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Abstract—Cloud data centers largely rely on virtualization
to provision resources and host services across their infras-
tructure. The scheduling problem has been widely studied and
is well understood when the resource requirements and the
expected lifetime of services are known beforehand. In contrast,
when workloads are not known in advance, effective scheduling
of services, and more generally system containers, becomes
much more complex. In this paper, we propose GENPACK,
a framework for system containers scheduling in cloud data
centers that leverages principles from generational garbage
collection (GC). It combines runtime monitoring of system
containers to learn their requirements and properties, and a
scheduler that manages different generations of servers. The
population of these generations may vary over time depending
on the global load, hence they are subject to being shut down
when idle to save energy. We implemented GENPACK and
tested it in a dedicated data center, showing that it can be up
to 23% more energy-efficient that SWARM’s built-in scheduling
policies on a real-world trace.
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I. INTRODUCTION

Resource allocation in cloud data centers is an impor-
tant yet complicated problem. On the one hand, over-
provisioning tends to waste resources—be they monetary or
environmental. On the other hand, overbooking yields poor
performance and may lead to service level agreement (SLA)
violations, which also has financial consequences.

To increase the flexibility of task management, cloud data
centers largely rely on virtualization to run applications and
services for their customers. While some providers offer
dedicated servers at a premium price, most usually they
co-locate several services and/or jobs on the same physical
servers in order to optimize the use of available resources
and reduce the associated costs.

Efficient mapping of services and jobs—packaged as
system containers—to hosts is non-trivial as it should take
into account, not only the resources available on the possibly
heterogeneous machines, but also the properties and require-
ments of the containers. For instance, some containers might
require much memory but little CPU or I/O resources, while
others are CPU-intensive, or primarily perform network and
disk accesses. To make the problem worse, these properties
and requirements are not necessarily known in advance and
must be learned at runtime.

In this paper, we therefore introduce GENPACK, a novel
scheduling framework for containers placement and migra-
tion in cloud data centers, which leverages principles from
generational garbage collection (GC) [1], [2]. The core idea
of GENPACK is to partition the servers into several groups,
named generations. A first generation of servers, the nurs-
ery generation, hosts new containers whose workload are
not known. There, the system containers are automatically
monitored to determine their resource profile on reference
machines in order to learn their characteristics. To that end,
we designed a monitoring framework that combines local
statistics and power estimations from the CADVISOR [3] and
BITWATTS [4] agents.

Once their workload is properly understood, the system
containers are migrated to a server of the second generation,
the young generation. The placement of system containers
in the young generation is performed according to resource-
aware scheduling policies, and the servers in this generation
are in charge of hosting containers whose lifetime is rela-
tively short or unknown.

Finally, if a container runs for long enough in the young
generation, it will be migrated to the old generation. Servers
in this last generation are the most stable and tend to host
long-term containers. Placement is performed so as to opti-
mize the load of the machines by co-locating containers that
have complementary resource requirements. For instance, a
node that has high CPU utilization, but underloaded memory,
will be candidate to host a memory-intensive container with
low CPU requirements.

GENPACK allows us to take advantage of the different
properties of the server generations and the system con-
tainers that they host to flexibly provision resources and
thus save energy. New machines can be added to each
generation as needed.This allows us to elastically adapt to
demand and load variations—e.g., between day and night—
and take advantage of server-specific properties—e.g., use
the most energy-efficient machines for the old generation.
Furthermore, by rationalizing the usage of some servers
while shutting down others, one can reach closer to energy-
proportional computing [5].

GENPACK provides several key original features: it sup-
ports heterogeneous data centers and servers with different
properties (e.g., single- vs. multi-core, energy-efficient vs.



fast, with or without HW acceleration, etc.); it supports
containers whose workload and duration are not known
in advance (which is the general case for many applica-
tion domains) and must be learned at runtime; it supports
fluctuating workloads by adapting the number of servers
in the different generations, thus enabling energy-efficient
container scheduling in cloud data centers.

We have implemented our approach within the DOCKER
SWARM framework [6]. In particular, GENPACK includes a
comprehensive monitoring framework, as well as resource
management, container migration, and scheduling mech-
anisms. We have tested our system in a dedicated data
center with real-world traces from [7]. Our evaluation reveals
that GENPACK is up to 23% more energy-efficient than
SWARM’s built-in schedulers with a real-world trace.

This paper is organized as follows. We first introduce a
motivating scenario in §II and describe the overall archi-
tecture of GENPACK in §III. We present the monitoring
framework and the scheduling mechanisms respectively in
§IV and §V. We briefly discuss some implementation notes
in §VI and provide a comprehensive evaluation in §VII.
Finally, we review related work in §VIII and conclude in
§IX.

II. MOTIVATING SCENARIO

To illustrate and assess the benefits of proper container (or
VM)1 placement, we first illustrate the limitation of existing
scheduling policies on a simple scenario.

We define two types of containers: cpu-heavy containers
require 2 CPU cores and 1 GB of RAM, while mem-heavy
containers require only 1 CPU core but 2 GB of RAM. We
set up a cluster of nodes with 8 available cores and 8 GB
of RAM, running UBUNTU SERVER (v15.10) and DOCKER
(v1.10.1). The containers are managed by Docker Swarm
(v1.2.0) and they execute the STRESS-NG benchmark [8]
with a fixed total number of operations before terminating.

We deploy the containers in a dedicated cluster using four
placement strategies:

• spread places new containers on the node with the
least number of containers;

• binpack deploys containers on the same node until
its resources are totally exhausted before moving to the
next node;

• random dispatches containers at random;
• custom assigns containers to nodes so that they fit

into the least number of nodes, by taking into account
both the CPU and memory requirements.

For the sake of illustration, assume that a node can host
(i) 3 cpu-heavy, or (ii) 3 mem-heavy, or (iii) 2 cpu-heavy
and 2 mem-heavy containers of each type. In that case, a

1In the remaining of the paper, we primarily consider containers, which
are essentially lightweight VMs, and we use the two terms interchangeably.
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Figure 1. Placement of the containers with 3 scheduling strategies for a
given arrival order of containers, and assuming that a node can host 3 cpu-
heavy containers, or 3 mem-heavy containers, or 2 of each type (top). While
spread and binpack would require 4 nodes to schedule 12 containers,
custom requires only 3 (bottom).

scheduler that takes into account the nature of the workload
can obviously perform more efficient container placement.

Figure 1 shows a simple execution where the 12 contain-
ers (6 of each type) are registered in the following order:
4 cpu-heavy, 2 mem-heavy, 2 cpu-heavy, 4 mem-heavy.
Containers specify their resource needs and the system
performs placement accordingly without overbooking. A
possible container scheduling for the spread, binpack,
and custom strategies is shown in the bottom part of the
figure. As one can see, with 3 nodes available the first
two strategies can only schedule 10 containers, whereas the
custom strategy can place all of them on the 3 nodes.
Although very simplistic, this example illustrates the need
for scheduling strategies that are aware of the requirements
of the containers and the properties of the workloads.

In our actual experiment, we set the CPU load of contain-
ers to 20,000 “bogo” operations2 for each CPU core. This
corresponds to a total of 40, 000 and 20, 000 operations for
cpu-heavy and mem-heavy containers, respectively. Figure 2

2Fake operations that represent the unit of load of the benchmark.
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Figure 2. Workload for the two container types (cpu-heavy and mem-
heavy) deployed on a single host. Each container runs for one minute, with
an idle period in between.

shows the baseline workloads induced by the two types of
containers deployed on a single node, running one after
the other within the span of 5 minutes. As expected, cpu-
heavy containers consume more energy—if we subtract the
idle power, they require almost 50% more than mem-heavy
containers—but they are less memory demanding.

Then, we design a more elaborated deployment scenario
where we deploy start 20 containers, alternating 5 cpu-
heavy and 5 mem-heavy. In all four deployment scenarios,
we gather several measures (e.g., memory allocations, CPU
usage, power consumptions). Results are aggregated values
over all nodes: number of CPU operations by time unit (ns),
memory used in GB, and cumulative power (idle power and
dynamic consumption) in W . We observe that the custom
strategy results in a more memory- and energy-efficient
schedule because one of the nodes can be turned off—
hence saving the idle power—without noticeably changing
the number of operation executed—i.e., performance.

As a summary, we aim at delivering a new container
scheduler, GENPACK, that automatically learns from con-
tainer’s workloads to evenly distribute their deployment
across a reduced number of nodes, thus drastically improv-
ing the power usage efficiency of a cluster. As demonstrated,
the state-of-the-art fails to achieve this objective as the
spread strategy distributes the containers across all the
nodes and binpack adopts a greedy heuristics to allocate
containers node per node. Given a set of available nodes N ,
we therefore aim at proposing a solution that minimizes the
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Figure 3. The custom strategy saves memory and energy without
affecting performance thanks to more efficient container scheduling.

number of powered nodes required to host a set of containers
C, thus ensuring that |genpack(N,C)| ≤ |binpack(N,C)| ≤
|spread(N,C)| = |N |, where f(N,C)| indicates the number
of nodes necessary for scheduling C containers on N nodes
using algorithm f. By doing so, GENPACK reduces the
overall power consumption of a cluster without impacting
the containers’ performance, since hosts are not energy
proportional (as shown in Figure 2).

III. GENPACK ARCHITECTURE

In this section, we provide an overview of the software
architecture of GENPACK, as well as its main components
and their interactions. Further details about the implemen-
tation of these components and how they operate are given
in the following sections.

A. Generations

As previously mentioned, GENPACK splits the nodes of
a cluster into multiple generations, each responsible for
specific types of containers and tasks. The rationale is that,
by specializing nodes for a given type of workloads, one can
handle system containers whose properties are not known
in advance or are dynamically evolving, while at the same
time optimize the whole system’s efficiency by placing the
containers on the most appropriate nodes.

Along the same lines as generational garbage collectors
in managed languages, GENPACK considers 3 generations:
the nursery, the young generation, and the old generation,
as illustrated in Figure 4.
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Figure 4. GENPACK’s different generations.

The nursery consists of a set of reference nodes that
are representative of servers in the data center and whose
properties are well understood. A container that has not yet
been profiled will first execute in the nursery.3 During its
first period of execution, GENPACK will monitor its resource
requirements as well as its power consumption. To that end,
it leverages system-level metrics provided by CADVISOR
(see §IV) and power information from BITWATTS [4]. This
observation phase allows GENPACK to establish a profile for
the container.

Once a container’s properties are known, and assuming
that it did not complete its execution, it is moved to the
young generation (“placement” phase) on a server that has
sufficient resources available considering the container’s
specific requirements (CPU, memory, network, etc.). The
young generation hosts containers that have recently started
their execution and whose lifetime is still unknown. If
the container survives long enough, it moves to the next
generation. The reasoning behind this placement strategy
is that, similarly to in-memory data objects, a significant
portion of the containers are expected to have a short
lifetime.4Furthermore, as the young generation is the most
exposed to load variations (e.g., when many new containers
are simultaneously launched), it will provide mechanisms
for elastically scaling up and down, according to demand.
In particular, nodes can be completely turned off during
periods of low load in order to considerably reduce the
energy consumption of the cluster.

Finally, the old generation consists of stable and power-
efficient servers that host the long-running containers. The
placement of containers on the nodes (“consolidation”

3Note that containers can skip the nursery and directly go to the next
generation when previously profiled.

4We assess this statement in Section VII.
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Figure 5. GENPACK’s abstract components and their interactions.

phase) is performed in such a way that they occupy the
minimum number of servers in order to optimize resource
and power usage, as motivated in §II. Barring important
workload variations, containers do not need to migrate
further once they are on an old generation node.

The actual monitoring and scheduling operations that
drive the migrations between generations are described in
§IV and §V.

B. System components

From a high-level perspective, GENPACK is composed of
three main components:

• The monitoring module is responsible for keeping track
of resources consumption in the system.

• The placement and migration module handles the de-
ployment of containers and their relocation to different
nodes as they move across generations.

• The scheduling module contains the algorithms that or-
chestrate and take decisions regarding container place-
ment and migrations, based on the input received from
the monitoring module.

The role and interactions between these components are
schematically illustrated in Figure 5.

IV. CONTAINER AND NODE PROFILING

System containers can exhibit a wide diversity of prop-
erties and requirements, from CPU-intensive tasks running
for a short duration to longstanding memory-intensive ap-
plications serving user requests. In such a context where
the workloads are unknown, it is particularly challenging to
ensure an efficient scheduling of these containers. We there-
fore propose to introduce a resource profiling phase within
GENPACK to automatically learn the resource requirements
of a container during the beginning of its execution, and
to subsequently use this information to compute a resource
envelope that will help the GENPACK scheduler to appropri-
ately place the container on the best fitting node for the rest
of its execution. In particular, this container profiling phase
is performed within the nursery and young generations of
GENPACK and is complemented with a monitoring of the
nodes located in the young and old generations in order to
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Figure 6. Overview of the monitoring support in GENPACK.

maintain a up-to-date cartography of available resources in
the cloud data center.

Profiling the resources consumption.: Upon deploy-
ment of a new container within the nursery generation,
GENPACK uses a CADVISOR daemon [3] to collect, aggre-
gate, process, and export metrics about running containers
every 30 seconds. In particular, CADVISOR logs resource
isolation parameters, historical resource usage, histograms
of complete historical resource usage, and network statistics
for each system container running on a DOCKER host.
Collected metrics are automatically exported towards an
INFLUXDB service [9] hosted on the master node (see Fig-
ure 6). INFLUXDB provides a time-series database to store
cluster-wide metrics per container, according to a specific
data retention policy (x minutes in GENPACK). Whenever
needed, GENPACK can therefore query INFLUXDB to learn
about the containers’ workloads.

Computing the container envelopes.: Periodically,
GENPACK picks the containers running in the nursery gen-
eration and triggers a scheduling phase for all of them. As
part of this phase, GENPACK queries INFLUXDB to convert
raw resource metrics into container envelopes, which will
be used by the scheduler to estimate the expected resource
consumption. In particular, for each resource, GENPACK
first computes the metrics distribution and extracts the 90 th

percentile value as a component of the resource envelope.
Then, GENPACK splits the set of containers into k clusters
by applying the k-means algorithm, which belongs to the
category of unsupervised learning approaches. For example,
we can set k = 4 to segregate 4 classes of CPU-, disk-,
network-, and memory-intensive workloads into 4 container
envelopes.

Finally, within each envelope, containers are ordered per
decreasing resource consumption score, which is computed

GenPack
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Figure 7. Container and node profiling in GENPACK.

for each enclosed container i as:

scorei =

√
(
cpui∑
cpu

)2 + (
diski∑
disk

)2 + (
neti∑
net

)2 + (
memi∑
mem

)2 .

The resulting container envelopes are posted to the GEN-
PACK scheduler, which is in charge of placing the containers
among the nodes of the young generation.

Beyond this first scheduling phase, GENPACK keeps
monitoring and profiling the containers within the young
generation in order to consolidate the resource envelope prior
to a later migration in the old generation.

Maintaining the node availability cartography.: GEN-
PACK monitors the resource availability of nodes within
the young and old generations. For each generation, it uses
this information to rank the nodes according to resource
availability, least available nodes first, by computing for each
node j the availability level as:

availabilityj =
√

cpu2
ratio + disk2

ratio + net2ratio +mem2
ratio ,

which corresponds to the norm of the resource vec-
tor ~rj = (cpuratio diskratio netratio memratio) that
GENPACK extracts from INFLUXDB. This ranking of nodes
will then be used by the scheduler to find the first fitting
node to host a container, ultimately minimizing the number
of hosts to be used—i.e., that need to be powered up.

V. CONTAINER SCHEDULING

Once the container profiles are identified and the as-
sociated resource envelopes have been computed by the
monitoring module of GENPACK, the scheduling module
builds on these resources estimations to identify the best
fitting node for each of the container executing in the nursery
generation.

More specifically, Algorithm 1 describes the scheduling
strategy applied by GENPACK to migrate a set of profiled
containers at runtime. The scheduling phase is triggered for
a given set of container envelopes and available nodes.
The algorithm starts by homogeneously blending the con-
tent (i.e., container descriptions) of the envelopes (line 2
and lines 17–31) to increase of the diversity of containers
per node. From there, it iterates over this ordered set of
containers to be scheduled (line 5) and picks the first
node n among the ordered list of available nodes (as



Algorithm 1 Container scheduling in GENPACK.
1: procedure SCHEDULE(envelopes, nodes)
2: containers← BLEND(envelopes)
3: for c ∈ containers do
4: resc ← RESOURCES(c)
5: for n ∈ nodes do . Find the best node for c
6: availn ← AVAILABILITY(n)
7: if MATCHES(resc, availn) then
8: n← UPDATE(n, resc)
9: nodes← SHIFTLEFT(nodes, n)

10: MIGRATE(c, n) . Async. migration
11: break . c succeeds to be scheduled
12: end if
13: end for
14: ESCAPE(c) . c fails to be scheduled
15: end for
16: end procedure
17: function BLEND(envelopes)
18: list← {}
19: emptied← true
20: repeat . Blend until all envelopes are emptied
21: emptied← true
22: for env ∈ envelopes do
23: if not ISEMPTY(env) then
24: list← list ‖ HEAD(env)
25: env ← TAIL(env)
26: emptied← ISEMPTY(env)
27: end if
28: end for
29: until emptied
30: return list
31: end function
32: function SHIFTLEFT(nodes, node)
33: i← INDEX(nodes, node)
34: n← LENGTH(nodes)
35: list← nodes[0 : i− 1] ‖ nodes[i+ 1 : n− 1]
36: i← 0
37: score← AVAILABILITY(node)
38: while score ≥ AVAILABILITY(list[i]) do
39: i← i+ 1
40: end while
41: return list[0 : i− 1] ‖ node ‖ list[i : n− 1]
42: end function

explained in the previous section) that matches the resources
requirements of the container c (line 7). Upon resource
matching, the estimation of the node’s resource availability
is updated accordingly (line 8) and the order of available
nodes is refreshed by shifting the selected node n towards
the head of the ordered list (line 9 and lines 32–42). By
reasoning on such resources estimations, GENPACK can
therefore trigger the migration of the container c to the node
n asynchronously (line 10) and thus keep scheduling the

remaining nodes in parallel. If none of the available nodes
fits the resource requirements of the container c, the escape
trigger of GENPACK (line 14) is used to provision a new
node within the young generation, migrate the container c
on this new node, and add the node to the list of available
nodes.

The intuition behind this algorithm is to ensure a better
distribution of resource consumption and power efficiency
of the infrastructure by increasing the entropy (in term of
resource diversity) of the containers deployed within each
node. Furthermore, by reasoning on resource estimations
(computed during the monitoring phase) instead of real-time
metrics, GENPACK can increase the scheduling parallelism
and thus absorb the delay induced by the container migration
process (including state snapshotting, binary transfer, remote
provisioning steps).

VI. IMPLEMENTATION

DOCKER SWARM is implemented in Go, but it offers mul-
tiple bindings for other programming languages. We fully
implement GENPACK in the Ruby programming language
(v2.3.1). In particular, we based our code on gem docker-
api [10], a lightweight Ruby binding for the DOCKER RE-
MOTE API, using DOCKER API (v1.16) [11], compliant with
the one used by DOCKER SWARM(v1.22). The scheduler
orchestrates the containers by leveraging RESQUE [12], a
REDIS-backed Ruby library for creating background jobs.

In our evaluation, we map containers to jobs and rely
on a RESQUE-based scheduler to timely deploy them over
the DOCKER SWARM. GENPACK is released as open-source
and is freely available at https://bitbucket.org/GenPackTeam/
genpack-testbed.

VII. EVALUATION

This section reports on a detailed evaluation of the GEN-
PACK prototype. More specifically, we describe our exper-
imental settings in §VII-A. §VII-B characterizes the real-
word trace used in our experiments, focusing in particular
on the simplifications that we applied to make it applicable
in our dedicated data center. We present the performances
of the GENPACK approach in terms of job completion
and energy impact when compared against different default
strategies in §VII-D and §VII-E, respectively. Finally, §VII-C
offers an insider-view on the dynamics of the generations in
terms of running containers.

A. Evaluation settings

We deploy and conduct our experiments over a cluster
machines interconnected by a 1Gb/s switched network.
Each physical host features 8-Core Xeon CPUs and 8GB
of RAM. We deploy dedicated virtual machines (VM) on
top of the hosts. The KVM hypervisor, which controls the
execution of the VM, is configured to expose the physical
CPU to the guest VM and DOCKER container by mean



of the host-passthrough option to access optimized
CPU instruction sets [13]. The VMs exploit the virtio
module for better I/O performances. For the sake of cluster
management simplicity, we deploy the DOCKER daemon
(engine v1.12) on top of the VMs. Note however that
we did not observe sensible performance differences when
deploying the DOCKER containers on bare-metal.

The scheduling of the containers is orchestrated by
DOCKER SWARM (v1.2.0), the default scheduling frame-
work supported by DOCKER. SWARM comes with a set
of predefined scheduling strategies: we compare GENPACK
against each of those along several axes [14]. The same
strategies are supported by the recently released DOCKER
ENGINE (v1.12) or other VM/container schedulers (e.g.,
OPENNEBULA) [15].

Our cluster is composed of 13 hosts: one acts as the
SWARM master node, orchestrating the deployments, while
the remaining worker nodes join the SWARM pool to execute
the jobs. The cluster thus accounts for 96 cores and 96GB of
RAM in total. Unless specified otherwise, the 3 generations
used by the GENPACK strategy are composed as follows:
5 SWARM nodes in the nursery, 4 in the young generation,
and 3 in the old generation.

B. Google Borg Trace

To evaluate GENPACK under realistic settings, we use
a subset of the Google Borg Trace [16], [17]. The trace
provides detailed informations about the duration of the jobs
and their demanded resources (CPU quotas, memory, etc.).
Note that it is outside of the scope of this paper to provide a
full characterization of the Google trace, as several ones exist
already [18]. The original trace is unmanageable for anyone
but major companies with huge clusters that have sufficient
hardware resources to met the demands of all concurrent
jobs. Therefore, to deploy the workload into our data center
while, at the same time, retaining the same overall workload
and realistic load patterns, we sample the original trace to
deploy 1/100th of the original jobs.

In terms of resource requirements, the original trace de-
scribes each job’s demanded resources scaled to the Google’s
most powerful node in that given Borg cell (e.g., a request
for 1.0 would map all the CPU cores of a machine to a
given job, and similarly for the memory). We follow the
same principle by mapping those to the hardware resources
available in our cluster.

Figure 8 shows the dynamics of the sampled workload
in terms of concurrently executing jobs. The sampled trace
consists of 49, 202 jobs, with a peak of 102 concurrent jobs,
and an average job submission rate of 68.3 jobs per minute.

For practical reasons, our experiments only consider the
first 12 hours of the trace, instead of the whole available
period of 29 days. Jobs that cross the 12-hour mark are
killed abruptly. We filter out jobs longer than 50 minutes,
as they represent less than 20% of the jobs in the original
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trace and are not very meaningful given the 12-hour period
consider. Furthermore, in our sampling we only take into
account the jobs that complete successfully.

Figure 9 presents the duration of the jobs from the
sampled trace as a cumulative distribution function (CDF).
The considered jobs have a lifespan between 39 s (the
5th percentile) and 50m (the 100th percentile). Figure 10
depicts the memory and CPU workload injected by the trace
on our cluster. We observe peak allocations of 42 cores and
40GB of total memory required at any given time.

C. Inside the GENPACK generations

The GENPACK strategy involves the dispatch of con-
tainers and their following migration into the young and
the old generations, according to the informations gathered
during the automatic profiling phase. Figure 11 shows the
migrations occurring, during the first 2 hours, from/to the
generations when DOCKER SWARM uses the GENPACK
strategy. We complement these results by looking at the total
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number of active hosts for each generation, as shown in
Figure 12. The sampled Borg trace triggers 131 migrations
from the nursery to the young and 50 from the young to
the old generation. These results partially derive from the
chosen configuration of monitoring periods. We postpone to
future work a full sensibility analysis of these parameters
with respect to the Borg trace.

While performing these experiments, we observe differ-
ent replay timings—i.e., the time required to completely
inject the Borg trace in our cluster—between the scheduling
strategies under test. Given the ideal duration of 1 hour,
the random strategy completes in 1h19m54s, spread in
1h02m42s, binpack in 2h22m5s and finally the GENPACK
strategy in 2h37m42s. These differences can be explained
by the different load on the DOCKER daemon running on
the host VMs and in general the ability to load balance
the containers across the hosts and VMs. It is important to
stress that these results correspond to the costs of injecting
the Borg trace with our prototype, but do not directly
reflect the system costs of scheduling in real conditions. In
particular, as we show in the following Section VII-D, the
four strategies are equivalent with respect to job completion
times.

D. Job completion time

We compare the observed job completion time when using
the default SWARM strategies against the GENPACK strategy.
Figure 13 shows that our approach does not impact nega-
tively the executing time of the jobs. The tested strategies
result in the same long tail of few longer jobs as well as the
same inflection point for the 90th percentile. Instead, the

 0

 20

 40

 60

 80

 100

0 10m 20m 30m

C
D

F
 (

%
)

Job Duration

Google Borg Trace - Job Completion Time

random
spread

binpack
genpack

Figure 13. Distribution (CDF) of job completion times.

4 strategies produce the same job completion distribution,
and thus offer the same experience to the end-users of a
GENPACK cluster. Given the reported job completion times,
we can conclude that GENPACK does not over-commit
the cluster resources and rather offers a resource-efficient
scheduling approach.

E. Energy impact

We demonstrate the interest of adopting the GENPACK
strategy for a cloud data center by comparing its energy im-
pact to the default SWARM strategies. We rely on BITWATTS
probes to continuously report on the container’s and node’s
power consumption. Figure 14 shows our results. We present
the normalized results against the spread baseline. While
the binpack strategy saves up 9% of energy compared to
spread default built-in strategy, GENPACK outperforms the
existing strategies by saving 23% of the cluster consump-
tion. These impressive results are due to the capability of
GENPACK of i) packing efficiently system containers onto
a reduced number of nodes per generation and ii) turning
off unused nodes in each of the generations. This result
suggests that the GENPACK approach can lead to sensible
savings for cloud data centers. In particular, our evaluation
based on real-world traces considers a large diversity of jobs’
durations and profiles as well as incoming workloads, even
though we could not inject the full Google Borg Trace.

We can also observe that the deployment of additional
containers for monitoring the resource consumptions and
computing the container envelopes does not penalize the
power usage efficiency of GENPACK. We can therefore
conclude that GENPACK can achieve the same performances
as existing scheduling strategies of DOCKER SWARM, but at
a drastically reduced cost.

VIII. RELATED WORK

Resource management and scheduling is an important
topic. Many researchers have addressed various aspects of
scheduling resources during the last decades. Scheduling has
been addressed in the context of GRID computing [19],
distributed systems [20], HPC [21], batch processing [22],
MapReduce [23], and more recently in the context of
VM [24] and container scheduling [25] in large clusters.
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Distributed job schedulers like the CONDOR sched-
uler [20] performs a match making between a job waiting to
run and the machines available to run jobs. Hence, each job
explicitly describes its resource requirements and also a rank
expression that permits the scheduler to select the machine
that is most suited to run this job. Also, the resources of a
machine have to be explicitly described. In GENPACK, we
avoid the need to describe jobs and machines by performing
an automatic profiling of the containers and nodes (cf.
Section IV).

The OPENSTACK NOVA scheduler does not consider CPU
load for the assignment of VMs [24]. The scheduling in
OPENSTACK, no matter the selected strategy, is rather based
on statically defined RAM and CPU size of the VM, known
as flavors [24]. In our experience, the simple round-robin
scheduler results in many cases in situations where all hosts
run some VMs and none of the hosts can be switched off
to reduce the energy consumption (cf. Section II).

OPTSCHED [26] compares the energy implications of a
round robin scheduler, a first fit scheduler, and an optimized
scheduler that knows the run time of (some of) the VMs
upon scheduling. Knowing the run times before starting a
VM helps reduce the total energy consumed by a cluster.
In GENPACK, however, run times are not known a priori
and GENPACK is able to automatically learn the profile that
is used by the scheduler along generations to improve the
energy efficiency of the cluster (cf. Section VII).

YARN [23] is a two-level scheduler that can handle
multiple workloads on the same cluster. It is request-based
and supports locality of scheduling decisions such that jobs
can, for example, access data on local disks to avoid remote
accesses via the network. Nonetheless, the scheduling in
YARN implements a strategy close to the spread strategy of
DOCKER SWARM, thus suffering from the same limitations
in terms of power usage efficiency.

Google developed a series of container management sys-
tems during the last 10 years [25]: BORG, OMEGA, and
more recently KUBERNETES. Initially, Google started with
a centralized container management system called BORG,
which remains the main system in use by Google [7].
OMEGA is based on the lessons learned from BORG and
has a principled architecture that includes a centralized
transactional store and an optimistic concurrency control.

In particular, the OMEGA architecture supports multiple
concurrent schedulers. Finally, KUBERNETES is an open
source container system that focuses on simplifying the task
of application developers and has less focus on maximizing
the utilization of clusters—which is the focus of OMEGA
and BORG. Compared to GENPACK, all these approaches
does not incorporate the concept of generations within the
cluster to automatically learn about the container profiles at
runtime.

DOCKER SWARM is very similar to KUBERNETES in
that it aims to support cloud native applications. SWARM
permits users to define applications consisting of a set of
containers. The focus is on simplifying the typical tasks of
the application developers like load balancing, elasticity, and
high availability. Unlike GENPACK, the main goal of Swarm
is not on ensuring a high utilization of a compute cluster,
but this paper demonstrates how we succeed to extend it in
order to address this concern.

IX. CONCLUSION

Efficient VM or container scheduling is particularly crit-
ical in cloud data centers to not only provide good perfor-
mance, but also minimize the hardware resource required for
running concurrent applications. This can, in turn, reduce the
costs of operating a cloud infrastructure and, importantly,
reduce the associated energy footprint. In particular, when
efficiently packing containers on physical hosts, one can save
significant amounts of energy by turning off unused servers.

In this paper, we propose GENPACK, a new scheduler
for containers that borrows ideas from generational garbage
collectors. An original feature of GENPACK is that it does
not assume the properties of the containers and workloads to
be known in advance. It relies instead on runtime monitoring
to observe the resource usage of containers while in the
“nursery”. Containers are then run in a young generation
of servers, which hold short-running jobs and experience
relatively high turnaround. This collection of servers can
also be elastically expanded or shrunk to quickly adapt
to the demand. Long-running jobs are migrated to the old
generation, which is composed of more stable and energy-
efficient servers. The containers in the old generation run for
a long time and typically experience relatively even load,
hence they can be packed in a very efficient way on the
servers without need for frequent migrations.

We have implemented GENPACK in the context of
DOCKER SWARM and evaluated it using a real-world trace.
Our comparison against SWARM’s built-in schedulers shows
that GENPACK does not add noticeable overheads while
providing more efficient container packing, which can result
in important energy savings.

Our perspectives for GENPACK includes a careful sen-
sitivity analysis of key parameters like the k-means value
or the scheduling period. We also plan to evaluate the
performances of GENPACK in a long-running deployment



evolving not only CPU- and memory- intensive containers,
but also network- and disk-intensive ones.
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