

City, University of London Institutional Repository

Citation: Fujdiak, R., Pokorny, J., Zobal, L., Popov, P. T., Stankovic, V., Mlynek, P.,

Mrnustik, P., Blazek, P., Musil, P. & Misurec, J. (2020). Security and Performance Trade-offs
for Data Distribution Service in Flying Ad-Hoc Networks. Paper presented at the The 11th
Intenrational COngress on Ultr Modern Telecommunications and Control Systems, 28-30
Oct 2019, Dublin, Ireland.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23055/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Security and Performance Trade-offs for Data
Distribution Service in Flying Ad-Hoc Networks
Radek Fujdiak1, Jiri Pokorny1, Lukas Zobal1, Peter Popov2, Vladimir Stankovic2, Petr Mlynek1, Pavel Mrnustik3,

Petr Blazek1, Petr Musil1, Jiri Misurec1

1Brno University of Technology, Antoninska 548/1 Brno 601 90 Czech Republic
2City, University of London, Northampton Square Clerkenwell London EC1V 0HB United Kingdom

3Trustport, Veveri 2581/102 Brno 616 00 Czech Republic

Email: {fujdiak, jiri.pokorny, lukas.zobal, mlynek, blazekpetr, xmusil56, misurec}@vutbr.cz,
{P.T.Popov, Vladimir.Stankovic.1}@city.ac.uk, {Pavel.Mrnustik}@trustport.com

Abstract—This paper focuses on the data distribution service
(DDS) middleware and its publish/subscribe logic - a topic that
has recently regained popularity in both academia as well as
industry. DDS is a well-known approach based on publish-
subscribe logic. Therefore, only brief introduction of the issue
is given followed by practical evaluation of current, available
and real implementations from the security and performance
point of view. The analysis and evaluation is performed to
aid comparison of competing DDS implementation, and thus
could serve well as an input to decision-making about which
of these solutions is best suited for a given situation. Finally,
the practical performance evaluation is performed via several
different scenarios to effectively compare the currently most-used
DDS implementations.

Index Terms—FANET, Drones, DDS, Security, Performance

I. INTRODUCTION

Data Distribution Service (DDS) is a middleware protocol
and a standard API for data transmission using publish-
subscribe model of the object management group (OMG)
[1]. There are various open source and commercial DDS
implementations that provide APIs and data distribution ser-
vices. Real-Time applications often need to be distributed
to multiple compute nodes. The reasons are the distribution
of computing power to where it is needed, simplification of
design, management or maintenance of the application. An
important part of all distributed applications is communica-
tion between application components on different nodes. For
real-time applications, communication is subject to temporal
constraints such as deadlines. Often, applications must be
fault-tolerant and support redundancy in their architecture.
Another common requirement is the dynamic nature of the
application where the nodes are components that are linked or
removed from the application during run-time. These, often
contradictory, requirements make it difficult to design and im-
plement the communication part of the application. Therefore,
people often create applications on various communication
middleware platforms that are in charge of communication.

Traditional middleware platforms such as CORBA [2] pro-
vide transparent access to remote objects via remote method
calls. When an application prompts a method on a remote

object, the middleware automatically aggregates method pa-
rameters and sends a request to the target process where the
object is located. The calculation is done remotely, then the
results are sent back. Although this simplifies the creation
of distributed applications, there are many applications that
cannot be effectively implemented on this request-response
model [3]. Applications whose data-oriented operation means
that part of the action or calculation is done when the data
is ready would be suitable for middleware platforms that
seamlessly manage the distribution of data from producers
to consumers. Such applications are often designed according
to the data-centered publish subscribe model (DCPS) [4],
where middleware creates the concept of a global data space
that is accessible to all interested applications (see Figure
1). Writing applications according to this model has many
advantages. Most importantly, communication requirements
are specified by applications in a declarative manner, and the
middleware controls data exchange automatically according to
declarations.

Fig. 1. Simplified data-centric application model of publish-subscribe.

The rest of the paper is organized as follows. Section II pro-
vides basic information about DDS systems. Section III con-
tains brief introduction to the different DDS implementations.
Section IV presents our results from feature-analysis, while,
Section V provides performance-analysis. Finally, Section VI
concludes our findings and contribution.

II. DDS SYSTEMS DESCRIPTION

DDS is a natural contrast to the existing, already well-
known CORBA model. In DDS we access method requests
on remote objects via the interface defined in the interface
description language (IDL). In CORBA, data is communicated
indirectly through arguments in method requests or via their
return values. However, in a large number of real-time ap-
plications, the communication template is often modeled as
a data-centered exchange, where applications publish stream
data, which is then accessible to remote applications that are
interested in the data. The main focus is on efficient data
distribution with minimal extra activity and the need to enlarge
to hundreds or thousands of subscribers in a robust way (see
Figure 2).

Fig. 2. Simplified diagram of elements within a DDS domain.

The classic publish-subscribe model has been supplemented
by RTPS protocol with time parameters and a parameter
defining the mode of data delivery. The publish-subscribe dis-
tribution model uses the interlayer to create nodes. Publisher
is a node that manages data production. Publisher uses the
intermediate layer to register the title and type of the data it
will publish. Data is produced as fast as the technology used
to retrieve it (e.g., the sensor releases data every 10ms). There
is no parameter to set the data publishing speed. Publishers
that produce identical data may be present on the network.
Subscriber is a node that obtains the data. Subscriber registers
for the topic and type (type name) data of publication it needs
using the interlayer. Subscriber defines two time parameters:
minimum separation and deadline. Minimum separation is the
time interval measured since the last message received. New
data is not received for the duration of the interval. This
period is for Subscriber to process the previously received
publication. After this time, Subscriber will start receiving
data again. The primary discriminator between DDS and other
approaches is the unique Quality of Service (QoS) condition
set. This set contains 21 key parameters that enable a dynamic,
tunable and scalable real-time network. However, this large set
also points to the possibility of confusion about which settings
allow optimal performance in a given configuration. Even
though specific DDS implementations already have default
settings (or sometimes they may not fully support all DDS
QoS parameters), it is still in active research stage (see Figure
3).

Fig. 3. The object model that underlies the RTPS protocols.

Another requirement for real-time applications is the need
to control QoS properties that affect predictability, overhead
and resources used. Distributed Shared Memory is a classic
model that offers data-centered exchanges. However, this
model is complex and ”unnatural” for efficient use over the
Internet. Thus, another model - data-centric publish subscribe
(DCPS) - has become popular in a large number of real-
time applications. Although there existed several commercial
and open-source software systems built on this principle,
no generalized data distribution standard was available until
OMG DDS. Thus, no conventional models directly support a
data-centered information exchange system. OMG DDS is an
attempt to solve this situation. The specification also defines
the operations and QoS attributes that these objects support
and the interfaces that the application can use to be notified
of data changes or to wait for specific changes. The High-
Level Architecture (HLA), also known as OMG Distributed
Simulation Facility, is a standard from both IEEE and OMG
[5]. It describes data-oriented publish-subscribe facility and
data model. The OMG specification is an IDL specification
and can be mapped to multiple transports. The specification
describes some of the requirements of data-focused publish-
subscribe: the application uses the publish-subscribe interface
to interact with middleware, includes a data model, and
supports content-based subscriptions. The HLA data model
supports the specialization hierarchy but does not support the
aggregation hierarchy. A set of defined types cannot expand
over time. Data elements are unwritten and disordered, they are
pure octet sequences. HLA also does not offer QoS facilities.
The DDS infrastructure layer that allows different types of
applications to communicate with each other is displayed in
Figure 4.

Fig. 4. DDS infrastructure layer.

TABLE I
OVERVIEW OF SELECTED ATTRIBUTES OF DDS IMPLEMENTATIONS.

DDS Imple-
mentation

Organization License DDS Security Transport pro-
tocols

Operating systems APIs

OpenDDS OCI Open Source Implemented Not Specified Windows, Linux, So-
laris, MacOS

C++

sDDS Community Open Source Not
implemented

Not Specified Linux, RIOT-OS, Con-
tiki

C

DDS Commu-
nity

ADLINK Open Source Not
implemented

TCP, UDP Windows, Linux C, C++,
Java, C#,
STREAMS,
GPB

Vortex
OpenSplice

ADLINK Commercial Implemented TCP, UDP Linux, Windows,
AIX, Solaris, RTOS,
VxWorks, RTLinux,
Integrity, PikeOS,
ElinOS

C, C++,
Java, C#,
STREAMS,
GPB, RMI,
MATLAB

Connext DDS RTI Commercial Implemented TCP, UDP Linux, Windows, Mac
OS

C, C++,
C#/.NET, Java

CoreDX DDS Twin Oaks
Computing

Combined Implemented Not specified Linux, WIndows, Mac
OS, Solaris, Integrity,
Lynx OS, VxWorks,
DeOS, QNX, Android,
iOS, Free RTOS,
Thread-X, NexusWare,
Unison

C, C++, C#,
Java

Eclipse
Cyclone DDS

Eclipse
Foundation

Open Source Not
implemented

Not specified Linux Ubuntu,
Windows 10

C

InterCOM DDS Kongsberg
Geospatial

Commercial Not-specified UDP Linux, Windows, Vx-
Works

C++, Java, C#,
ADA

Mil-DDS MISOFT Commercial Partialy UDP Windows, Linux, So-
laris, VxWorks

C++, C#/.NET,
Java

III. OVERVIEW OF AVAILABLE DDS IMPLEMENTATIONS

The main available implementation of DDS currently used
are: (i) OpenDDS, (ii) sDDS, (iii) DDS Community, (iv)
Vortex OpenSplice, (v) Connext DDS, (vi) CoreDX DDS,
(vii) Eclipse Cyclone DDS, (viii) InterCOM DDS, (ix) Mil-
DDS, and others. The main and dominant implementations are
selected in the Table I:

OpenDDS. OpenDDS [6], [7] is an open source C++
implementation of the Object Management Group (OMG)
Data Distribution Service (DDS).

sDDS. ”sensornetwork” Distributed Data Structures (sDDS)
[8] is an approach to make DDS available for very small
distributed embedded systems like wireless sensor network.

DDS Community. DDS Community [9] is fully-featured
Apache License Version 2.0 Open Source Data Distribution
Service (DDS) implementation.

Vortex OpenSplice. Vortex OpenSplice [10] is leading
(Commercial and Open Source) implementation of the OMG
DDS standard. It focuses on ensuring availability, reliability,
safety and integrity in spite of hardware and software failures,
by providing high performance - it is capable of distributing
large amount of data under low latency, from simple systems
to ultra large scale system-of-systems and from smart sensors
to high end servers Provides the ability to maintain confiden-
tiality, integrity and authenticity of exchanged data.

Connext DDS. Connext DDS Professional is the leading
connectivity framework for demanding IIoT systems. It shares

information between devices and applications in real-time,
delivering performance, reliability, scalability and security.

CoreDX DDS. CoreDX DDS [11]
is specific implementation designed for embedded applica-

tions and single-process architectures. It focuses mainly on
performance parameters such as low memory footprint and
latency with allowing operation without any operating system
(without major limitations). However, compared to the other
solutions such as OpenSplice or Connext, the CoreDX is
relativelly new implementations. Moreover, the documentation
contains just several pages without any closer or deeper
information or examples of application.

Eclipse Cyclone DDS. Eclipse Cyclone DDS [12] imple-
ments the OMG Data Distribution Service (DDS) specification
and the related specifications for interoperability,

InterCOM DDS. InterCOM DDS [13] uses an open stan-
dard protocol to effectively network inputs from a wide range
of sensors and controllers on a complex platform. It focuses on
performance, reliability, modifiability/scalability, availability,
and testability.

Mil-DDS. Mil-DDS [14] is a middleware software provid-
ing data centric publish-subscribe mechanism for distributed
applications. The API is available in multiple languages
and platforms, and includes the following capabilities: high-
reliability publish and subscribe API, detailed quality of
service controls, easy-to-use debug tools, complete reference
solutions, intuitive training tutorials, and complete documen-
tation.

IV. SECURITY ANALYSIS OF SELECTED DDS
IMPLEMENTATIONS

The security analysis of selected DDS implementations is
displayed in Table II. We provide information about the DDS
security stack and its parameters. The RTI has implemented
only the most current algorithms. However, OpenSplice pro-
vides several schemes, which helps in providing support for a
greater number of scenarios. Finally, OpenDDS implemented
the DDS Security stack recently and it is containing only the
basic cryptographic algorithms.

TABLE II
RESULTS FROM SECURITY ANALYSIS OF SELECTED DDS

IMPLEMENTATIONS.

Cryptographic
primitive

RTI OpenDDS OpenSplice

Encryption aes128gcm,
aes192gcm,
aes256gcm

Only sub-
message
and payload
encryption is
supported.

aes256 -
verified GCM
& aes128,
aes192, aes256,
blowfish, rsa-
aes128, rsa-
192, rsa-256,
rsa-blowfish,
rsa-null, null.

Authentication 2048-bit RSA,
2048-bit DSA,
ECDSA

No origin au-
thentication.

SSL X.509
Certificate
Authentication

Auth. Format X509 X509 for
2048-bit RSA,
prime256v1 for
256-bit Elliptic
curve.

X509

V. PERFORMANCE ANALYSIS OF SELECTED DDS
IMPLEMENTATIONS

Topology of the laboratory environment is simplified in
Figure 5. There are two virtual machines running the imple-
mentations separately.

Fig. 5. Architecture of experimental laboratory network.

The first results from performance analysis and measure-
ments are displayed in Figure 6. The figure shows comparison
between three domain selected DDS technologies - OpenDDS,
Connext and OpenSplice. The higher delay of OpenSplice is
given by higher memory requirements. The last results shows
average delay (Figure 7) and average jitter (Figure 8

Fig. 6. Benchmark comparison of selected DDS technologies.

Fig. 7. Jitter of OpenSplice.

Fig. 8. Delay of OpenSplice.

VI. CONCLUSION

The paper summarized the data distribution topic together
with information given about publish/subscribe logic and ar-
chitecture. Moreover, we provided an analysis of DDS imple-
mentations, based on both security and performance charac-
teristics. The future work should focus on failure scenarios,
higher traffic load, different communication technologies, and
more complex topology. Moreover, the security analysis might
be extended as well. Attack vectors should be investigated over
general DDS system and cyber-security risk analysis together
with hazard (safety) analysis might be performed as well to
give information about possible risks, which would help to
build sufficient counter-measures for real systems.

ACKNOWLEDGMENT

This article has received funding within the National Sus-
tainability Program under grant LO1401. Our research and the
idea of the paper is coming from the research conducted and
supported by research project Aggregated Quality Assurance
for Systems (AQUAS H2020-EU.2.1.1.7 ID: 737475). For the
research, the infrastructure of the SIX Center was used.

REFERENCES

[1] Y. Park, D. Chung, D. Min, and E. Choi, “Middleware integration
of dds and esb for interconnection between real-time embedded and
enterprise systems,” in International Conference on Hybrid Information
Technology. Springer, 2011, pp. 337–344.

[2] O. Othman, O. Carlos, and D. C. Schmidt, “Strategies for corba
middleware-based load balancing,” IEEE Distributed Systems Online,
no. 3, p. null, 2001.

[3] Q. H. Mahmoud, Middleware for communications. Wiley Online
Library, 2004, vol. 73.

[4] G. Pardo-Castellote, B. Farabaugh, and R. Warren, “An introduction to
dds and data-centric communications,” RTI, Aug, vol. 26, 2005.

[5] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[6] O. Computing, “Inc. opendds developer’s guide,” 2009.
[7] D. Busch, “Introduction to opendds,” 2012.
[8] K. Beckmann and O. Dedi, “sdds: A portable data distribution service

implementation for wsn and iot platforms,” in 2015 12th International
Workshop on Intelligent Solutions in Embedded Systems (WISES).
IEEE, 2015, pp. 115–120.

[9] D. OpenSplice, “Adlink opensplice dds community edition.”
[10] D. C. Schimidt and A. Corsaro, “Opensplice dds.”
[11] R.-T. Innovations, “Rti connext dds professional,” 2014.
[12] E. organization”, “Eclipse cyclone dds,” 2019.
[13] ”Kongsberg”, “Intercom dds: Real-time networking middleware,” 2018.
[14] ”MilSOFT”, “Mil-dds: Data distribution services middleware,” 2019.

