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Abstract— In this paper, we present a solution to generate
semantically richer descriptions and instructions for driver
assistance and safety. Our solution builds upon a set of
computer vision and machine learning modules. We start
with low-level image processing and finally generate high-level
descriptions. We do this by combining the results of the image
pattern recognition module with the prior knowledge on traffic
rules and larger context present in the video sequence. For
recognition of road markings, we use a SVM based classifier
and HOG based classifier. We test our method on real data
captured in urban settings, and report impressive performance.
Qualitative and quantitative performance of various modules
are presented.
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I. INTRODUCTION AND RELATED WORK

Semantic understanding of the scene is one of the ultimate
goals of computer vision. In case of natural outdoor envi-
ronment this problem becomes extremely complex. When
employing computer vision for designing safety systems or
for driver assistance, there has been a persistent need for
generating semantically rich descriptions and instructions.
This work is a step in this direction. Our solution enhances
the state of the art in recognition, and attempts to bridge
the semantic gap of “recognition as labelling” and “human
friendly understanding”.

There have been many works in the past that recognize
isolated road signs for various applications including safety
and autonomous navigation [1]–[11]. However, the recogni-
tion capabilities of these methods are often limited to assign
a label to the symbol, and possibly localize it in the image.
In this work, we extend the recognition to richer semantic
understanding that exploits the larger context of the road
markings in time and space. Exploiting the context for better
understanding of visual data has emerged as a major direction
of research in the recent past [17], [18]. In our setting,
context includes the presence or absence of certain other
symbols in present and previous frames. This high level
reasoning starting from the isolated recognition is carried
out by integrating the top down and bottom up cues in the
navigation.

Our objective is to build human-like understanding from
the visual cues using video stream captured from a moving
car. Our solution is characterised by the following aspects:
(i) We process the video captured using single monocular

camera and design a low cost solution (with minimal hard-
ware requirements) for the safety and driver assistance. (ii)
We start with recognition of isolated symbols or markings
(such as zebra crossing) on the road and move to semantic
descriptions (such as “You may anticipate a zebra crossing
soon and slow down”) (iii) Our system learns the co-
occurrence patterns of the symbols (such as “zebra crossing”
and “diamond”), and uses it for generating descriptions
which are richer, predictive and semantic (iv) we use ideas
from machine learning so that the solution is easily adaptable
to a new situation (a new city or a new imaging conditions)
with minimal supervision.

The problem of autonomous navigation and driver as-
sistance using computer vision techniques isn’t new and
has been studied well in recent past. Most of the work in
this area can be broadly classified into two categories: (i)
Computer vision based analysis of road/traffic scenes and (ii)
Computer vision based vehicle safety systems. Road/traffic
scene understanding can either use static cameras [12], [13]
or can involve cameras mounted on moving vehicles [2]–
[11]. Modern vehicles are getting equipped with various
sensors for advanced functionalities. This has led to a
surge in research activities for vehicle safety and navigation
involving vehicle mounted sensors. Vision is an important
component of modern smart vehicles. Many modern vehicles
are equipped with safety systems that warn drivers and take
control over the drive in case of an emergency. For example,
[5] provides solutions for monitoring driver’s condition using
a camera facing towards driver. [1]–[4], propose methods
for monitoring the road for lane departure, nearby vehicles
and obstacles. Works like [7]–[10] try understanding traffic
scenes by detecting lanes and traffic signs using vehicle
mounted cameras.

We use monocular camera based vision in a highly con-
strained setting. Our objective is to design modules that can
provide semantic instructions (for safety and guidance) for
humans and machines. Our problem is similar to that of [11].
However, our approach is more principled and robust. We
design and implement a set of computer vision modules that
begins with low level image processing and eventually leads
to richer semantic descriptions that has larger context and
utility, for both man and machine. We validate our method
on real life data captured in challenging natural urban traffic
situations. We consider 19 road signs and report results on
our dataset that is three times larger than the dataset used



Fig. 1: Overview of our system.

by [11] and includes variations in illumination, degree of
erosion and occlusion.

II. OVERVIEW

Our system takes visual data in the form of a video stream
as input and provides human friendly semantic descriptions
and suggestions about the road-traffic scene as output. While
the input video stream is captured using a camera mounted
on the top of the vehicle, the semantic descriptions and
suggestions are presented to the driver through the ‘Drive
Assist System’.

Figure1 presents an overview of our system. For each
frame of the video, we begin by segmenting it into fore-
ground and background regions using binarization. The goal
of this step is to push most of the irrelevant parts into the
background and segment out only the salient parts of the road
such as the road signs and lane markers as the foreground.
Second, we identify candidate bounding boxes for road signs
from segments of the foreground. Third, for each candidate
bounding box, we run a classifier to determine the presence
or absence of a road sign inside the bounding box. Finally,
we use the position and label of each sign for semantic
inference. Our algorithm keeps track of road signs detected
for previous frames and builds a semantic network over it.
The system then translates the results into a human friendly
format which can be easily grasped by the driver.

III. TECHNICAL DETAILS

A. Detection

The first module in our system detects road sign bounding
boxes on the road irrespective of the category they belong
to. This is challenging task because of the high degree of
degradation of road signs present in a large number of frames
and also due of the lack of decent lighting conditions in
some of the frames. We describe the different stages in our
detection module in the subsections below.

1) Binarization: We first binarize an image so that we
have segments like road signs and lane markers as the
foreground and and try to push everything else to the
background. Binarization becomes challenging for images in
which the road signs are eroded or there are light variations
due to presence of other objects blocking or reflecting normal
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Fig. 2: Binarization results for a typical frame; (a) input
frame (b) using Otsu’s method and (c) using GMM.

sunlight. Here we describe two methods that we tried for
binarizing the frames.

Binarization using Otsu’s method: This algorithm as-
sumes that the image to be thresholded contains two classes
of pixels or bi-modal histogram (e.g. foreground and back-
ground); it computes the optimum threshold separating those
two classes so that their combined spread (intra-class vari-
ance) is minimal. Instead of using a global threshold, we
divide images into blocks, each of size 100×100 pixels
and a threshold is calculated for each block using Otsu’s
method. It has been verified through experiments that block
level threshold, though takes more time, is more robust than
global threshold. This algorithm is a simple and effective one,
however, it involves calculations on all possible threshold
values.

Binarization using GMM: This algorithm assumes that
the distribution of intensities taken by pixels corresponding to
road signs can be modelled using a Gaussian Mixture Model
(GMM). The GMM model consists of a fixed number (typi-
cally between 3 and 7) of weighted Gaussian distributions.
Any pixel which is highly unlikely to have been generated
by this model is considered irrelevant and hence discarded as
background. The GMM model is initialized with binarization
output using Otsu’s method for few initial frames and is
updated regularly as more frames come by. This algorithm
is fast and for a frame size of 1280×960 pixel, runs at 5
fps on a single core system. The algorithm can be easily
extended to run parallely on a multi-core architectures like
multi-core CPUs and GPUs. The GMM based binarization
results in lesser false positives as compared to binarization
using Otsu’s method. Figure2 gives a comparison between
Otsu’s method and GMM based binarization.

2) Generate Candidate Windows: Next, we identify
bounding boxes on image which can possibly contain a
road sign. In case of an ideal binarization, every connected
component would correspond to a candidate bounding box.
However, our dataset consists of images from natural urban
roads and as expected, we encounter plenty of road signs
which are degraded and lead to fragmented segments on
binarization. We need to merge these smaller fragments into
a single bounding box which can then be passed on to the
classifier. In addition to this, we also have road signs like
zebra crossing which naturally consists of several isolated
components and need to be merged into a single bounding
box. Merging several components in binarized image to
generate useful candidate windows is not a trivial task.



Here, we try to increase the system’s recall to get candidate
bounding boxes for all road signs present while tolerating
false detections. For this, we consider only segments that
are bigger than a certain size and then generate bounding
boxes for all possible combinations of these segments.

3) Prune Candidate Windows: As previous step results in
a large number of false candidate windows, in order to prune
them out we learn a linear SVM to differentiate between that
contain a road sign and one that does not. We train this SVM
using a few hand labelled examples.

B. Recognition and Classification

In this module, we take the candidate bounding boxes
generated by the previous module and predict what road sign
a bounding box probably has.

1) Feature Extraction: We extract HOG features [15] for
each of the candidate bounding boxes. HOG descriptors
capture the distribution of orientation of intensity gradients
inside the bounding box. These features are robust to-
wards variation in scale, lighting and moderate degradations.
Figure3 gives a visualization of the HOG features for some
typical bounding boxes.

2) Classification: We model the problem as a multi-class
classification problem that is built by training a 1-vs-rest
linear SVM for each of the 19 road sign categories. For each
candidate bounding box, we compute the score using all the
19 linear SVMs and the road sign category with the highest
score is assigned to the candidate bounding box. We use
the publicly available liblinear library [14] for training the
1-vs-rest classifiers.

In order to train the SVM classifiers, we divide our dataset
into a training and a validation set. We annotate the candidate
windows with their respective road sign category labels. We
train the linear SVM for each of the road sign category
over the HOG features of the candidate bounding boxes of
the training set with positive label for candidate windows
containing the particular road sign and negative label for
every other candidate window.

(a) (b) (c)

Fig. 3: Visualization of HOG features for example candidate
windows (a) Left-turn (b) Right-turn and (c) Straight

C. Semantic Inference

In this module we process individual labels of detected
road signs and try to present the relevant information in
a human friendly format to driver in the form of scene
descriptions and suggestions. The final output is presented
in audio and visual format on a panel as shown in Figure8.

The challenge is in presenting the information in a format
which the user could understand and make use of with
minimum additional effort. For achieving this, we first start
with a temporal inference. Our algorithm detects and rec-
ognizes symbols in every frame. We keep track of previous
output labels and build a semantic description over it. Doing
inference that is spread of several frames, makes the results
more reliable. As new frames are processed we get new
recognition outputs in the form of detected road signs and
corresponding scores. And the new inferences are made by
integrating these individual outputs with results from the
previous frames.

Afterwards, we convert the labels into more meaningful
descriptions. The final displayed results are in the form
of human understandable sentences, phrases or comments
(which is later converted to audio outputs) as well as the
detected symbols are highlighted in the pane on left side of
the output screen as can be seen in Figure8. The different
steps followed in this module are described below in detail.

1) Temporal Inference: Similar to HMMs, the output of
present frame in our case depends on the previous frames
and therefore we have modelled our system as an order-n
Markov. The detected symbol counts are the ones that govern
the relationship between the previous frames. With increase
in order of system, the overall complexity grows making our
system slow without any significant improvements in results.
Our system performs best in case of n is 5.

Since we work with video as an input to our system, a
missed or an incorrect detection at level of frames may build
to the system error. To make system robust to minor miss
classifications we keep track of counts of detected symbols
in ’n’ previous frames; if some how we fail to classify a
symbol in particular frame previous frame detections come
to our rescue. The symbol is considered as detected only if
its count is above certain threshold (countthresh) in present
and previous frames.

2) High Level Label: We can have multiple road signs in
each frame and thus to display all at given instance we have
designed a display system that highlights all the detected
road-signs on ’most frequent marking’ pane. We even display
the text related to most significant detection at the center
of frame. Most significant detections are determined by
set of pre-determined priority of symbols (configurable to
requirements).

Our semantic generation module is at heart of the safety
system. The rich descriptions add to driving assistance and
audio clues in cases of high priority symbols (configurable)
warns drivers to be extra cautious. This module adds to
ability of the system to make one a ‘safer driver’.



Fig. 4: Examples of Images from Our Data Set.

IV. EXPERIMENTS AND VALIDATION

A. Dataset and Annotation

The dataset used in this work is created by the camera
mounted on the car capturing front view of the travelling
direction. The vehicle was driven across the urban roads of
Hon-Atsugi Area, Kanagawa, Japan and captures over an
hour of drive. The camera records the video of road at a
resolution of 1280 X 960 and captures scenarios such as
bright sunny day, tunnel passing, dim sunlight, shadow of
vehicles on road signs, vehicles obstacles over symbols etc.
To best of our knowledge we don’t have any public repository
capturing such variations. Our dataset comprises 65k frames
with 100K annotated road signs categorized into 19 classes.

Annotating such voluminous dataset has been no mean
task; to minimize the effort we devised a semi-supervised
method to annotate the dataset by annotating every fifth
frame and then propagated the results to remaining frames.
In all we manually annotated 15k frames and propagated the
result on 50k frames. Minor adjustments if any (because of
propagation) to the annotations were done by visiting and
verifying annotations of each frame.

We capture both subjective (e.g. occlusion, brightness) and
objective(eg. Driving direction) attributes for each road sign.
The details captured in annotations are extensive in nature
and following attributes are defined for each road-sign:

1) Occlusion: no-occlusion, medium-occlusion, high-
occlusion.

2) Brightness: low-brightness, medium-brightness, high-
brightness.

3) Erosion: no-erosion, medium-erosion, high-erosion.
4) Lane: not-applicable, current-lane, different-lane.
5) Driving Direction:not-applicable, driving-direction,

opposite-direction.

The annotated road-sign identifies 19 variants of road
signs including speed limit signs ‘30’, ‘40’ and ‘50’, ‘Zebra-
crossing’, ‘STOP’, ‘STOP-Line’, ‘Diagonal’, ‘Diamond’,
‘chevron’, ‘RightTurn’, ‘Straight’, ‘No-U-Turn’, ‘U-Turn’,

(a) (b) (c) (d)

Fig. 5: Figure explains the effect of number of components
(K) in the GMM based binarization. (a) input image (b) K
= 2 (c) K = 5 (d) K = 11 .

‘Straight-Left’, ‘Cycle-crossing’, ‘RoundAbout1’, ‘Straight-
Right’, ‘RoundAbout2’, ‘LeftTurn’.

B. Experiments and Evaluation

We implement our solution on top of the existing open
source and popular libraries. In the present form, we uncom-
press and work on individual frames. In addition to the use
of low level modules from OpenCV and matlab, we also use
parts of other implementations [19]. This helps in making the
solution efficient, better modular and robust. Line detection
uses RANSAC based spline fitting to detect lanes on the
street.

a) Segmentation: Our segmentation uses GMM to
model the intensity distribution of the the road signs. The
strength of this scheme is the ease in adapting the Gaussians
and the thresholds with minimal computations. Experimen-
taly, we find that 3 to 7 components are sufficient for
modelling the intensity distribution. Fig. 5 shows the effect
of number of Gaussian components in the GMM based
binarization. This method is fast and run at 5 fps when
implemented serially (frame size is 1280×960 pixels) on 2.0
GHz CPU. The algorithm can be easily extended to parallel
implementation.

b) Detection: The challenges in detection of road signs
includes a large number of degraded and/or fragmented
signs. They are either completely broken or the breaks
are introduced due to a highly variable colour distribution.
Another key challenge is occlusions by other objects or due
to limited field of view of the camera. Shapes which are



occluded by the vehicles ahead are practically impossible
to detect. These require special care in building a complete
robust solution. See Fig. 6 for challenging cases. In this
work, we have focussed on the robustness in the recognition
module.

c) Classification: We use a SVM based classifier with
HOG as feature for efficient and accurrate classification.
In order to compute HOG features, we divide the gray
scaled version of window in 8×8 pixels non-overlapping
cells. 1D histogram of gradients is accumulated over cell
pixels for each cell. We use 9 orientation bin to discretize
the gradients at each pixel. These parameters were found
optimal to capture local shape properties of windows and
are considerably robust to small deformations.

We have carried out multiple types of evaluations. This
include the evaluation of the individual one vs all classifiers
using mean average precision and the evaluation of the
overall accuracy using a fused multi class classifer model.
We report an accuracy of 92% over the test set with training
and the further improvement with hard mining.

The dataset specifies ground truth bounding boxes for each
road sign and we have over 95K road-sign windows in our
dataset. We train our SVM based classifiers (1 vs all) on
randomly selected 22K windows. For each window we com-
pute classifier scores for all category classifiers and assign the
category label with the highest classifier score. In order to
learn the SVM hyper-parameters we perform 5-fold cross-
validation on training dataset. Using the hyper-parameters
learned during cross-validation, we re-train the classifiers for
each road-sign category on the complete training dataset.

In order to simulate the conditions for noisy detections,
we add random noise to our ground-truth bounding boxes.
We do this by shifting the location of ground-truth bounding
boxes in a random manner around the original location. This
makes the classifier more robust to noise. We show accuracy
and average precision (for four popular classes) in Table 1.

(a) (b)

Fig. 6: Challenging situations for detection in isolated frames
due to (a) degradations for ‘left-turn’ and ‘right-turn’ signs
and (ii) occlusions of ‘zebra-crossing’ sign due to traffic.

Symbol Accuracy(%) AP
Diamond 98.3 0.971

Left 99.1 0.986
Right 99.1 0.994

Straight 98.5 0.981

TABLE I: Accuracy and AP for four popular classes

(a)

(b)

Fig. 7: (a) Confusion matrix for a 5 class classification (b)
Examples of some of the windows that got mis classifed.

Furthermore, we evaluate the performance of the recog-
nition system by evaluating accuracy of the multi-class
classifier on the test dataset. In our experiments multi-class
accuracy was found to be 91.7%. .Fig 7. summarizes the
results in form of confusion matrix of all detected road signs.
The corresponding ith row and jth column entry signify the
percentage of symbol ‘i’classified as symbol ‘j’. The symbols
detected with confidence scores of less than 0.8 are discarded
and are labelled as ‘NA’in the confusion matrix. The system
performs equally good in cases of partially occluded, eroded
and low illuminated symbols.

d) Generation of Semantic Descriptions: Qualitatively
our semantic generation module performs best in case when
we consider detected symbols in previous five frames (n).
We tested our system with values of n ranging from 3 to 10.
countthresh value is set as 0.6, i.e. if n= 5 the detected symbol
count should atleast be 0.6 ∗ n = 3 for being considered as
detected.

V. CONCLUSIONS AND FUTURE WORK

In this work, we use computer vision techniques for detec-
tion and recognition of road signs. For fast and robust sign
detection, we extract simple features from sliding window
and use a linear binary SVM for rejecting windows that do



Fig. 8: Sample output screen.

not contain any sign. Later, we extract HOG features and use
multiclass SVM in one-versus-all fashion for classification.
The classification results are used to generate semantically
meaningful text and are displayed as output along with the
sign detected.

We have been successful in developing a technique that is
capable of detection and recognition of various road signs.
Our technique is robust in handling partial occlusion, motion
blur, changes in illumination and partially degraded signs.
However, special care needs to be taken for highly degraded
signs. Sliding window based detection takes longest time in
the pipeline. One promising direction for future work is to
learn the associated parameters in an unsupervised manner
taking cues from previous frames and use it for the present
frame. Such techniques would make solution easy to adapt
for different cities and weather conditions with minimal
manual intervention.
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