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ABSTRACT 

 

The launch of the wide-swath SAR missions with short 

repeat-pass cycles, such as Sentinel-1, will soon provide an 

unprecedented large InSAR data archive. Time-series 

analysis on the rapidly growing data will thus become 

computationally demanding for a systematic monitoring of 

earth surface deformation. As the state-of-the-art approach 

in differential InSAR time-series analysis, the distributed 

scatterer interferometric (DSI) techniques shall adapt agile 

processing schemes to deal with the emerging big data; an 

aspect to which limited attention has been dedicated. In this 

contribution, a sequential DSI scheme is proposed to 

address this demand. Based on SAR data reduction, the 

scheme allows for batch processing of the large data stacks 

while preserving the performance close to the Cramér-Rao 

Lower Bound. The performance of the proposed sequential 

estimator is compared to the current DSI algorithms under 

two contradicting coherence scenarios. The application of 

the proposed sequential estimator to stacks of Sentinel-1 

data is ongoing.   

 

Index Terms— Big InSAR data, Distributed Scatterer 

Interferometry, Dimensionality Reduction, Low-Rank 

Approximation, Performance Analysis, Robust Estimation  

 

1. INTRODUCTION 

 

Distributed Scatterer Interferometry (DSI) is a framework 

for retrieving geophysical signal from time-series of SAR 

data. In this framework a number of algorithms have been 

proposed for estimation of the deformation phase 

corresponding to the geophysical signal of interest. 

Examples are: Small Baseline Subset Approach (SBAS) [1], 

SqueeSAR [2] and CAESAR [3]. Although proved to be 

powerful and applicable in time-series analysis, the 

proposed algorithms are computationally expensive and do 

not allow near-real-time processing of the data stacks.  

 The advent of wide swath SAR missions with short 

repeat-pass time and global coverage, such as Sentinel-1, 

will introduce large SAR data archives. This Big SAR data 

calls for more agile stacking techniques with sequential 

processing capabilities. In the context of sequential 

processing, the Kalman filter approach is a trivial solution. 

It is however based on an explicit definition of a dynamic 

system (in here, a geophysical deformation model) and 

prone to misspecification of such a system. In [4] the 

authors proposed an alternative scheme tailored to a long-

term coherence scenario. The algorithm is here referred to as 

virtual estimator. Inspired by the idea of the virtual 

estimator, the aim here is on establishing a generic precise 

sequential DSI scheme; with performance close to the 

theoretical Cramér-Rao Lower Bound (CRLB) [5]. The 

performance of the proposed sequential estimator is 

compared to the available DSI algorithms through 

contradicting simulation cases. Experiments with Sentinel-1 

and large stack of TerraSAR-X data has been performed and 

is ongoing.   

 

2. DISTRIBUTED SCATTERER INTERFEROMETRY 

 

Among the available DS estimators, the SqueeSAR 

approach provides the Maximum Likelihood Estimation 

(MLE) of the deformation phase. Under the assumption of 

complex circular Gaussian statistics of the SAR 

measurements, the MLE is asymptotically the closest 

estimator to the CRLB in the estimation of the deformation 

phase. However, as it will be shown, the performance of 

MLE is affected by the assumed stochastic model; i.e. the 

estimated coherence. If coherence estimation is biased, the 

MLE cannot approach its asymptotic performance. This will 

often be the case due to the limited size of the ensemble 

used for coherence estimation and/or presence of outliers in 

the ensemble [6]. 

 

2.1. The impact of decorrelation model on deformation 

phase retrieval 
In order to show the impact of the stochastic model on the 

different estimators, two contradicting coherence models 

have been considered. The first manifests a pure exponential 

decorrelation between the interferometric pairs, i.e.: 
 

 Γ𝑖,𝑘 =   𝛾0 exp (
−𝑡𝑖,𝑘

𝜏0
),    (1) 

 

while the second reveals a residual coherence even for large 

temporal baselines, i.e. [7]: 
 

 Γ𝑖,𝑘 =   (𝛾0 − 𝛾∞) exp (
−𝑡𝑖,𝑘

𝜏0
) + 𝛾∞.  (2) 
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Figure 1: Performance of DS phase estimation schemes relevant to the 

different coherence scenarios: top: exponential decorrelation, bottom: long-
term coherence. Here, CAESAR exploits the largest principle component; 

the virtual estimator is only used for the phase retrieval of the last SLC; and 
the SBAS-like algorithm is bounded to short temporal baselines of less than 

60 days (equivalent to lag 10 interferograms). Note that the performance of 

MLE is degraded with the biased estimation of the coherence (see Fig. 2), 
while the sequential estimator maintains a balanced performance in both 

cases. 

In these formulations, Γ𝑖,𝑘 is the coherence between the 

𝑖𝑡ℎ and 𝑘𝑡ℎ SLC of the stack, 𝛾0 and 𝛾∞ respectively 

indicate the initial and residual coherence, 𝑡𝑖,𝑘 stands for the 

temporal baseline and 𝜏0 is the time constant of the 

decorrelation process. 

Assuming a circular complex Gaussian statistics , a stack 

of 100 SLCs each containing 200 statistically homogenous 

pixels (looks) is simulated, using the aforementioned 

decorrelation models: the temporal sampling interval is set 

to 6 days (as will be the case for the Sentinel-1) and the 

deformation phase is set to zero, the decorrelation model 

parameters are provided in Table 1. The objective is to 

retrieve the phase history for each simulated SLC with the 

available DS estimators. In phase retrieval, CAESAR 

exploits the largest principle component of the coherence 

matrix; the virtual estimator is only used for phase 

estimation of the last SLC in the stack; and the SBAS-like 

algorithm is bounded to interferometric pairs with short 

temporal baselines of less than 60 days (for different 

simulation scenarios the corresponding coherence threshold 

can be calculated using Eq. 1 and 2). To assess the 

performance of different schemes, the experiment is 

repeated 500 times and the Root Mean Square Error (RMSE) 

of the estimated compared to the simulated phase is 

reported. Table 1 summarizes the simulation cases as well as  

 
 

Figure 2: Coherence model as the second order stochastic of the 
simulated data stack; top row: exponential decorrelation, bottom row: long-

term coherence, left column: simulated coherence matrix, right column: 
estimated coherence matrix for an ensemble of 200 statistically 

homogeneous pixels. Note the severe estimation bias for coherence close to 

zero. 
 

 

the RMSE of phase estimation for the last SLC in the 

simulated stack. 

Fig. 1 depicts the performance of different estimators 

compared to the theoretical CRLB for the two considered 

coherence scenarios. Note that the CRLB is calculated with 

the theoretical coherence given by Eq. 1 and 2 while the 

different estimators exploit an estimation of the coherence. 

The coherence is estimated using an ensemble of 200 

statistically homogenous pixels. The simulated and 

estimated coherence matrices are provided in Fig 2. As 

evident from Fig 1, the performance of estimators strongly 

depends on the coherence model. In case of exponential 

decorrelation, although MLE is expected to be the closest to 

CRLB, the SBAS-like approach outperforms this estimator. 

The reason lies in the biased estimation of coherence (see 

Fig. 2). The coherence is overestimated for coherence values 

close to zero, thus leading to biased results of MLE 

compared to SBAS. The latter approach simply discards the 

interferometric pairs with long temporal baselines and 

safeguards against the inclusion of interferometric pairs with 

overestimated coherence (which in reality are noisy 

interferometric phases baring no coherent signal). This 

observation highlights the importance of robust estimation 

schemes, such as the M-estimator proposed in [6], not only 

for safeguarding against the outliers, as discussed in [6], but 

also for modification of the stochastic model relative to 

estimation residuals. 
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Table 1: Performance of the different phase triangulation schemes 
compared to the CRLB; reported is the RMSE of the estimated and the 

simulated deformation phase for the last SLC of the stack. The performance 
of the proposed sequential estimator is indicated with block letters. 
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SqueeSAR 1.67 0.14 

CAESAR 1.71 0.15 

SBAS 0.62 0.26 

Virtual Est. 1.82 0.16 

Sequential Est. 0.83 0.15 

CRLB 0.52 0.12 

 
Examining the long-term coherence scenario, the 

performance of SBAS severely degrades compared to MLE. 

This performance loss is due to discarding the low-

coherence interferograms (𝛾∞= 0.2). Such an observation 

reveals the importance of inclusion of even low-coherent 

(but non-zero) interferometric pairs in deformation phase 

estimation.  

 

3. THE PROPOSED SEQUENTIAL DS ESTIMATOR 

 

In the development of a sequential estimator two 

contradicting goals shall be preserved. On one hand, the aim 

is on batch processing of data stream without acquiring and 

exploiting the entire stack, which in itself reduces the 

computational burden. On the other hand, the batch 

processing shall not cause performance loss due to 

neglecting (even small) coherence among the archived and 

streamed data. From the previous section, it is evident that 

even neglecting low level coherence among the data leads to 

dramatic performance loss.   

Inspired by the virtual estimator [4], here a sequential 

scheme is established to retrieve the correlation between the 

streamed and the processed data. The method is based on 

acquisition of a limited number of SLCs, hereafter referred 

to as mini-stacks, batch processing of the streamed mini-

stack and passing its information content to the future 

processing chain via projection of the data to its low-rank 

signal subspace. The stored extracted information is used to 

retrieve its coherence with the future data stream, so that the 

data history is not neglected and is to some extent retrieved 

for phase estimation. The flowchart of the established 

method is provided in Fig. 3. A selection of the processing 

blocks is explained in the following: 

 

3.1. Dimensionality reduction of SAR data stacks 

In order to make the information content of each batch 

available to the future data stream, the streamed mini-stack 

is reduced to its lower-dimension signal subspace. The 

compressed data is stored in the memory and utilized for 

coherence retrieval. The data compression is sought in two 

Figure 3: Algorithmic flow of the proposed DS sequential estimator 

 
steps: 

 

3.1.1. Temporal Coherent Low Pass Filtering (CLPF):  

The hidden geophysical signal in the data stream can be 

interpreted as a low-pass component and retrieved by phase 

triangulation schemes. In our proposed approach this signal 

component is estimated using the robust M-Estimator 

suggested in [6]. The M-estimator not only allows for 

suppression of the outliers but also safeguards against the 

inconsistent interferometric pairs by down-weighing their 

contribution in the triangulation.  

 As the first level of data reduction, the mini-stack of 

streamed SLCs is coherently filtered by the estimated phase 

[4]: 
 

𝑍𝐶𝐿𝑃𝐹(𝑙) =
1

𝑆
  ∑ 𝑍𝑘(𝑙) exp(−𝑗 𝜙̂𝑘)

𝑠

𝑘=0
,                   (3)   (4)  

here 𝑆 is the size of the mini-stack, 𝑙 stands for the 𝑙𝑡ℎ look 

of the homogenous pixels at each SLC, 𝑘 refers to the SLC 

index in the data batch, 𝑍𝑘 and 𝜙̂𝑘 indicate the complex 

valued pixel and the estimated phase of the corresponding 

SLC.  
 

3.1.2. Projection to Signal Subspace  

To assure maximum information extraction from the mini-

stacks, we extend the data reduction beyond the low-pass 

filtering. The extension is carried out by identification of the 

low-dimensional subspace which spans the underlying 

meaningful signal of the mini-stack and separates it from the 

noise subspace.  

 In its simplest form, signal subspace identification can 

be carried out by Principle Component Analysis (PCA). 

Similar to CAESAR, the PCA can decompose the coherence 

matrix into the scattering features [3]: 
 

𝛾𝑆 =  ∑ 𝜆𝑖  𝒖𝑖𝒖𝑖
𝐻𝑆

𝑖=0
,    (4) 

M-Estimator  
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Reduced 
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Low-Rank 

Subspace 

Identification 

4. Dimensionality 
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Coherent Low-
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Combination 
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5. Memory Storage 
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where 𝛾𝑆 is the complex coherence matrix of the batch and  

complex vectors 𝒖𝑖 are its decomposed features. Dependent 

on the significance of the features to the data content, the 

most significant principle components may be chosen for 

data reduction. The number of representative components 

can be related to the entropy of the data. The mini-stack is 

then projected to the signal subspace by: 
 
 

 𝑍RED,i(𝑙) = ∑ 𝑍𝑘(𝑙)𝑢𝑘,𝑖
𝑠

𝑘=0
.     (5) 

 

The subscripts 𝑖 and 𝑘 index the principle component 

and the SLC number respectively.  

 Although utilized for the first demonstration of the 

sequential algorithm, PCA is not the optimum scheme for 

subspace identification. The PCA seeks the optimum 

subspace representation in the L2 norm sense and is thus 

highly sensitive to outliers. This limitation can be tackled by 

the use of robust techniques such as robust PCA [9] that 

provide a robust estimation of the optimum low-rank signal 

subspace. 

 

3.2. Coherence retrieval 

The stored compressed data is exploited to retrieve the 

coherence between the streamed mini-stack and the 

unavailable data archive. The stored Low-pass filtered 

components are directly integrated to the sequential 

processing. The integration of the higher order information 

content, captured by the projection of the data to the 

estimated signal subspace, shall however be handled with 

more care as their direct inclusion may introduce noise in 

the sequential process. The relevance of the higher order 

information to the streamed data is assured in the coherence 

optimization step. In this step coherence of the reduced-

mini-stacks with respect to the streamed data is maximized. 

This step follows the formulation of eigenvalue problem 

proposed for polarimetric interferometry [8]: 
 

 𝛤22
−1 𝛤12

𝑇 𝛤11
−1𝛤12  𝒘 = 𝜆 𝒘,   (6) 

 

here, 𝛤22 and 𝛤11 are the estimated coherence of the archived 

reduced data i.e. 𝑍RED,𝑖  and the streamed data i.e. Z, 

respectively, while 𝛤12 is the coherence between the two 

mentioned data sets. The coherence is maximized by the 

optimal weights in 𝒘. The reduced data is therefore linearly-

combined given these weights, i.e.: 
 

 𝑍Combined(𝑙) = ∑ 𝑤𝑖  𝑍RED,i(𝑙)
𝑁𝐶

𝑖=0
,  (7) 

 

with 𝑁𝐶 as the size of the reduced data. The streamed data 

is finally appended by the LP features as well as the linear-

combination of the higher order features. Estimating the 

coherence with the appended features, the coherence 

between the streamed data and the unavailable data history 

is partially retrieved. This estimated coherence is the input 

to the signal estimation block.    

   

3.3. Performance of Sequential DS Estimator 

Performance of the proposed sequential DS estimator is 

provided in Fig. 1 and Table 1. As apparent form the 

comparisons, the proposed algorithm maintains performance 

in the two contradicting decorrelation scenarios as opposed 

to the non-sequential DS schemes. The RMSE is fairly close 

to the CRLB and is not degraded by the coherence scenario.  
 

4. CONCLUDING REMARKS 

 

A sequential estimation scheme has been proposed for 

exploitation of distributed scatterers in the multi-temporal 

InSAR data stacks. The scheme enables near real-time 

processing of InSAR time series, with performance close to 

CRLB. The performance of the estimator has been 

compared to the available DS techniques under two 

idealized contradicting coherence scenarios.  

Future work focuses on: investigation of dimensionality 

reduction techniques for multi-temporal SAR data; 

improving the robustness of the algorithms involved to 

safeguard against the impact of outliers; sequential detection 

of the statistically homogenous regions; and performance 

assessment of the technique by application to large stacks of 

Sentinel-1 data.  
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