
EFFICIENT AGGREGATION VIA ITERATIVE BLOCK-BASED ADAPTING
SUPPORT-WEIGHTS

Leonardo De-Maeztu1, Stefano Mattoccia2, Arantxa Villanueva1 and Rafael Cabeza1

1Department of Electrical and Electronic Engineering, Public University of Navarre, Pamplona, Spain
2Department of Electronics, Computer Sciences and Systems, University of Bologna, Bologna, Italy

ABSTRACT
Local stereo matching algorithms based on adapting-weights
aggregation produce excellent results compared to other lo-
cal methods. In particular, they produce more accurate results
near disparity edges. This improvement is obtained thanks
to the fact that the support for each pixel is accurately deter-
mined based on information such as colour or spatial distance.
However, the computation of the support for each pixel results
in computationally complex algorithms, especially when us-
ing large aggregation windows. Iterative aggregation schemes
are a potential alternative to using large windows. In this
paper we propose a novel iterative approach for adapting-
weights aggregation which produces better results and out-
performs most previous adapting-weights methods.

Index Terms— Stereo, 3D/stereo scene analysis.

1. INTRODUCTION

Dense stereo matching is one of the most important problems
in the field of computer vision. According to [9], stereo meth-
ods can be classified into two types of approaches (local and
global) according to the strategies used for estimation. In gen-
eral, local approaches are much faster and more compatible to
a practical implementation than global approaches producing
less accurate results. Nevertheless, recent local algorithms
based on the adapting-weights strategy [13, 5] produce results
comparable to algorithms based on global optimization tech-
niques. However, the complexity of adapting-weights strate-
gies is large.

In recent years, techniques aimed at reducing the compu-
tational complexity of local stereo matching algorithms based
on the adapting-weights strategy have been proposed. Un-
fortunately, in some cases, the reduced complexity is also
accompanied by a reduced accuracy of the algorithm [3, 8]
compared to [13, 5]. On the other hand, in some cases the
reduction of complexity does not affect the accuracy of the
results [6].

Another possible alternative to speedup adapting-weights
is to reduce the size of the aggregation window. To compen-

The work described in this study was supported by the Spanish Ministry
of Science and Innovation with a FPU grant (AP2007-02468).

sate for the loss in accuracy caused by the use of smaller win-
dows, the aggregation stage is iterated several times. In [12]
5×5 aggregation windows are used. Because such small win-
dows aggregate costs around a small neighborhood, a large
number of iterations is needed to obtain accurate disparity
maps.

In this paper we propose to use a block-based iterative
strategy for costs aggregation instead of a pixel-based one.
The implementation of this type of technique in an iterative
framework allows to use larger windows with similar com-
plexity. Thanks to using larger windows for costs aggrega-
tion, the convergence of the results is much faster and less
iterations are needed.

The rest of this paper is organized as follows. In Section 2,
we review state-of-the-art adapting-weights stereo matching
algorithms. In Section 3 we present our iterative block-based
approach for costs aggregation. We report experimental re-
sults in Section 4. Finally, we draw conclusions in Section
5.

2. RELATED WORK

The field of variable costs aggregation has been recently re-
viewed in [3, 11]. The most remarkable step in this field in
terms of accuracy improvement was proposed in [13]. The
adapting-weights technique described in [13] enabled a huge
reduction of the accuracy gap between global and local stereo
matching algorithms. Other techniques (i.e., geodesic support-
weights aggregation [5]) have proposed further accuracy im-
provements relying on a modified adapting-weights aggrega-
tion methodology. Both methods [13] and [5] aggregate costs
using fixed-size square windows, with a different weight for
each pixel.

The pixel-based matching cost measure used by [13] is
the truncated absolute difference (TAD). Considering a pixel
q in the reference image and the corresponding pixel qd in the
target image for a disparity d, TAD can be expressed as

e(q, qd) = min{
∑

cϵ{r,g,b}

|Ic(q)− Ic(qd)| , T}, (1)

p

q

(a)

pd

qd

(b)

Fig. 1. Pixel notation inside the correlation windows in a
block-based adapting-weights aggregation strategy: (a) in the
reference image (Np); (b) in the target image (Npd

).

where Ic is the intensity of the color band c in the RGB color
space, and T is the truncation value used to limit the influence
of outliers.

Hosni et al. [5] proposed a new method for computing
support weights, specifically, using the geodesic distance be-
tween two pixels. The pixel-based matching cost measure
used in [5] is Hierarchical Mutual Information (HMI). The
implementation of this matching measure is described in [4].

The two previously described algorithms use the same op-
timization technique, Winner-Takes-All (WTA) [13, 5].

The authors of the original adapting-weights algorithm
proposed an iterative implementation of adapting-weights [12].
The window size used in this algorithm is smaller than those
used in adapting-weights algorithms. The loss in performance
caused by the use of small windows was compensated by ap-
plying several iterations of the adapting-weights aggregation
step. However, a large number of iterations is needed for the
algorithm to converge, so it is not especially faster than the
non-iterative version of adapting-weights.

One of the main disadvantages of adapting-weights aggre-
gation is that it is computationally expensive. Several authors
have proposed faster local methods inspired by the adapting-
weights algorithm. Gong et al. [3] proposed a two-pass 1D
algorithm instead of using a 2D square window for aggrega-
tion. Richardt et al. [8] recently proposed a new real-time
local stereo algorithm based on the adapting-weights method.
They used a bilateral grid for costs aggregation, achieving a
200× speedup over the original adapting-weights algorithm.
However, the results of both algorithms [3, 8] are less accurate
than those of the adapting-weights algorithm [13].

Fast bilateral stereo [6] is another stereo matching tech-
nique inspired by the pixel-based adapting-weights aggrega-
tion method. Execution time is accelerated aggregating costs
on a block basis instead of on a pixel basis. This method com-
putes approximated weights for reference and target images
on a block basis assigning to each point within a block a sin-
gle value. It is worth to note that all block-level computations
can be efficiently implemented by means of incremental cal-

bp

bq

(a)

bpd

bqd

(b)

Fig. 2. Block notation inside the correlation windows in a
block-based adapting-weights aggregation strategy: (a) in the
reference image (Np); (b) in the target image (Npd

).

culation schemes such as box-filtering [7] or integral images
[1].

The block-based adapting-weights strategy has two inter-
esting properties. First, it is faster than pixel-based adapting-
weights stereo matching. Moreover, when it is implemented
with b = 3, it is not only around one order of magnitude faster
than pixel-based adapting-weights, but it produces equivalent
results (see [6]). Second, the block-based adapting-weights
strategy adds flexibility to the adapting-weights method. By
varying b, accuracy can be traded for computational complex-
ity. In fact, block-based adapting-weights links pixel-based
adapting-weights [13] (b = 1) and fixed-window [9] (one
block of the same size of the aggregation window).

3. PROPOSED METHOD

Given two pixels p and pd for which a correspondence has to
be evaluated, and the associated supports Np and Npd

both of
size B×B we partition the two supports in B

b × B
b blocks of

size b × b as shown in Figure 1. As it is described in Figure
2, we refer to the block for which the central pixel is p as bp.
For each block (bq and bqd) of the two supports Np and Npd

we independently assign two weights according to

w(bp, bq) = exp

(
−
(
∆cpq
γc

+
∆gpq
γp

))
, (2)

where ∆cpq is the Euclidean distance between the average
values in the RGB color space of the pixels inside the block,
and ∆gpq is the spatial Euclidean distance that separates the
central points of the two blocks in the image. Two constants,
γc and γp, are included to modulate the relative importance of
each of the aforementioned parameters.

Once we obtain the block-based weights, we combine the
weights to obtain a symmetric block-based weighted support
so that the total cost E(p, pd) for the correspondence asso-
ciated to the pixels (p, pd) is calculated by summing all the
weighted pointwise costs average inside each block e(bq, bqd)
and normalized by the summed weights:

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10

Number of iterations

A
v
e
ra

g
e

p
e
rc

e
n

ta
g

e
o

f
e
rr

o
n

e
o

u
s

p
ix

e
ls

B=5 b=1

B=15 b=3

B=25 b=5

(a)

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Number of iterations

A
v
e
ra

g
e

p
e
rc

e
n

ta
g

e
o

f
e
rr

o
n

e
o

u
s

p
ix

e
ls

B=9 b=1

B=27 b=3

B=45 b=5

(b)

Fig. 3. Comparison of iterative block-based adapting-weights aggregation of algorithms with different block size: (a) 5 × 5
blocks; (b) 9× 9 blocks.

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4 5 6 7 8 9 10

B=15 b=3

B=21 b=3

B=27 b=3

B=33 b=3

Fig. 4. Comparison of iterative block-based adapting-weights
aggregation of algorithms with b = 3.

E(p, pd) =

∑
bqϵNp,bqdϵNpd

w(bp, bq)w(bpd
, bqd)e(bq, bqd)∑

bqϵNp,bqdϵNpd

w(bp, bq)w(bpd
, bqd)

.

(3)
We use the same implementation of HMI proposed in [4]

for computing the pixel-wise matching cost. We refer the
reader to this publication for details. Compared to pixel-based
aggregation, the number of calculations is intrinsically re-
duced by a factor b × b. The aggregation process is repeated
a certain amount of iterations to obtain the aggregated costs.
Finally, WTA is performed to obtain the final disparity map.

After two disparity maps are obtained (one corresponding
to the left image and one corresponding to the right image of
the stereo pair), 3×3 median filtering is applied to both maps
and their results are cross-checked to detect occlusions. Inval-
idated regions are filled with the content of their first neighbor
to the left or to the right depending on the nature of the oc-
clusion. Finally, 3× 3 median filtering is again applied to the
final disparity map.

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed stereo match-
ing algorithm using the Middlebury stereo pairs with ground
truth [9, 10]. In Figure 3, the average percentage of erroneous
pixels for the four Middlebury stereo pairs is represented ver-
sus the number of iterations. The algorithms compared in
each graph have a similar complexity (i.e., the algorithms
compared in each graph use the same number of blocks, each
with a different block size). From the results it is clear that
the block-based approach (b > 1) is more appropriate for this
iterative framework than the pixel-based approach (b = 1).
Not only the block-based approach converges more rapidly
than the pixel-based approach, but it also produces better re-
sults.

According to Figure 3, b = 3 seems to be the optimal
value for this type of solution, because it combines a rapid
convergence and a lower percentage of erroneous pixels than
other b values. In Figure 4 the average percentage of erro-
neous pixels is represented versus the number of iterations
for different b = 3 configurations. A window size of B = 21
pixels iterated 3 times seems a good trade off between accu-
racy and complexity. Further increases in the window size or
the number of iterations produce negligible improvements in
the accuracy of the resulting disparity maps.

Figure 5 contains the four aforementioned stereo pairs
used for stereo algorithms benchmarking and the results pro-
duced by our algorithm with B = 21, b = 3, 3 iterations,
γc = 9 and γp = 12.5 and σ = 1 for HMI. In Table 1 the
accuracy and execution time on the Teddy stereo pair of the
B = 21, b = 3 implementation of the proposed algorithm is
compared to other state-of-the-art stereo matching algorithms
based on adapting-weights. As it was mentioned in the pre-
vious section, the disparity maps of our method are refined
using a post-processing step that includes a 3× 3 median fil-
ter that helps to remove salt and pepper noise for a fair com-

(a) (b) (c) (d)

Fig. 5. Left images of each of the Middlebury datasets (upper row), and disparity maps computed using our method (lower
row). (a) “Tsukuba” images. (b) “Venus” images. (c) “Teddy” images. (d) “Cones” images.

Table 1. Performance comparison of state-of-the-art adapting-weights algorithms.
Average Comput

Algorithm Tsukuba Venus Teddy Cones percent of time
bad pixels (sec)

nocc all disc nocc all disc nocc all disc nocc all disc
GeoSup [5] 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80 610

Our method 1.78 2.10 7.57 0.31 0.50 2.17 7.94 12.8 17.1 3.07 8.73 8.46 6.05 18.2
AdaptWeight [13] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67 175

AdaptDiff [12] 1.14 1.93 6.12 0.73 1.21 3.81 8.02 14.2 21.97 4.12 10.58 7.75 6.80 1125
FastBilateral [6] 2.38 2.80 10.4 0.34 0.92 4.55 9.83 15.3 20.3 3.10 9.31 8.59 7.31 25.4

parison with the other algorithms. However, big erroneous
patches caused by occlusions or noise (e.g. white patch in
Tsukuba or black patches in Cones) cannot be removed us-
ing only median filtering. In fact, the GeoSup algorithm im-
plements a more complex and accurate post-processing tech-
nique to refine the produced disparity maps (weighted median
filtering). AdaptDiff performs median filtering like our algo-
rithm [12]. AdaptWeight [13] and FastBilateral [6] also per-
form some type of post-processing, even if it is not explicitly
mentioned. This can be deduced because the results in the
Middlebury ranking for FastBilateral are more accurate than
those published in the paper (where it is stated that the results
included in the paper are not post-processed). In the case of
AdaptWeight, the results are commonly believed to be the re-
sult of a post-processing step, because several authors [6, 8, 2]
have obtained less accurate disparity maps when implement-
ing the algorithm proposed in [13].

The accuracy results in Table 1 are those reported by the
authors in the Middlebury ranking [10] (our algorithm iFBS
can also be found in the ranking), and the timing measure-
ments were performed using our C implementation of their

techniques on an Intel Core 2 6420 CPU using just one core.
The proposed aggregation method can be fully parallelized
using massively parallel architectures, however the implemen-
tation was done using only one core for a fair comparison with
other algorithms. Our proposal is very close to the GeoSup al-
gorithm [5] in terms of accuracy, being more than one order
of magnitude faster. The rest of algorithms in the Table are
outperformed by our proposal, even if they take more time
to compute the disparity maps (our technique is the fastest
method in the Table).

As shown in Table 1, the computation time of the pro-
posed method for the Teddy stereo pair is 18.2 seconds. The
most time consuming stages are those related to the proposed
costs aggregation technique (1.2 seconds for the weights com-
putation step and 12.5 seconds for the weighted costs aggre-
gation step).

5. CONCLUSION

In this work we have presented a new iterative costs aggre-
gation algorithm for stereo matching that produces more ac-

curate results than most state-of-the-art adapting-weights so-
lutions. The combination of block-based aggregation using
small windows along with an iterative framework improves
the accuracy of previous non-iterative or iterative but pixel-
based solutions. Moreover we have experimentally shown
that the execution time in considerably reduced compared to
other adapting-weights solutions.

6. REFERENCES

[1] F. Crow. Summed-area tables for texture mapping. Proc.
Special Interest Group on Graphics, pages 217–212,
1984.

[2] L. De-Maeztu, A. Villanueva, and R. Cabeza. Stereo
matching using gradient similarity and locally adap-
tive support-weight. Pattern Recognition Letters,
32(13):1643–1651, 2011.

[3] M. Gong, R. Yang, L. Wang, and M. Gong. A perfor-
mance study on different cost aggregation approaches
used in real-time stereo matching. Intl J. Computer Vi-
sion, 75(2):283–296, 2007.

[4] H. Hirschmüller. Stereo processing by semiglobal
matching and mutual information. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 30(2):328–341,
2008.

[5] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann.
Local stereo matching using geodesic support weights.
In Proc. IEEE Intl Conf. on Image Processing, pages
2093–2096, 2009.

[6] S. Mattoccia, S. Giardino, and A. Gambini. Accurate
and efficient cost aggregation strategy for stereo corre-
spondence based on approximated joint bilateral filter-
ing. In Asian Conf. Computer Vision, pages II: 371–380,
2009.

[7] M. McDonnell. Box-filtering techniques. Computer
Graphics and Image Processing, 17(1):65–70, 1981.

[8] C. Richardt, D. Orr, I. Davies, A. Criminisi, and
N. Dodgson. Real-time spatiotemporal stereo match-
ing using the dual-cross-bilateral grid. In European
Conf. Computer Vision, volume 6313, pages 510–523.
Springer Berling / Heidelberg, 2010.

[9] D. Scharstein and R. Szeliski. A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms. Intl J. Computer Vision, 47(1-3):7–42, 2002.

[10] D. Scharstein and R. Szeliski. Mid-
dlebury stereo evaluation - version 2,
http://vision.middlebury.edu/stereo/eval.

[11] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addi-
manda. Classification and evaluation of cost aggregation
methods for stereo correspondence. Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 1–8,
2008.

[12] K.-J. Yoon, Y. Jeong, and I.-S. Kweon. Support aggre-
gation via non-linear diffusion with disparity-dependent
support-weights for stereo matching. In Asian Conf. on
Computer Vision, number 1, pages 25–36, 2009.

[13] K.-J. Yoon and I.-S. Kweon. Adaptive support-weight
approach for correspondence search. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 28(4):650–656,
2006.

