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Abstract—Stream processing has become a critical component
in the architecture of modern applications. With the exponential
growth of data generation from sources such as the Internet of
Things, business intelligence, and telecommunications, real-time
processing of unbounded data streams has become a necessity.
DSP systems provide a solution to this challenge, offering high
horizontal scalability, fault-tolerant execution, and the ability to
process data streams from multiple sources in a single DSP job.
Often enough though, data streams need to be enriched with extra
information for correct processing, which introduces additional
dependencies and potential bottlenecks.

In this paper, we present an in-depth evaluation of data
enrichment methods for DSP systems and identify the different
use cases for stream processing in modern systems. Using a repre-
sentative DSP system and conducting the evaluation in a realistic
cloud environment, we found that outsourcing enrichment data
to the DSP system can improve performance for specific use
cases. However, this increased resource consumption highlights
the need for stream processing solutions specifically designed for
the performance-intensive workloads of cloud-based applications.

Index Terms—Distributed Stream Processing, Data Enrich-
ment, Data Analysis, Resource Management, Cloud Computing

I. INTRODUCTION

Continuous generation of data from web applications and
connected devices characterizes modern-day technology and
commonly leads to large volumes of data and the need for their
processing. Usually, data processing results are of immediate
interest to subsequent actions, which is why near-to real-time
processing is often desirable. Many areas such as Internet of
Things, operational business intelligence, and fraud detection
rely on near-to real-time processing [1], [2] of data generated
from highly distributed systems. However, to obtain a mean-
ingful analysis of data from disparate sources, the respective
data traditionally need to be copied into a high-capacity data
store for analysis, which can be complex and negatively impact
performance. Classical batch processing is no longer sufficient
for many use cases, hence, the development and thoughtful
usage of Distributed Stream Processing (DSP) systems [3]–
[7], optimized to process continuous streams of data on a large
scale, is important.

DSP systems are optimized to process large streams of con-
tinuous data. Importantly, their ability to offer high throughput
processing rates makes them suitable for many use cases. With
these systems, near to real-time processing is mandatory, and
the distributed execution of DSP jobs in the cloud allows
for the cluster to be dynamically scaled up and down [8]–
[11] and hence gracefully adapt to changing workloads [12]–

[14] or optimized toward desired objectives [15]–[19]. Re-
cent DSP frameworks also offer stateful stream processing,
which allows operators to store and access intermediate data
within the cluster, making more complex processing of stream
events possible, and guaranteeing exactly-once semantics. In
many cases though, dependencies exist between heterogeneous
workloads and the processes which consume them, which
may result in latency issues as well as scaling bottlenecks,
for instance, if external systems must be accessed during
execution, or a performance-heavy workload must be executed
within the DSP job of interest.

Related works have addressed the enrichment of events in
a DSP system through external databases [20]–[22], evaluated
the performance of running a Machine Learning (ML) model
embedded in a DSP system [23], and also the unification of
stream and batch jobs in a single application [24], [25]. How-
ever, specific use case categories for stream data enrichment
are yet to be identified, and specific enrichment methods for
these categories need to be presented and evaluated.

This paper aims to address the issue of streaming data
enrichment for DSP systems by providing an evaluation of
different enrichment methods and identifying the proper en-
richment method for a given use case. We primarily focus
on latency-critical applications, and select Apache Flink as a
representative DSP system for our evaluation due to its wide
usage by big corporations on a large scale [26].

Contributions. The contributions of this paper are:
• Problem analysis and investigation of assumptions and

common use cases, ultimately leading to the definition of
general use case categories.

• Detailed empirical evaluation of various data enrichment
methods in combination with different representative
use cases, providing a better understanding of situation-
dependent applicability.

• Openly available repository1 with all relevant experiment-
related artifacts. We provide comprehensive documenta-
tion and examples for reproducing our setup.

Section II conducts a problem analysis, thereby identifying
the assumptions and use cases for performing data enrichment
for DSP systems. Section III presents the data enrichment
methods, infrastructure setup, selected use cases, and evalu-
ation metrics. Section IV presents and discusses our results.
Section V describes the related work on data enrichment
strategies, while Section VI concludes the paper.

1https://github.com/dos-group/stream-processing-enrichment-methods
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II. PROBLEM ANALYSIS

In this section, we first present our assumptions regarding
data enrichment in DSP systems and then elaborate on general
applicable use cases in this field.

A. Assumptions

The processing of unbounded data streams requires DSP
systems to in theory execute indefinitely. As the near-to
real-time processing of events is crucial for a wide range
of applications, various requirements must be met by the
DSP system depending on the application. In this work, we
therefore primarily focus on low-latency streaming jobs, but
there are other relevant aspects that must be considered.

One such aspect is the reliability of a streaming job. System
failures are common in large clusters, and for DSP jobs that
are required to operate indefinitely, failures are inevitable,
making it essential for the DSP system to guarantee exactly-
once semantics and recovery from failures. Data enrichment
methods should consequently take this into account and ex-
hibit certain robustness. Another important requirement is
scalability, as the workload of a stream may change over
time, leading to the need for adding new resources to avoid
performance degradation or removing resources to optimize
resource utilization. Depending on the concrete design, this
can also affect an employed data enrichment method. Lastly,
streaming applications and their underlying architectures can
quickly lead to an increase in complexity, i.e., in light of
the distributed execution graph, heterogeneous data sources,
or data sinks. This is further reinforced through support for
libraries that enable ML or graph processing.

B. Data Enrichment Use Cases

Data processing in a DSP system often requires additional
context for accurate analysis and interpretation. To achieve
this, enrichment with additional data can be performed during
the execution of the DSP job. There are several reasons why
data enrichment could be necessary. Firstly, the incoming
data streams may lack the necessary information to provide
accurate insights. For example, if a system is monitoring
sensor data, it may be necessary to enrich the data with
information about the location, time, or weather conditions
to understand the context in which the data was collected.
In case of constrained network links as in IoT environments,
this can furthermore reduce the size of the individual events
and lower overall network overhead, as events remain compact
in size until they reach the DSP system in the cloud, where
they are eventually enriched. Secondly, data enrichment can
help to detect anomalies or patterns that may be hidden in
the data. By adding more information to the data, it may be
possible to identify patterns that were not apparent before,
such as identifying fraud or predicting a failure before it
occurs. Thirdly, data enrichment can help to integrate data
from multiple sources. In DSP systems, data may come from
multiple sources, and integrating this data can be a complex
process. By enriching the data with additional information, it

may be possible to integrate data from different sources and
provide a more complete picture of the target system.

Data enrichment during execution can vary greatly based
on the use case, and the underlying architecture and priorities
can be unique. Due to the diversity of use cases, there is no
one-size-fits-all solution for enriching events in a DSP system.
In order to carve out the advantages and disadvantages of
particular solutions, we conduct a comprehensive evaluation
of different enrichment methods. For this endeavor, we derive
the following broad use case categories, along the criteria of
data availability, data volume, and time sensitivity:

• Simple Queries: In many instances, a data enrichment use
case includes common operations, for instance, a simple
key-value database query, where the event contains a
key and there is one value in the database that can be
efficiently queried. An example would be the location of
a sensor in an IoT environment that could be queried by
a key. Other examples include API requests or inference
services of ML applications. We envision that for this
category, all these examples have in common that the
response time is fairly constant, yet loading the entirety
of information is not possible, for example, due to ca-
pacity limitations (e.g. databases), service barriers (APIs
of closed systems), or undeterministic data (e.g. time-
sensitive information such as weather data).

• Complex Queries: This category resembles the first one,
with the difference that queries or data formats are more
complex, and hence response times can be fluctuating.
This is for instance the case for complex database queries
that include multiple join statements (e.g. for fraud detec-
tion), or for API requests which trigger different behavior
depending on the payload. This increased complexity
hinders the migration of information directly to the re-
spective DSP system for accelerated data enrichment.

• Finite Data Sources: In certain scenarios, the information
used for enriching streaming events might be compact
in size and hence might qualify for a migration directly
to the DSP system as embedded state. Examples range
from small disclosed ML models, which generate a data
output for each data input, to static sensor information.
While potentially beneficial for event latencies, additional
challenges are raised with respect to state handling within
the DSP system as well as resource management.

The goal of our evaluation is to determine suitable en-
richment methods for specific use cases originating from our
defined use case categories, to allow for guidance, and to
enable practitioners to make informed decisions.

C. Enrichment Methods

In the following, we discuss various methods of enriching
events in state-of-the-art DSP systems. These methods serve as
a baseline for investigating the previously identified categories
of data enrichment use cases.
Datasource Client. This method connects to an external data
source to access the data for single / batches of events, which
can be performed either synchronously or asynchronously.



• Synchronous: A synchronous client is the simplest way to
connect to an external data source. This method enriches
each event with the result of a synchronous query to the
data source. Although a blocking procedure, the advan-
tage of this method is that it can be easily integrated into
existing architectures, and most conventional databases
provide a synchronous client. If a pattern recognition
model is used for enrichment, this method can be applied
if the model is executed in an external service.

• Asynchronous: This method involves using an asyn-
chronous client to connect to the external data source,
allowing for parallel execution of queries and improved
utilization of query times. This requires the availability
of an asynchronous client library. If no such library is
available, asynchronous queries can be simulated with a
custom multi-threading implementation.

Cache. To reduce access to external and potentially slow data
sources, a subset of the data can be cached for faster access and
to reduce dependencies. The data format must be able to be
cached, and the external data should not change frequently. For
aggregation operations, caching can quickly become costly.

• Local Caching: This method caches a subset of the ex-
ternal data within the respective operation of the DSP
system. In case of a cache miss, a query to the external
data source is executed. This method reduces latency
and the load on the external system, and can store non-
serializable objects. The storage capacity of the local
cache depends on the worker node’s storage capacity.

• External In-Memory Database Cache: This method
caches a subset of the external data in an external
in-memory database such as Redis. This creates an
additional synchronous or asynchronous connection to
the in-memory database, in addition to the connection
to the disk-based data source. In case of a cache
miss, an additional query to the disk-based data source
must be executed. Although an entirely new system is
additionally required, the advantage of this method is
that the resources can be managed independently of the
DSP system, allowing for caching of a larger amount of
data. The external cache is also more transparent and
modifiable, making it easier to keep it consistent with
the disk-based database if necessary.

Embedded State. Caching methods maintain a connection to
the external data source, leading to a direct dependency. To
overcome this, this method involves loading the entire external
data into the DSP system as a stream and treating it as another
source. The events are then enriched by a join operation. This
method requires that outsourcing external data is possible and
that the amount of data is within the available resources of
the DSP system. Modern systems such as Spark or Flink have
an included state backend that can store large amounts of
data using RocksDB. However, using a disk-based state in
the DSP system can reduce performance. In-memory state is
recommended for real-time processing, but requires a large
amount of memory. The embedded state can hence often be

Fig. 1. Visualization of infrastructure setup as well as interactions of all
relevant components around the DSP system.

regarded as a special case of local caching.
These enrichment methods can be implemented in common

DSP systems and serve as a foundation for our evaluation.

III. METHODOLOGY

In this section, we present our experiment methodology by
introducing the infrastructure we base our experiments on, the
implemented use cases, and the utilized evaluation metrics.

A. Infrastructure Setup

We select Apache Flink as a representative DSP system
for our evaluation because it fulfills all previously defined
assumptions like exactly-once semantics, fault tolerance, hor-
izontal scalability, near to real-time event processing with
processing one event at a time, and batch processing. Our
complete infrastructure around Flink, illustrated in Figure 1,
is deployed in a Kubernetes cluster to ensure high availability,
fast scaling, and ease of management. Apache Kafka is used
as a messaging platform due to its high scalability, availability,
and fault-tolerance. The different partitions of Kafka are
evenly distributed among the sub-tasks of Flink. External data
source enrichment is performed using Apache Cassandra, a
column-based NoSQL database with high availability and fast
read access. Redis is deployed as a cache and is used as a
popular in-memory key-value NoSQL database. Prometheus,
an open-source monitoring service with an integrated time
series database, is deployed for a successful and meaningful
evaluation. Flink metrics can be easily scraped periodically
and stored in Prometheus for later access.

In general, the deployment of the infrastructure was pa-
rameterized with the aim of conducting the largest possible
number of experiments within the available financial resources,
with some chosen parameters proving appropriate even via an
exploratory approach. The entire infrastructure was deployed
in an 8-node Kubernetes cluster in a single data center of the
Google Cloud Platform (GCP) using the Google Kubernetes
Engine (GKE). Flink was deployed with a parallelism of 8,
which is also true for the keyed window operators used in our
streaming jobs to be presented, and each TaskManager having



TABLE I
KUBERNETES CLUSTER SETUP

Resource Details

Node - Machine c2-standard-8 (32GB memory, 8 vCPUs
with 3.1GHz base frequency)

Node - Disk 100GB, pd-standard (backed by HDD)
Software Docker 20.10, Kubernetes 1.23, Java 11,

Flink 1.14, Kafka 2.8, Redis 7.0,
Cassandra 4.0, Prometheus 2.3, Python 3.7

2 task slots. In contrast, Kafka was deployed with a cluster size
of 3 and each topic with 8 partitions and a replication factor of
3. The Cassandra instance was deployed with replication factor
1 and the SimpleStrategy replication strategy. For monitoring
the Flink metrics, a Prometheus instance was deployed on
a single node. In order to accurately simulate a real use
case, Flink was always deployed on different nodes than the
Cassandra instances using node selectors, since in a real use
case the database is often kept separate, and deploying them
on the same nodes can result in latency advantages. Moreover,
the event generation of the use cases was performed in a
separate deployment in the Kubernetes cluster to simulate
network overhead more realistically. Table I summarizes the
Kubernetes cluster setup and the used software.

B. Use Case Implementations

We implement two representative use cases, one for fraud
detection and another one for log analytics.

For several reasons, fraud detection is particularly well
suited as a use case to evaluate different enrichment methods.
Historical data for enrichment in fraud detection is usually
enormous and may require complex queries to get efficient
results. The data structure can also be complex and outsourcing
a subset or all of the data would be difficult. Additionally, the
constant addition and editing of historical data may impact the
enrichment process. The complexity of fraud detection high-
lights why different enrichment methods can be considered.
Event Structure. For this use case, we are generating credit
card transaction events and writing them to Kafka. Each event
contains three key pieces of information: transaction details,
device information, and location information. The device and
location information each have a hash field, which allows for
unique identification. The transaction part can be identified by
the account and receiver ID, and the transaction ID is unique
across events. Parameters can be used to control the probability
of events containing known information.
Historical Data. We store historical data in the form of trans-
actions in a Cassandra database to enrich transaction events.
Cassandra is a suitable choice because it can efficiently handle
globally made transactions in a distributed setting, and its
column-oriented schema is ideal for storing transaction events
and querying them efficiently. Three separate tables were
created to store device, location, and transaction information.
The partition key for the device and location tables is the
account ID, and the hash value is the cluster key. For the

Fig. 2. Fraud Detection: Various enrichment methods are put to the test.

Fig. 3. Log Analytics: ML models are loaded into the DSP system.

transaction table, the account ID is the partition key, and the
receiver ID and transaction ID are both cluster keys.
Streaming Job. The job, illustrated in Figure 2, reads trans-
action events from Kafka and enriches them with historical
data. Depending on the enrichment method, either the external
Cassandra instance is accessed or the events are enriched with
outsourced data directly in Flink. Since join operations are not
possible with Cassandra, three different queries would thus be
necessary. The subsequent enrichment verifies if the recipient,
device, or location has been used by the account before, and
flags the event as suspicious if it has not. A sliding window
operation is performed on the enriched data stream to analyze
the transaction volume of an account in a certain period of
time. The resulting event includes the total transaction amount,
the number of transactions in the window, and the suspicious
flags. The event is then serialized and written back to Kafka.
Enrichment Methods. We applied various enrichment meth-
ods to the fraud detection use case in Flink. For the
datasource client, two types of enrichment methods have
been implemented: synchronous and asynchronous. The asyn-
chronous method was implemented using the Async I/O
API and the DataStax asynchronous client. For caching,
three different methods were used: local caching with a
LinkedHashMap, local caching with custom partition us-
ing the Flink partitionCustom function, and external
caching using Redis, where the cache was executed in
combination with the asynchronous Cassandra client in the
RichAsyncFunction operation. For embedded state, all
historical data was stored in a Kafka topic as another source
stream and joined with the latest transaction events.

In contrast, our second use case refers exclusively to en-



richment of streaming data with ML models, specifically log
data. Log analytics is important for modern applications, as
logs provide insight into user and system activity and can
help identify errors and suspicious behavior. Our evaluation
of enrichment of streaming events by ML models focuses on
the effects of varying model sizes and numbers, assuming that
different models are required for analysis. The models are
executed embedded in Flink to avoid latency issues that could
arise if the models were run externally in separate services.
Running multiple embedded models is possible but requires
careful management of memory usage to avoid crashes.
Event Structure. Log events are generated as input for the
streaming job. An event contains a key that represents a
specific service from which the log message originates, another
field for the content of the log message, and a timestamp.
Model Source. We assume that ML models will be stored
in an external storage due to their high memory usage.
This allows for efficient combination with other cloud-located
services and easy access and updates of the models. However,
for our use case, the external data source only plays a minor
role, as the models are only fetched from the external data
source once during initialization and then executed locally.
Streaming Job. A pre-trained ML model is used to make
predictions within this job, as depicted in Figure 3. The log
events are read from Kafka, then a Keyed Stream is created
and a tumbling window operation is performed. The pre-
trained model is loaded from Google Cloud Storage into Flink
and processed with the ONNX Runtime, a high-performance
engine for executing ML models that are compliant with the
Open Neural Network Exchange (ONNX) format. The model
is loaded into a ML library-specific session object to run the
model with an input. The enrichment method loads the service-
specific models once from the external data source and then
stores them in the state backend for efficient access. A single
result is generated per window, containing the service key,
predictions, and window timestamps.

C. Evaluation Metrics

The evaluation primarily requires measurement of latency,
which is not recommended to be obtained from Flink’s built-
in end-to-end latency metric as it impacts the cluster’s per-
formance and, in the worst case scenario, only reflects the
queue time for events traversing window operators. Thus, a
custom latency metric was created for the fraud detection use
case, which considers the waiting time, only records the first
occurrence of an event in a sliding window, and stores the final
latency in a Flink metric histogram. The metric can then be
accessed in Prometheus along with other built-in Flink metrics.
For the log analytics use case such custom solution is not
necessary, which is why the latency metric is obtained using
a regular histogram. In addition to latencies, we also consider
the consumption rate as well as system load where feasible.

IV. EXPERIMENT RESULTS

This section presents our experiments and associated results,
and discusses our key findings. To obtain a meaningful evalua-
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Fig. 4. Latencies of data enrichment by synchronous and asynchronous
Cassandra queries. Every 5 minutes, the throughput increases by 100 events/s
and each data point corresponds to the average latency of all sub-tasks.
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Fig. 5. Comparing the actual consumption rate in events/s of the synchronous
and asynchronous enrichment streaming jobs. The generated events/s are
increased by 100 event/s every 5 minutes, which is also reflected in the
consumption rate of both enrichment methods until minute 50.

tion, each experiment was performed three times. The plots of
the results always include the data from all three executions,
whereas the mean of the three data points is highlighted.

A. Fraud Detection Use Case

The fraud detection use case uses the default configura-
tion of the HashMapStateBackend with a checkpointing
interval of 10 minutes to avoid affecting performance as
would be the case when using a performance-intensive state
backend such as the EmbeddedRocksDBStateBackend.
A window size of 10 seconds and a slide size of 5 seconds
were chosen for the sliding window operation, balancing
the detection of fraud and performance requirements. The
chosen parameters ensure that no large state is required during
execution, which could affect latency and distort results.



1) Datasource Clients: The purpose of the first experiment
was to compare the latency and throughput of synchronous
and asynchronous Cassandra clients under different conditions.
The experiment was conducted using throughput rates ranging
from 1,000 to 2,200 events per second in increments of 100
events per second. The results, illustrated in Figure 4, showed
that asynchronous enrichment had a fairly constant latency
that was always lower than the latency of enrichment by
synchronous queries. Synchronous enrichment showed a slight
increase in latency from 1,600 events/s, and a significant
increase from 1,900 events/s, reaching a latency of approxi-
mately 50 seconds at 2,200 events/s. This rapid increase in
latency is due to the maximum throughput being reached,
leading to the back pressure mechanism taking effect, delay-
ing event processing. The comparison of the consumed rate
of the two streaming jobs was measured using the Kafka
metric records-consumed-rate and is depicted in Figure 5.
The data indicated that synchronous enrichment consumes
slightly fewer events per second than asynchronous enrich-
ment. Synchronous enrichment had a maximum throughput
of approximately 1,900 events/s and reached a load of 100%
after 50 minutes ( Figure 6). On the other hand, asynchronous
enrichment had a lower load, and the busy values of the
enrichment tasks only increased slightly and remained below
100ms per second ( Figure 7). In the streaming job with
synchronous enrichment, the enrichment task had the highest
load and reached 100% at 1,900 events/s. In conclusion, the
results showcase the limitations of synchronous enrichment,
and while asynchronous enrichment comes out superior, it
will as well face problems in light of substantially higher
throughput rates due to its technical implications, underlining
the need for caching strategies, as discussed next.

2) Caching Methods: In the previous experiments, it has
become clear that asynchronous enrichment allows both better
latency and higher throughput than enrichment using syn-
chronous database queries. We consequently now evaluate
enrichment methods that use a cache to store database records
combined with asynchronous Cassandra queries. The evalu-
ation was conducted under two factors - the generation of
events and the size of caches. To maintain the uniformity of the
evaluation, each transaction event was required to be unique
and generated uniformly. Also, the number of cache entries
had to be equal to the amount of entries of the external cache.
A total maximum number of cache entries was defined, with
the sum of all cache entries being equal to 24,000. A fixed
throughput of 4,000 events per second was selected for the
latency evaluation, with each execution running for 70 min-
utes. The results, depicted in Figure 8, indicate that caching
using a preceding custom partitioner has the best latency
and cache hit rate of 100% ( Figure 9). With our particular
experiment design, local caching without a preceding custom
partitioner achieved a cache hit rate of only 50% and lower
latency than asynchronous enrichment without cache but worse
latency than caching with a preceding custom partitioner.
The local cache size for each local cache was 3,000. In
contrast, asynchronous enrichment without cache showed a
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Fig. 6. The busy values of the streaming job with synchronous enrichment
as throughput increases. The enrichment tasks clearly take up the highest load
even with the lowest generated throughput (100% load for 1,900 events/s).
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Fig. 7. The busy values of the execution with asynchronous enrichment are
shown with increasing generated throughput. It can be seen that the enrichment
tasks have the highest busy values compared to the other tasks, but the tasks
never exceed 100ms per second of busy time (less than 10% load).

more volatile latency, ranging approximately between 3.3s and
3.5s. Also, enrichment with an external Redis cache performed
comparably bad with a volatile latency and, oftentimes, being
slower than asynchronous enrichment without cached database
entries. The reason for the highly fluctuating latency may
be the overhead incurred by the additional asynchronous
operator and associated network connections, along with the
implementation of the asynchronous Redis client. Although
latency is poor compared to the other enrichment methods in
this evaluation, an external cache has the advantage over local
caches of not being affected when TaskManagers fail and does
not need to be refilled. In order to show how a streaming
job with a local cache behaves in the case of a failure of
all TaskManagers, we conducted an experiment in which all
TaskManager processes were deleted every few minutes. We



chose the streaming job with the enrichment method with local
cache and preceding custom partitioner for the experiment.
Figure 10 shows how the latency behaves in the case of a
failure of all TaskManagers at once. It can be seen that in
the beginning, after restarting the streaming job at minutes 4
and 10, the volatility is comparatively high and then decreases
after a short time and the latency becomes constant again. This
is due to the fact that the cache must first be filled again by
database accesses. Figure 11 shows the corresponding cache
hit rates. It can be seen that after all TaskManagers fail, the
cache hit is back at 100% after a short time. This is because
a single local cache contains only 3.000 entries and with a
throughput of 4.000 events/s it is filled again very timely.
Note that our chosen latency measurement does not account
for waiting time of events at the streaming platform, which
is why we do not see a spike of latency in Figure 10 after
complete failure even though real consumer lag is experienced.

3) State: As an alternative to enriching events using a
cache, we also evaluated data stream enrichment using Flink’s
HashMapStateBackend. Latency is measured over a period of
70 minutes, with a fixed throughput of 4.000 events/s. We
evaluated the enrichment method using two different amounts
of historical transaction events, 2,000 and 200,000, since the
amount of data managed within the Flink cluster has an impact
on latency. This means that depending on the execution, the
available amount of enrichment data is written to Kafka and
is then read by Flink as another data stream to enrich the
current events. The results, illustrated in Figure 12, showed
that as the amount of enrichment data increased, the latency
also increased. However, both methods of enrichment using
the state backend had lower latency and minor fluctuations
compared to enrichment using asynchronous database queries.
Increasing the amount of data could potentially result in in-
creased latency, and a geographically distributed Flink cluster
could further increase network overhead and latency.

B. Log Analytics Use Case

For the log analytics use case, we evaluated the performance
of embedded ML models in Flink with a focus on the
number and size of models. The evaluation used pre-trained
ResNet models, trained on the ImageNet dataset and provided
by the ONNX community. ResNet models from the image
classification domain were selected since different models are
provided in terms of memory capacity. The context of the
models does not fit into the area of log analytics, but the goal
of this evaluation is to achieve a realistic performance analysis
of embedded models. The selected models were ResNet-18
with 18 layers and 44.7 MB memory size and ResNet-101
with 101 layers and 170.6 MB memory size. These models
receive mini-batches of 3-channel RGB images of the form
(N x 3 x H x W), where N is the batch size and H and W
must be at least 224. During the evaluation, the same image
with a batch size of 1 and 224 for H and W was always
selected as input. The models were stored in a local cache
in Flink, which was flushed every four minutes to control the
number of cache misses and create the same conditions for
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Fig. 8. Latency comparison of different cache-based enrichment methods.
Using a preceding custom partitioner evidently yields the most stable latencies.
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Fig. 9. Cache hit rates corresponding to Figure 8. When caching with a
preceding custom partitioner, each key is assigned to a specific task and thus
each cache entry exists exactly once in all local caches, leading to a 100%
cache-hit rate in this evaluation as cache entries are filled without redundancy.

all executions. The throughput chosen for the evaluation was
1000 events/s, and the streaming job was run for 25 minutes
with only 12 different keys that were normally distributed. For
each key, the same model was used, which meant that when
all caches were filled, the same model was cached 12 times.

The evaluation revealed that the Java Virtual Machine
(JVM) Garbage Collector (GC) was slow in freeing the
memory occupied by the ONNX session, which has a similar
memory size as the models. As a result, the memory resources
of a TaskManager were quickly used up if new ONNX ses-
sions were added several times per second, while removing old
ones from the cache. This led to the TaskManager crashing,
and the entire streaming job had to be restarted. It was assumed
that the amount of memory of the models was larger than
the memory capacity of the TaskManagers. To prevent the



0 2 4 6 8 10 12
Time (min)

0.0 k

0.5 k

1.0 k

1.5 k

2.0 k

2.5 k

3.0 k

3.5 k
99

th
 P

er
ce

nt
ile

 L
at

en
cy

 (m
s)

Enrichment Type
async-cache-partition

Fig. 10. Cache-based enrichment with preceding custom partitioner in light
of all TaskManagers failing at once. Stable latencies are restored once the
caches are refilled. Latencies smaller than the stable latencies do not reflect
reality but are the result of Prometheus metric aggregations over time, which
are temporarily corrupted after the complete failure of all TaskManagers.
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Fig. 11. Cache-hit rates corresponding to Figure 10. After the restart of all
TaskManagers, the respective local caches are flushed, which is why cache-hit
rates drop to 0% and then quickly recover over time.

GC from being overwhelmed, the caches were flushed every
four minutes, and the number of cache misses was controlled.
The latencies of the embedded executions of the models were
affected by the loading of the models from Google Cloud
Storage and the subsequent creation of the ONNX session. The
latency was highest at the beginning of the execution due to
these processes. The evaluation showed that the ONNX session
creation time for the ResNet-18 model was almost up to half a
second, while for the ResNet-101 model, it could take over a
second. The prediction duration for the ResNet-101 model was
also more than twice as long as that of the ResNet-18 model.
The maximum execution times of these two processes for both
models are shown in Table II. The latencies of the ResNet-101
model, as depicted in Figure 13, were higher than those of the
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Fig. 12. Comparing the latency of the state enrichment method with two
different data amounts against enrichment by asynchronous database queries.
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Fig. 13. Latencies of the embedded executions of the two ResNet models.
Every 4 minutes, the local cache containing the ONNX sessions was cleared
to test the same worst-case scenario for each execution. The latency spikes
in these periods can be attributed to the creation of the ONNX sessions.

ResNet-18 model, particularly during the periods when the
cache was cleared every four minutes, increasing up to 3.6
seconds during these periods after the latencies normalized
in the first few minutes. Generally, we conclude that while
good latencies can be obtained using embedded ML models,
established frameworks such as Flink are not yet optimized
for such usage, as indicated by our previous findings.

C. Discussion

We presented the evaluation results of different enrichment
methods executed in a real data infrastructure in GCP using
Flink as a representative DSP system. These enrichment meth-
ods were to varying extents tested with two representative use
cases, where the fraud detection use case can be associated
with our defined categories of simple and complex queries, and
the log analytics use case sheds light on a special case from



TABLE II
MODEL DETAILS FOR LOG ANALYTICS USE CASE

Model Size
GCS

Fetch Time
Session

Creation Time
Prediction

Time

resnet-18 44.7Mb 871ms 461ms 90.8ms
resnet-101 170.6Mb 1663ms 1098ms 216.75ms

category finite data sources. The experiments conducted to as-
sess synchronous and asynchronous Cassandra queries showed
that streaming jobs with asynchronous queries have better
performance and are more resource-efficient. The evaluation of
caching enrichment methods revealed that, for the investigated
workloads, using a local cache rather than an external cache
leads to better performance, but places a greater load on the
resources of the respective DSP system. It should be noted
that outsourcing data to a cache is not always possible due to
the complexity of the database queries or the data structure.
The use of state backend for enrichment demonstrated reliable
enrichment of stream events, but the performance decreases
with an increasing amount of enrichment data. Furthermore,
running embedded ML models in Flink is not suitable for
performance-heavy workloads in a single task, and multiple
memory-intensive workloads tend to consume too much of
available resources, causing the JVM Garbage Collector to
free memory slowly. All in all, and regardless of the details of
the implementations, the results presented allow an assessment
of in which case and at which approximate throughput rates
certain methods of data enrichment are appropriate and what
advantages and disadvantages they bring.

V. RELATED WORK

This section discusses related works on unifying batch and
stream jobs, execution of ML models in and out of DSP
systems, joining of stream and disk-based data, and event
enrichment in modern DSP systems with disk-based databases.
Its purpose is to contextualize the contribution of this work in
enriching events in a DSP system with data from disk-based
databases or generated data from a model.
Unified Batch and Stream Applications. Service decoupling
and the complexity of modern end-to-end data pipelines lead
to an increasing overhead that may negatively impact perfor-
mance. Arcon [25] and Neptune [24] address the unification of
stream and batch processing to increase performance by pro-
viding an optimized common intermediate representation and
dynamically prioritizing latency-critical jobs in unified stream
and batch applications, respectively. While modern DSP sys-
tems offer the unified execution of stream and batch jobs, they
cannot keep up with the query capabilities and memory sizes
of modern databases. Enriching events during execution in a
DSP system with additional data from a database leads to the
merging of fast data streams and slow disk-based databases.
Frameworks such as Kafka could be used in combination with
a DSP system as data storage, but this is only applicable for a
small number of use cases, as the query capabilities in Kafka
are fairly limited compared to traditional databases. Therefore,

there are no specific approaches to unifying large-scale data
storage and latency-critical streaming applications to achieve
more effective resource utilization and improved latency.
Model Performance Evaluation. The first performance eval-
uation study of model-serving integration tools in stream
processing frameworks has been conducted in [23] by as-
sessing the internal and external execution of a model in
DSP systems. The integration of ML models assumes that the
DSP system requires multiple models, which may exceed its
storage capacity. Additionally, the study considers different
model sizes and addresses associated memory concerns. The
work demonstrates that there are benefits to using integrated
execution over external execution DSP frameworks, and that
certain model formats offer superior performance.
Data Warehouse Source Updates. Earlier works addressing
the combination of high-speed data streams and slow disk-
based databases involve active data warehousing. In this sce-
nario, a data stream refers to quickly incoming events of source
updates, which the data warehouse must process in real-time.
One of the initial solutions to this issue is the MESHJOIN [27]
algorithm, which has several variations and extensions [28],
[29]. MESHJOIN fuses a high-speed data stream with a disk-
based relationship, under the constraint of limited memory,
using a hash-join. The algorithm scans the entire disk-based
relationship sequentially at high speed, and the incoming
events from the stream are processed in windows and then
combined with the entries from the relationship. This approach
distributes the expenses of the input-output operations across
windows of stream events.
Disk-based Database Enrichment. In [20], an operator for
DSP systems is proposed that enriches incoming stream events
using a cache with data from a relational and disk-based
database in a single node. Depending on whether an incoming
event causes a cache hit or a cache miss, it is processed in a
thread for the respective category. Events causing cache misses
are combined into batches and then used to query the database.
Meanwhile, events causing cache hits are processed in parallel.
After processing, the two sets of events are merged back into
their original order. The paper reports higher throughput with
this approach compared to a record-at-a-time approach. The
experiments were conducted using a simulated DSP system
and a MySQL database. In [21], the authors describe a join
between stream and disk-based data using a micro-batch model
built on Spark Streaming [30] and MongoDB. The approach
considers distributed execution of operators and assumes that
the external disk-based data volume is larger than the storage
capacity of the DSP system. To minimize database access, a
cache is implemented in Spark that stores database entries
in their own RDDs. If data is unavailable in the cache, a
query is generated for multiple cache miss keys to reduce
the number of queries. The authors also implemented a load-
balancing mechanism by dynamically adjusting cache sizes in
the DSP system to regulate the database load. In [22], the
authors extended [21] to support similarity joins.



VI. CONCLUSION

This paper conducted an assessment of various data enrich-
ment methods for DSP systems. To account for a broad range
of practical scenarios, three categories of data enrichment use
cases were identified, covering database queries of different
complexity as well as the embedding of state, and corre-
sponding enrichment methods were designed and executed
in Apache Flink. To realistically evaluate these methods,
representative use cases were implemented and run in a data
infrastructure in a public cloud. Our results showcase the
advantages and limitations of the investigated methods, under-
lining the necessity for both sophisticated caching strategies
for conventional data as well as better integration of embedded
ML models into existing or future DSP systems.

To build on the work presented in this paper, future research
could focus on building a dynamic caching mechanism that
adapts to the access speeds of sources and different workloads.
Another promising direction is to explore methods that are
reflecting more specialized situations, such as using GPU
acceleration or cloud-based methods like serverless.
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