) logn, (29)

where DF (λ, γ) is the number of non-zero coefficients in the
model. The BIC rule for tuning parameters selection is to set
(K,λ, γ) = (K̃, λ̃, γ̃) which minimizes the BIC value. A criterion
for choosing an optimal values of the tuning parameters for penal-
ized MoE model is still an open research, however the modified
BIC performs reasonably well in our simulation.
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D. Statistical inference

We study the asymptotic properties of our penalized MoE.
Mainly, these results come from [11]. Our simulation study confirms
these properties. First, let V i = (Xi, Yi), i = 1, . . . , n be a
random sample from a density function f(v;θ). Give an appropriate
density function f(xi), we can write the joint density of V i as

f(vi;θ) = f(xi)

K∑
k=1

πk(xi;w)p(yi|xi;θk).

Assume that θ0 is the true value of the population parameter.
Considereing Theorem 2 of [11], we can state the following
for the proposed regularized model and the proposed hybrid
EM-Coordinate ascent algorithm. Assume that f(v;θ) satisfies
some regularity conditions (see conditions R1 − R5 in [11]). Let
(Xi, Yi), i = 1, . . . , n be a random sample from this density
function, where f(xi) is well-behaved and ρ/

√
n→ 0 as n→∞.

Then, there exists a local maximizer θ̂n of the regularized log-
likelihood function PL(θ) for which

‖θ̂n − θ0‖ = O{n−1/2(1 + q∗1n + q1n)},

where

q∗1n = max
k,j
{λk/

√
n : β0

kj 6= 0}; q1n = max
k,j
{γk/

√
n : w0

kj 6= 0}.

The estimator θ̂n is root-n consistent since q∗1n = O(1) and q1n =
O(1). Unfortunately, we cannot select sequences λk and γk such
that θ̂ is both sparse and root-n consistent simultaneously since the
Lasso penalized functions do not satisfy condition C2 in Theorem
3, [11]. That means we can choose λk and γk to attain consistence
in feature selection but it also causes bias to the estimators of the
true nonzero coefficients.

IV. EXPERIMENTAL STUDY

We study the performance of our method for both simulated data
and real data in this section. Our result is compared with the non-
penalized MoE, the MoE with L2 regularisation and the mixture
of linear regressions with Lasso penalty (MIXLASSO) in several
criteria including the sparsity, parameters estimation and clustering
criteria.

A. Simulation study

In this section, a simulation was performed to assess the
sample performance of the regularization MoE. Covariate vari-
ables {xi, i = 1, . . . , n} were generated from a multivariate
Gaussian distribution with mean zero and correlation structure
corr(xij , xij′) = 0.5|j−j′|. After that, the response Y is generated
from a normal MoE model with K = 2, p = 6 and n = 300. The
parameter σ = 1 is treated as unknown, other regression coefficients
for this simulation is given as following:

(β10,β1)
T = (0, 0, 1.5, 0, 0, 0, 1)T ;

(β20,β2)
T = (0, 1,−1.5, 0, 0, 2, 0)T ;

(w10,w1)
T = (1, 2, 0, 0,−1, 0, 0)T .

100 data sets were generated for this simulation. For the re-
sults, we evaluate the performance of the penalized MoE compare
with MoE with ridge penalty function for the gate, nonpenalized
MoE and MIXLASSO (see [4]) in three different criteria: sensi-
tivity/specificity, parameters estimation and clustering. Here, the
sensitivity/specificity is defined by

• Sensitivity: proportion of correctly estimated zero coeffi-
cients;

• Specificity: proportion of correctly estimated nonzero co-
efficients.

In our simulations, the proportion of correctly estimated zero
coefficients and nonzero coefficients was calculated for each data set
for expert’s parameters and gating’s parameters and we present the
average proportion of these criteria in Table I. Also, to deal with
the label-switching before calculating these criteria we permuted
the estimated coefficients based on an ordered between the expert
parameters. If the label-switching happens, one can permute the
expert parameters and the gating parameters then replace the gating
parameters wper

k with wper
k −wper

K . By doing so, we can ensure
that the log-likelihood will not change, that means L(θ̂) = L(θ̂

per
)

and these parameters satisfy initialized condition wper
K = 0.

Unfortunately, the penalized log-likelihood value can be different
from the old value. This also affects to the sparsity property of the
model when we permute the parameters. However, for K = 2 both
log-likelihood function and penalized log-likelihood function will
not change since wper

1 = −w1.
For the second criterion, we compute the mean and standard de-
viation of both penalized parameters and non-penalized parameters
compare with the true value θ. We also consider the mean square
error (MSE) between each component of the true parameter vector
and the estimated one, which is given by ‖θj − θ̂j‖22. The square
errors are averaged on 100 trials.
For clustering criterion, once the parameters are estimated and per-
muted, the provided posterior component memberships τ̂ik defined
in (13) represent a soft partition of the data. A hard partition of the
data is given by applying the optimal Bayes’s rule

ẑi = arg
K

max
k=1

τik(θ̂),

where ẑi represents the estimated cluster label for the ith observa-
tion. We therefore compare the average ratio of true cluster labels
of all observations by considering four models.

1) Sensitivity/specificity criteria: Table I contains the sensi-
tivity (S1) and specificity (S2) values for the experts 1 and 2 of the
model and also the gate. This criteria is computed for three models:
Lasso+L2, L2 and MoE. Actually, the L2 and MoE models cannot
be considered as model selection methods since their sensitivity
criterion almost surely equal zero. From Table I, one can clearly see
that the Lasso+L2 performs quite well in terms of experts 1 and 2.
Feature selection becomes more difficult for the gate πk(x;w) since
there are correlations between features. However, the Lasso+L2

performs reasonably well in term of detecting zero coefficient both
in the experts and the gating network although it can fail in model
selection for the gating network, meaning that, it also shrinks the
non-zero values toward zero. The MIXLASSO, in some sense can
detect the parameters in the experts. However, it will show that, this
model have a poor result when clustering the data.

Method Expert 1 Expert 2 Gate
S1 S2 S1 S2 S1 S2

MoE 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
L2 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

Lasso+L2 0.7000 1.0000 0.8033 1.0000 0.8525 0.9450
MIXLASSO 0.7750 1.0000 0.6933 1.0000 N/A N/A

TABLE I. SENSITIVITY (S1) AND SPECIFICITY (S2) SUMMARIES.

2) Parameter estimation: The box plots of all estimated
parameters are given in Figure 1, 2 and 3. For the mean and standard
derivation assess, Table II shows that, the non penalized MoE and
the MoE with L2 penalized have a best result while L2+Lasso and
MIXLASSO can cause bias to the estimated parameters since the
penalty functions are added in the log-likelihood function. However,
from Table III in term of average mean square error, the L2+Lasso
and MIXLASSO provide a best result for the zero coefficients.
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Fig. 1. Boxplots of the expert 1’s parameter (β10,β1)
T = (0, 0, 1.5, 0, 0, 0, 1)T .
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Fig. 2. Boxplots of the expert 2’s parameter (β20,β2)
T = (0, 1,−1.5, 0, 0, 2, 0)T .
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Fig. 3. Boxplots of the gate’s parameter (w10,w1)T = (1, 2, 0, 0,−1, 0, 0)T .

3) Clustering: We calculate the accuracy of clustering of
four models for each data set. First, we permute the parameters
corresponding to the true parameter and then we compute the ratio
of true estimated cluster label for every observation in each data
set and taking the average. The results in terms of Adjusted rand
index (ARI) values are provided by Table IV. In this example,
we see that the Lasso +L2 model provides a good model for
clustering data. L2 model gives the best result. The difference
between these models is smaller than 2%, while the MIXLASSO
provides a poor result in term of clustering. Overall, we can clearly
see the algorithm performs very well to retrieve the actual sparse
support; the sensitivity and specificity results are better for the
proposed Lasso+L2 regularization. The MIXLASSO can identified
the parameters in the regression components, however, this model
gives a worst results while clustering the observation into clusters.
The specificity and the specificity for the gating function of the

proposed model is quite well. But the penalty function will cause
bias to the parameters. This result can be observed for the MSE
which means that the algorithm can also perform density estimation
with a reasonable loss of information due to the bias induced by the
regularization. In term of clustering, the Lasso+L2 works as good
as two other MoE models and better than the MIXLASSO model.

B. Applications to real data

We now analyze a real data set consisting of baseball salaries
from the Journal of Statistics Education (see also [4]) as a further
test of the methodology. We compare our results with the non-
penalized MoE models and the MIXLASSO models (see [4]) in
different criteria: the average mean square error (MSE) between
observation values of the response variable and the predicted values
of this variable; we also consider the correlation of these values.
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Component True value MoE L2 Lasso+L2 MIXLASSO
0 0.010(.096) 0.009(.097) 0.026(.089) 0.043(.093)
0 −0.002(.106) −0.002(.107) 0.011(.046) 0.011(.036)
1.5 1.501(.099) 1.502(.099) 1.435(.080) 1.404(.086)

Expert 1 0 0.000(.099) 0.001(.099) 0.013(.044) 0.013(.036)
0 −0.022(.102) −0.022(.102) 0.000(.032) 0.003(.027)
0 −0.001(.097) −0.003(.097) 0.012(.043) 0.013(.040)
1 1.003(.090) 1.004(.090) 0.930(.082) 0.903(.088)
0 0.006(.185) 0.005(.184) −0.162(.177) −0.063(.188)
1 1.007(.188) 1.006(.188) 0.675(.202) 0.755(.220)
−1.5 −1.492(.149) −1.494(.149) −1.242(.139) −1.285(.146)

Expert 2 0 −0.011(.159) −0.012(.158) −0.018(.055) −0.023(.071)
0 −0.010(.172) −0.008(.171) 0.011(.059) 0.016(.075)
2 2.004(.169) 2.005(.169) 1.876(.149) 1.891(.159)
0 0.008(.139) 0.007(.140) 0.020(.060) 0.031(.086)
1 1.095(.359) 1.008(.306) 0.759(.221)
2 2.186(.480) 1.935(.344) 1.332(.208)
0 0.007(.287) 0.038(.250) 0.024(.068)

Gating 0 −0.001(.383) −0.031(.222) −0.011(.039) N/A
−1 −1.131(.413) −0.991(.336) −0.526(.253)
0 −0.022(.331) −0.033(.281) −0.032(.104)
0 0.025(.283) 0.016(.246) −0.007(.036)

σ 1 0.965(.045) 0.961(.045) 0.989(.050) 1.000(.053)
TABLE II. MEAN AND STANDARD DERIVATION OF EACH COMPONENT.

Mean square error
Component True value MoE L2 Lasso+L2 MIXLASSO

0 0.0093(.015) 0.0094(.015) 0.0087(.014) 0.0106(.016)
0 0.0112(.016) 0.0114(.017) 0.0022(.008) 0.0014(.005)

1.5 0.0098(.014) 0.0098(.015) 0.0107(.012) 0.0166(.019)
Expert 1 0 0.0099(.016) 0.0099(.016) 0.0021(.006) 0.0015(.005)

0 0.0108(.015) 0.0109(.016) 0.0001(.004) 0.0007(.003)
0 0.0094(.014) 0.0094(.014) 0.0020(.006) 0.0017(.008)

1 0.0081(.012) 0.0082(.012) 0.0116(.015) 0.0172(.021)
0 0.0342(.042) 0.0338(.042) 0.0575(.079) 0.0392(.059)
1 0.0355(.044) 0.0354(.044) 0.1465(.148) 0.1084(.130)
−1.5 0.0222(.028) 0.0221(.028) 0.0860(.087) 0.0672(.070)

Expert 2 0 0.0253(.032) 0.0252(.031) 0.0034(.017) 0.0056(.022)
0 0.0296(.049) 0.0294(.049) 0.0037(.020) 0.0059(.023)
2 0.0286(.040) 0.0287(.040) 0.0375(.050) 0.0371(.051)
0 0.0195(.029) 0.0195(.029) 0.0040(.015) 0.0083(.028)
1 0.1379(.213) 0.0936(.126) 0.1067(.125)
2 0.2650(.471) 0.1225(.157) 0.4890(.277)
0 0.0825(.116) 0.0641(.086) 0.0052(.015)

Gating 0 0.1466(.302) 0.1052(.196) 0.0017(.007) N/A
−1 0.1875(.263) 0.1129(.148) 0.2885(.295)
0 0.1101(.217) 0.0803(.164) 0.0120(.062)

0 0.0806(.121) 0.0610(.095) 0.0013(.008)

σ 1 0.0033(.004) 0.0035(.004) 0.0027(.003) 0.0028(.003)
TABLE III. MEAN SQUARE ERROR BETWEEN EACH COMPONENT OF THE ESTIMATED PARAMETER VECTOR OF LASSO+L2 , L2 , MOE AND THE

ACTUAL ONE.

Model MoE L2 Lasso+L2 MIXLASSO
C. rate 89.57%(1.65%) 89.62%(1.63%) 89.46%(1.76%) 82.89%(1.92%)
ARI 0.6226(.053) 0.6241(.052) 0.6190(.056) 0.4218(.050)

TABLE IV. AVERAGE OF THE ACCURACY OF CLUSTERING
(CORRECT CLASSIFICATION RATE AND ADUJUSTED RAND INDEX).

[4] used this data set in the analysis, which included an addition
of 16 interaction features, making in total 32 predictors. The
columns of X were standardised to have mean 0 and variance 1.
Histogram of the log of salary shows multi-modality making it a
good candidate for the response variable under the MoE model with
two components.

Y = log(salary)∼π1(x;w)N (y;β10 + x
Tβ1, σ

2)

+(1− π1(x;w))N (y;β20 + x
Tβ2, σ

2),(30)

where π1(x;w) = ew10+xTw1

1+ew10+xTw1
. By taking all the tuning param-

eters equal zero, we obtain the maximum likelihood estimator of
the model. We also compare our result with MIXLASSO from [4].
Table VI presents the parameter estimates for baseball salary data.
Table VI provides the results in term of parameters estimation and

Table V shows the results in terms of MSE, and R2. These results
clearly suggest that the proposed algorithm with the Lasso+L2

penalty also shrinks some parameters to zero and have an acceptable
results when comparing with MoE, it also shows that this model
provides a better results than the MIXLASSO model.

MoE Lasso+L2 MIXLASSO
R2 0.8099 0.8020 0.4252

MSE 0.2625(.758) 0.2821(.633) 1.1858(2.792)
TABLE V. RESULTS FOR BASEBALL SALARIES DATA SET.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a regularized MLE for the MoE
model which encourages sparsity, and developed a blockwise
EM algorithm which monotonically maximizes this regularized
objective towards at least a local maximum. The proposed reg-
ularization does not require using approximations as in standard
MoE regularization. The proposed algorithm is based on univariate
updates of the model parameters via coordinate ascent, which allows
to tackle problems in high-dimensional computation by avoiding
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Features MLE, σ̂ = 0.277 Lasso+L2, σ̂ = 0.345 MIXLASSO, σ̂ = 0.25
Exp.1 Exp.2 Gating Exp.1 Exp.2 Gating Exp.1 Exp.2

x0 6.0472 6.7101 -0.3958 5.9580 6.9297 0.0046 6.41 7.00
x1 -0.0073 -0.0197 0.1238 -0.0122 - - - -0.32
x2 -0.0283 0.1377 0.1315 -0.0064 - - - 0.29
x3 0.0566 -0.4746 1.5379 - - - - -0.70
x4 0.3859 0.5761 -1.9359 0.4521 0.0749 - 0.20 0.96
x5 -0.2190 -0.0170 -0.9687 - - - - -
x6 -0.0586 0.0178 0.4477 -0.0051 - - - -
x7 -0.0430 0.0242 -0.3682 - - - -0.19 -
x8 0.3991 0.0085 1.7570 - 0.0088 - 0.26 -
x9 -0.0238 -0.0345 -1.3150 0.0135 0.0192 - - -
x10 -0.1944 0.0412 0.6550 -0.1146 - - - -
x11 0.0726 0.1152 0.0279 -0.0108 0.0762 - - -
x12 0.0250 -0.0823 0.1383 - - - - -
x13 -2.7529 1.1153 -7.0559 - 0.3855 -0.3946 0.79 0.70
x14 2.3905 -1.4185 5.6419 0.0927 -0.0550 - 0.72 -
x15 -0.0386 1.1150 -2.8818 0.3268 0.3179 - 0.15 0.50
x16 0.2380 0.0917 -7.9505 - - - - -0.36

x1 ∗ x13 3.3338 -0.8335 8.7834 0.3218 - - -0.21 -
x1 ∗ x14 -2.4869 2.5106 -7.1692 - - - 0.63 -
x1 ∗ x15 0.4946 -0.9399 2.6319 - - - 0.34 -
x1 ∗ x16 -0.4272 -0.4151 7.9715 -0.0319 - - - -
x3 ∗ x13 0.7445 0.3201 0.5622 - 0.0284 -0.5828 - -
x3 ∗ x14 -0.0900 -1.4934 0.1417 -0.0883 - - 0.14 -0.38
x3 ∗ x15 -0.2876 0.4381 -0.9124 - - - - -
x3 ∗ x16 -0.2451 -0.2242 -5.6630 - - - -0.18 0.74
x7 ∗ x13 0.7738 0.1335 4.3174 - 0.004 - - -
x7 ∗ x14 -0.1566 1.2809 -3.5625 -0.1362 0.0245 - - -
x7 ∗ x15 -0.0104 0.2296 -0.4348 - - - - 0.34
x7 ∗ x16 0.5733 -0.2905 3.2613 - - - - -
x8 ∗ x13 -1.6898 -0.0091 -8.7320 - 0.2727 -0.3628 0.29 -0.46
x8 ∗ x14 0.7843 -1.3341 6.2614 - 0.0133 - -0.14 -
x8 ∗ x15 0.3711 -0.4310 0.8033 0.3154 - - - -
x8 ∗ x16 -0.2158 0.7790 2.6731 0.0157 - - - -

TABLE VI. FITTED MODELS FOR BASEBALL SALARY DATA.

matrix inversion and to promote its scalability. The results on both
simulations and a real-data example confirm the effectiveness of
the proposal. This was observed in terms of parameter estimation,
the estimation of the actual support of the sparsity, and clustering
accuracy. Namely, the model sparsity does not include significant
bias in terms of parameter estimation nor in terms of recovering
the actual clusters of the heterogeneous data. A future work would
consist in performing additional model selection experiments and
considering hierarchical MoE and MoE for discrete data.
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