NON-LOCAL SAR TOMOGRAPHY FOR LARGE-SCALE URBAN MAPPING
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ABSTRACT

Multi-baseline synthetic aperture radar (SAR) interferomet-
ric techniques, such as SAR tomography, is well established
for 3-D reconstruction in the urban area. These methods usu-
ally require fairly large interferometric stacks (> 20 images)
for a reliable reconstruction. Hence, they are usually not
directly applicable for large-scale 3-D urban mapping using
TanDEM-X data where only a few acquisitions are available
in average for each city. This work proposes a new SAR
tomographic processing framework to those extremely small
stacks. The applicability of the algorithm is demonstrated us-
ing a TanDEM-X multi-baseline stack with five bistatic in-
terferograms over the whole city of Munich, Germany. Sys-
tematic comparison of our result with TanDEM-X raw digital
elevation models (DEM) and airborne LiDAR data shows that
the relative height accuracy is two meters, which outperforms
the TanDEM-X raw DEM. The promising performance of the
proposed algorithm paved the first step towards high quality
large-scale 3-D urban mapping.

Index Terms— TomoSAR, Non-Local filtering, Robust
estimator

1. INTRODUCTION

Synthetic aperture radar tomography (TomoSAR) is an ad-
vanced SAR interferemetric technique that is able to recon-
struct the 3-D distribution of scatterers and retrieve the el-
evation profile orthogonal to the radar line of sight (LOS).
Among the many multi-baseline InSAR techniques, To-
moSAR is the only one that strictly reconstructs the full
reflectivity along the third dimension elevation. SAR to-
mography and its differential form (D-TomoSAR) have been
extensively developed in last two decades [1] [2] [4] [5] [6].
They achieve promising results on 3-D reconstruction of ur-
ban areas, especially when using high resolution data like
TerraSAR-X [7] or COSMO-Skymed [8]. In last few years,
new algorithms by taking advantage of recent developments
in signal processing such as sparse reconstruction and com-
pressive sensing (CS) [9] [10] can provide height estimates
with unprecedented accuracy compared to the state-of-the-
art multi-baseline InSAR algorithms and shows the super-

resolution (SR) power, which is very important for urban
areas, since amount of areas have layover effects. Apart
from the algorithmic development study was also conducted
on TomoSAR using TanDEM-X bistatic data. It was shown
that better height accuracy can be achieved with respect to
a TerraSAR-X monostatic stack, because of the higher SNR
and general quality of TanDEM-X bistatic data [11].

Although TanDEM-X bistatic data has many advantages,
there is only a limited number of acquisitions available for
most areas. For a reliable reconstruction, SAR tomography
usually requires fairly large interferometric stacks, because
the variance of the estimates is asymptotically related to the
product of SNR and the number of acquisitions. Therefore,
they are not directly applicable to InSAR stack with only a
few acquisitions [12].

In this work, we follow the concept of non-local compres-
sive sensing TomoSAR in [13] and propose a new frame-
work of spaceborne multi-baseline SAR Tomography with
very small TanDEM-X bistatic stacks, i.e. three to five inter-
ferograms. The framework includes non-local filtering, spec-
tral estimation, model selection and robust height estimation.
We choose Munich city as a test site and compare the To-
moSAR point cloud generated by the proposed framework,
TanDEM-X DEM product, and LiDAR data.

2. NON-LOCAL TOMOSAR

In this section, we introduce the non-local TomoSAR frame-
work. It consists of several steps: (1) non-local filtering; (2)
spectral estimation; (3) model selection; (4) robust height es-
timation.

2.1. SAR imaging model

The typical multi-baseline SAR imaging model can be ex-
pressed as follows:

gn = /A v(s) - exp(j2mE, s)ds (1)

where g,, is the complex-valued measurement of an azimuth-
range pixel in the nth acquisition. (s) represents the reflec-
tivity function along elevation s with an extent of As. The



spatial frequency &, = 2b,,/\r is proportional to the corre-
sponding baseline b,,. A is the wavelength of the radar signals
and r denotes the range between radar and the observed ob-
ject, respectively.

In the presence of noise &, the discrete-TomoSAR system
model can be rewritten as:

g=Ry+e 2

where g is the measurement vector with /N elements, and -y is
the reflectivity function along elevation uniformly sampled at
si(l=1,2,...,L). Risan N x L irregularly sampled discrete
Fourier transformation mapping matrix.

2.2. Non-Local Procedure

Since we have only limited number of acquisitions for large-
scale area, the SNR need to be dramatically increased in order
to obtain the required accuracy. As shown in [13], non-local
procedure is efficient way to increase the SNR of interfero-
grams without notable resolution distortion. The NL-means
concept redefines the neighborhood of a pixel c in a very gen-
eral sense as any set of pixels s in the image (local or non-
local) such that a small patch around s is similar to the patch
around c. It can combine similar patches into a weighted max-
imum likelihood estimator

O, = argmax » _ w(i, js) log p(g.|©) 3)

S

Where weights w(is, js) depends on the statistical model of
the imaging process [13]. A/(.) is the non-local estimator and

N(g) = f(©). The expression ©® = (¢, /1,02) denotes
the parameters, where v is the estimate of the interferometric
phase, fi is the coherence magnitude, and o2 is variance.

2.3. Spectral Estimation

After the non-local procedure, spectral estimation is applied.
The most relevant spectral estimation algorithms, including
singular value decomposition (SVD), compressive sensing
(CS) are introduced in the following.

e SVD:
~ _ _1y—1 _
4=RICIR+CY) RUCIN(g) @

o CS:

¥ = argmin{||[Ry - N(g)l; + Alvl:}

The choice of different combinations of spectral estima-
tors depends on the required accuracy, the computational time
and others. We follow the procedure proposed in [14]. It con-
sists of three steps: first-order spectral estimation, single and

double scatterers discrimination, and higher order spectral es-
timation. It uses the well-established and computationally ef-
ficient first-order spectral estimator to obtain a prior knowl-
edge of the estimates, followed by the linear method and CS-
based algorithm applied to pre-classified different groups of
pixels. This approach speeds up the processing by reducing
the percentage of pixels that require sparse reconstruction.
The sparse reconstruction can be further solved by the ap-
proach in [15].

2.4. Model Selection

The abovementioned spectral estimators retrieve a nonpara-
metric reflectivity profile. Since our data is in urban area, we
assume only a few dominant scatterers exist along the reflec-
tivity profile. Therefore, we employ model order selection
to determine the number of scatterers K as well as their ele-
vation in one azimuth-range pixel [4]. The estimator can be
expressed as follows.

K = arg mlgn{—anp (g|0) +2C(K)} (6)

where C(k) is a complexity penalty that trades off between
how well the model fits the data and the complexity of the
model.

2.5. Robust Height Estimation

To tackle the possible remaining outliers in the height esti-
mates, the final height will be fused from the result of multi-
ple neighbouring pixels as a post-processing. But instead of
simple averaging, the height will be adjusted robustly using
an M-estimator. Instead of minimizing the sum of squared
residuals in averaging, M-estimator minimizes the sum of a
customized function p (.) of the residuals:

§ = argmin ) | p (3 - s), (M

where 5; is the elevation estimates of the ith neighbouring
pixel. It is shown that the close-formed solution of Eq. (7)
is simply a weighted averaging of the heights of the neigh-
bouring pixels. The weighting function can be expressed as
follows, if the derivative of p (x) exists.

w(e) = —212) ®

xdx
The robust estimated height can be written as follows:
") @

i

where h = § - sin 6, and 0 is incident angle.



3. PRACTICAL DEMONSTRATION

3.1. Data Description

We make use of a stack of five co-registered TanDEM-X
bistatic interferograms to evaluate the proposed algorithm.
The dataset is over Munich, Germany, with a slant range
resolution of 1.2 m and an azimuth resolution of 3.3 m. The
images were acquired from July 2016 to April 2017. The
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Table 1. Parameters of Tandem-X Acquisition of Munich

most pertinent parameters of a TanDEM-X bistatic stripe
map acquisition of Munich are listed in Table 1.

3.2. Visual Comparison with TanDEM-X raw DEM

In this work, the TanDEM-X raw DEM is adopted for vi-
sual comparison with TomoSAR point clouds of the test area,
which is generated by two TanDEM-X bistatic acquisitions
using the Integrated TanDEM-X Processor (ITP).

Fig. 1. Visual comparison of NL-TomoSAR point clouds and
TanDEM-X DEM, close-up 3-D view over the area of Eu-

ropean bureau of patent.
TanDEM-X DEM.

(a) TomoSAR point clouds. (b)

Fig. 1 shows the area of European bureau of patent. As
one can see in Fig. 1 (b), due to the complex structure of the
building and low resolution, TanDEM-X DEM merge several
buildings together and exhibits large error on the height of the
buildings.

Fig. 2 shows the visual comparison of NL-TomoSAR
point clouds and TanDEM-X DEM with a close-up 3-D view
over the area of Munich central station. It is clear that NL-
TomoSAR result can show more detailed structures, such as
the bridge, the central station, and roads. There are several
reasons for the blur in case of TanDEM-X DEM: layover of
building superimposes signal from roads and shadow cast be-
hind buildings lead to many noisy areas in cities.

Fig. 2. Visual comparison of NL-TomoSAR point clouds and
TanDEM-X DEM, close-up 3-D view over the area of Munich
central station. (a) TomoSAR point clouds. (b) TanDEM-X
DEM.

3.3. Quantitative Comparison of Individual Structure

In order to evaluate the estimation accuracy, nine test sites
with high average SNR have been chosen for individual quan-
titative comparison. The summary of the results is shown in
Tab. 2.

S1 S2 S3 S4 S5 S6 S7 S8 S9

T 069 075 09 067 09 067 060 094 0.89
D 6.02 421 662 217 202 799 846 541 288

Table 2. Statistics of quantitative comparison of nine test
structures. Relative height differences [m] compared with ref-
erence (LiDAR). T (TomoSar), D (DEM).

From Tab. 2 we can see that the height differences be-
tween TomoSAR result and LiDAR data are within one meter
and the height differences between TanDEM-X DEM product
and LiDAR data vary from 2.5 m to 8.5 m.



3.4. Average accuracy

In order to have an assessment of the overall accuracy in a
city scale, we compared all the 36,499 buildings in the area
with the LiDAR point cloud. 38.7% buildings are within 1 m
accuracy. 62.8% are within 2 m accuracy. However, the two
datasets (TanDEM-X CoSSC and LiDAR) were acquired at
different time. It is almost certain that changes happened dur-
ing the period. Therefore, in order to obtain a more realistic
assessment, we truncated the distribuation of height differ-
ence at £15 m. 34,054 buildings remains after the truncation.
Their overall standard deviation is 1.96 m.

4. CONCLUSION

In this work, we propose a novel framework for TomoSAR
with minimum number of acquisitions to obtain fast and ac-
curate estimation of elevation without any priori knowledge
and demonstrated the applicability of the algorithm with test
site in Munich. Using the real data, it was shown that the
proposed method outperform the state-of-the-art.
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