
This is a repository copy of Modelling hand gestures to test leap motion controlled 
applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128647/

Version: Accepted Version

Proceedings Paper:
White, T., Fraser, G. and Brown, G.J. orcid.org/0000-0001-8565-5476 (2018) Modelling 
hand gestures to test leap motion controlled applications. In: 2018 IEEE International 
Conference on Software Testing, Verification and Validation Workshops (ICSTW). 14th 
Workshop on Advances in Model Based Testing (A-MOST), 13 Apr 2018, Västerås, 
Sweden. IEEE , pp. 204-213. ISBN 978-1-5386-6352-3 

https://doi.org/10.1109/ICSTW.2018.00051

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Modelling Hand Gestures to Test Leap Motion

Controlled Applications

Thomas D. White

Department of Computer Science

The University of Sheffield

Sheffield, South Yorkshire

tdwhite1@sheffield.ac.uk

Gordon Fraser

Chair of Software Engineering II

University of Passau

Passau, Germany

gordon.fraser@uni-passau.de

Guy J. Brown

Department of Computer Science

The University of Sheffield

Sheffield, South Yorkshire

g.j.brown@sheffield.ac.uk

Abstract—Programs that use a Natural User Interface (NUI)
are not controlled with a mouse and keyboard, but through
input devices that monitor the user’s body movements. Manually
testing applications through such interfaces is time-consuming.
Generating realistic test data automatically is also challenging,
because the input is a complex data structure that represents
real body structures and movements. Previously, it has been
shown that models learned from user interactions can be used to
generate tests for NUI applications controlled by the Microsoft
Kinect. In this paper, we study the case of the Leap Motion
input device, which allows applications to be controlled with hand
movements and finger positions, resulting in substantially more
complex input data structures. We present a framework to model
human hand data interacting with applications, and generate
test data automatically from these models. We also evaluate the
influence of the training data, as well as the influence of using
a single model of the complete user data vs. multiple models
for the different aspects of hand movement (e.g., finger positions,
hand positions, hand rotations). Experiments on five applications
controlled by the Leap Motion demonstrate that our approach
generates effective test data. The quality and quantity of the
training data used to derive the models is the main factor that
determines their effectiveness. On the other hand, the effects
of using multiple (as opposed to single) models are minor and
application specific.

I. INTRODUCTION

Natural User Interfaces (NUIs) allow users to interact with

software through methods such as body tracking, gestures, or

touch interfaces [19]. They are becoming increasingly popular

for virtual reality applications, and are important ways of

interacting with computers in environments where using a

keyboard and mouse is not an option (e.g., surgeons in the

operating theatre). Testing applications controlled by NUIs,

however, is a challenge: there are currently no frameworks

for test automation, meaning that developers need to manually

exercise all functionality by physically interacting with the

NUI on every update of the software.

When testing manually is challenging, automation is often

desired. For example, there are tools that can automatically

generate tests for many different types of applications [4], [12],

[14], relieving the tester of the manual effort of designing

test cases. While tests for standard software typically consist

of API calls or simple interactions with GUI elements (e.g.,

button clicks), the inputs expected by NUI applications are

much more challenging to produce automatically. For example,

the input for an application controlled by a Microsoft Kinect

input device consists of a collection of points in 3D space

which collectively represent the body of the program’s user;

the input for an application controlled by a Leap Motion input

device consists of data representing the user’s hand and finger

joint positions in 3D space. The challenge for automated test

generators lies in producing data that represents valid body or

hand positions.

One way to produce such input data automatically is to learn

models of realistic user input, and then to sample these models

for new sequences of input. The feasibility of this approach has

previously been demonstrated using the Microsoft Kinect [8].

However, previous work focused only on one aspect of the

Microsoft Kinect input, the body joint positions. In this paper

we study the Leap Motion controller, which measures hand

positions, finger positions, finger gestures, and various other

aspects, which collectively create a substantially more complex

test generation problem. We present a framework to apply NUI

test generation to applications based on this NUI controller,

and evaluate it on five different Leap Motion applications.

Using only a single data model to capture all the different

aspects of the NUI input data may not be the most effective

approach. For example, in the Leap Motion Controller the

hand movement and finger joints shape are encoded together,

but training one model on the combined result eliminates

the possibility of identifying similar finger joint shapes at

different positions in 3-D space. In order to determine whether

representing the complex NUI data with multiple models is

beneficial, we present a methodology in which we split the

NUI data into subsets, and learn separate models for each

subset. In our experiments we contrast test data generated from

these multiple models with data generated from a single model

of the input data.

In detail, the contributions of this paper are as follows:

• A framework to model hand interactions, and automati-

cally generate and replay test cases for the Leap Motion

NUI.

• An empirical evaluation of NUI testing on five applications

controlled by the Leap Motion controller.

• An empirical evaluation of the influence of the training

data on the resulting code coverage.



• An empirical comparison of generating NUI data from

multiple models vs. a single model.

Our experiments show that our approach to automated NUI

testing can handle the complexity of the Leap Motion controller

well, and produces sequences of data that achieve significantly

higher code coverage than random test generation approaches.

We show that the training data has a large influence on these

results, while the benefits of splitting NUI data into multiple

models are small and very application dependent.

II. BACKGROUND

A. Natural User Interfaces

Natural User Interfaces (NUIs) provide a means of con-

trolling software by recording a continuous stream of data

that represents the position or motion of the user’s body. For

example, the Microsoft Kinect employs a depth camera that

allows a user to interact with an application through body

tracking. Similarly, the Leap Motion Controller is a small

desktop device which tracks the hand and finger positions of

the user, thus providing a natural interface in which the user

can point, draw or gesture with their hands.

NUIs have been used to solve a range of problems. For

example, The Microsoft Kinect has been used in medicine

for effective stroke rehabilitation, giving doctors access to the

body profile of patients from a patient’s own home, and making

exercises more fun and motivating for patients [20].

NUIs rely on a user’s existing knowledge for interactions

with applications: if a menu is on the screen, it is intuitive to

reach out and touch a desired button for progression through an

application. Although intuitive for real users, NUIs are difficult

to test with an automated approach.

B. Automated Test Generation

Software tests can be generated automatically to support

developers and testers. A common approach is to generate test

cases randomly, for example by randomly sampling numerical

data [9], random character sequences [13] or by generating

random sequences of API calls [14]. Although this approach

can also be directly applied to NUI applications, it is very

unlikely that randomly generated data will resemble realistic

NUI data. For example, a random set of points in 3-D space

is unlikely to match the physical constraints of a real hand.

In order to produce data that is closer to real operational

data, it is possible to use previous knowledge or sample from

specific distributions representing the real data, rather than

sampling uniformly. For example, Whittaker and Poore show

how exploiting actual user sequences of actions taken from an

application specification can be used when creating structurally

complete test sequences [17], representing a path from an

uninvoked application state to a terminal application state. For

this, a Markov chain was used where each state of the chain

represents a value from the application’s input domain. Further,

Whittaker and Thomason [18] generated Markov chain usage

models, with values from the expected function, usage patterns,

or previous program versions. The models then generated tests

that are statistically similar to the operational profile of the

program under test. Walton et al. [16] demonstrated that usage

models are a cost effective method of testing. Usage data from

NUI applications can also be converted into a usage model,

and used to generate tests for the application.

Programs with traditional graphical user interfaces can be

tested by sending random events [3] (e.g., random mouse

clicks and keyboard events), but effective testing may require

more than blindly clicking on apps. Therefore, many GUI

testing techniques assume either the availability of information

about the concrete set of widgets available for interaction, or a

manually constructed model of the GUI. Testing then becomes

a matter of choosing from the available widgets to interact

with or exploring the model to create test sequences. It is

also possible to apply user profiles in terms of probabilistic

usage models of an application [2] to generate tests that are

statistically similar to real user interactions. While this is an

effective approach, it is not applicable to NUI testing: for NUI

applications there are no discrete sets of widgets to choose from.

Rather, applications just take vectors of numbers representing

NUI data structures as input.

C. Natural User Interface Testing

Mobile applications use combinations of regular program

inputs (e.g., via touch displays), and NUI inputs (e.g., via

external sensory data). To test mobile applications, Griebe et

al. describe a framework in which location information [6] and

accelerometer data [7] can be replaced with mocked data by

developers.

Hunt et al. automatically generated test sequences for the

Microsoft Kinect [8]. To generate data, Hunt et al. trained

models on data recorded by users. Similarities in the data are

identified through clustering, and sequences of clustered data

are used to generate a Markov chain. The Markov chain is a

probabilistic model that can be used to decide which cluster

to seed next during test generation. Clustering was performed

on all features of the data structure but this assumes that all

features have a static (time-unconstrained) relationship.

Hunt et al. used branch coverage to assess the effectiveness of

different NUI data generation methods. The application under

test (AUT) was a web browser adapted for Kinect support. Hunt

et al. found that using a purely random approach for generation,

i.e. using randomly sampled values for each variable in the

data structure, performed the worst. Second was an approach

involving seeding randomly sampled processed user data. To

increase performance further, Hunt et al. generated an N-gram

model from the sequence information collected when recording

data and used this model during data generation. A single model

of NUI data may link different independent aspects of the user

movement, resulting in biased test generation. For example,

if a NUI was to capture a person running, the body gestures

observed may be a repeated sequence of body positions, but the

actual data will never be repeated as running displaces the body

in 3-D space. Potentially, representing the body location and the

joint movement as separate models could be a more effective

means of generating new, realistic test input not observed in

the training data. New, realistic data will still resemble the



(a) User interacting with the
Leap Motion Controller

Exit

(b) Application receiving data
from the Leap Motion Con-
troller

(c) Data from the Leap Motion
Controller saved for model gen-
eration.

(x, y, z)

(d) Feature selection applied to
data to create manually identi-
fied data subsets.

Fig. 1. Recording user interactions with the Leap Motion Controller and splitting data into subsets.

body part being tracked and also moves smoothly through time.

This approach may be particularly important in the case of

NUIs where many potentially independent features are present

in the common input data structure.

D. Leap Motion Controller

The Leap Motion Controller is a NUI which tracks a user’s

hand movements and gestures. The device is placed on a desk,

and users place hands above the device to interact with software.

The Controller tracks properties of a hand such as position in

3-D space, the location of all joints in each finger, the position

of the tips of each finger and many other things. Each data

frame received from the Leap Motion Controller contains a

snapshot of the user’s hands at the current time, providing

data up to 200 times per second. Because applications expect

data at this rate, it is important that testing techniques can

match this speed, whilst generating realistic data. The Leap

API gives applications a complex relational data structure.

The top level of the structure is a Frame, which contains all

relevant information observed by the Leap at the current time.

However, some aspects of the structure are not only reliant

on the current time of capture. For example, to interact with

2-D applications, a developer replaces the cursor with the Tip

Positions of each finger. However, there is also a Stabilized Tip

Position for each finger which returns a smoothed version of

the fingers tip position, directed at 2-D application interaction,

and updates according to the speed which the finger tip was

moving. Stabilized positions allow for more consistent 2-D GUI

interactions, specifically with micro movements, but how the

values are calculated does not appear in the API documentation.

III. MODELLING LEAP MOTION DATA

We split the Leap Motion data into 5 parts, where each

part is modeled using an N-gram model. An N-gram model

represents the probabilities of one element following the N

previous elements in a sequence of data. Using such models

has distinct advantages and disadvantages in testing compared

to manual testing by users. Once created, a model is more cost-

effective than manual testing, and can generate long sequences

of test data without tiring. However, a model is only as good

as the data used to train it, and may not generalize to novel

kinds of interaction that were not encountered during training.

This may limit the extent to which a NUI application can be

explored by model-based test generation.

This section shows how user data from the Leap Motion

is split into five separate models, each model representing a

unique aspect of the Leap Motion data structure. The five

models are as follows:

• Position: The 3-D position of the palm, relative to vector

(0, 0, 0) in Leap Motion Controller space. This is the

physical position of the hand in 3-D space. Position data

is denoted in Figure 1 by three axes and a point labelled

with (x, y, z).

• Rotation: The rotation of the palm, stored as Euler

angles by the Leap Motion, we convert to quaternions

for modelling. A quaternion is a 4-D unit vector that

represents an object’s rotation in 3-D space. Rotational

data is denoted in Figure 1 by a circle with an arrow

through, representing the quaternion angle of rotation.

• Joints: The 3-D position of each bone joint in the fingers

of each hand, respective to the palm position. All fingers

were stored in the same feature to preserve anatomical

constraints between fingers. Joints are denoted in Figure 1

by the circles on the fingers of hands.

• Gestures: The sequence of pre-defined Leap Motion

gesture types performed by the user (Circle, Swipe, Key

tap and Screen tap). This is also split into four child

models, one per gesture type. For the applications tested

here, only the circle gesture is used, which triggers when

a Finger performs a circular motion. A circle gesture

consists of circle center, normal, radius and the duration

that the gesture has been performed for. Circle gestures

are denoted in Figure 1 by a green circle with an arrow.

• Stabilized Positions: Each hand also has stabilized data,

which are vectors targeted towards 2-D menu interactions

and rely on time. One example are stabilized tip positions

for the tips of each finger, being a variable amount of time

behind the actual hand data. Stabilized positions are stored

in a separate model to preserve 2-D interactions. Stabilized

data are denoted in Figure 1 by red “X”s representing the

stabilized tips of each finger.

For the five models defined, we use user data to train each

model. Figure 1 shows how user data is stored as separate data

subsets, one subset per model. User Recording is the process

of capturing user interaction with the Leap Motion and hence

the application under test. We intercept this data and use it

to train models. First, the data is split into data subsets. This



0.6

0.4

(x, y, z)(x, y, z)

(x, y, z) 0.5

0.5

0.9

0.10.2

0.8

0.7

0.3

(a) Model generated from data
subsets (Figure 1).

(x, y, z)
(x, y, z)

(x, y, z)

(b) Each model outputs a clus-
ter centroid, all output is com-
bined into a single data object

(c) Generated Leap Motion data
object to seed to application
under test

Exit

(d) Application receiving gen-
erated data

Fig. 2. Our approach: generating features before combining them into a realistic data object.

involves applying feature selection [15] to the data and training

each model on the selected features.

A. Model Generation

For each data subset, the same technique is applied to

generate models. Firstly, the volume of user data is reduced

using K-means clustering. K-means clustering groups together

related records by Euclidean distance, using all features in the

calculation. The result labels each record with a cluster 0..k
where the label is the cluster with the nearest centroid (mean

of all elements in the respective cluster).

Each record is now labelled but the quantity of data has

not changed. To reduce the data, we substitute each record

with the centroid of the assigned cluster. This reduces the total

amount of user data to K centroids.

When recording data, the chronological sequence in which

each record was received is stored. This sequence can be

replaced by the assigned cluster labels and used to train an

N-gram model, a model containing the probabilities of all

transitions of length N in a sequence.

To generate an N-gram model, a probability tree is con-

structed from sequences of data. The tree is of depth N and

contains all transitions of length N from one element of the

sequence to other neighbouring elements. For example, assum-

ing that the cluster label sequence is as follows: 1, 2, 1, 2, 1, 3.

Using this model with N = 2, the probability of observing a

record in cluster 2 following a record in cluster 1 is 2/3, and

the probability of observing 1 after observing 2 is 1.0. Values

of K and N were chosen through parameter tuning.

Each Leap Motion data frame can have an undefined amount

of gestures, linked to different fingers i.e. it is possible for a

single Leap Motion frame to have three circle gestures and a

swipe gesture. We use an additional N-gram model to decide

which gestures go in which frames. Specifically, the gesture

N-gram model gives the following information: when to start

and stop a gesture; which finger each gesture should be linked

to; and the types of each gesture.

IV. GENERATING LEAP MOTION DATA

Once models are trained, Figure 2 shows how data produced

from each model can be recombined into valid Leap Motion

data. Each model produces a cluster centroid for the area of

the Leap Motion data structure the model is representing. The

centroids from all models are combined into one data object,

(a) Generation using a random approach.

(b) Generation using a random cluster selection approach.

(c) Generation using the state of the art approach (Hunt et al. [8]).

(d) Generation using an N-gram approach with multiple models.

(e) A sequence from the original user data.

Fig. 3. Sequences of hands generated as input data using different techniques

and seeded back to the application during test generation. This

is where our approach differs from the technique by Hunt et

al. [8], which only uses a single model to reconstruct data.

Our approach to testing NUI applications has the advantage

that generated data still resembles the original user data, but is

also diverse enough to test parts of a program not necessarily

tested by users. We identify common patterns in the user data

per model, retaining some relationships that would otherwise

be lost when using a single model.

Using the models generated, we propose three methods of

generating mock Leap Motion data:

1) Random: Sample numbers in the Leap Motion’s view

range domain for all properties of all features. See

Figure 3a for an example sequence of hands generated

using this approach.

2) Random Clusters: Randomly select a cluster for all

models and seed the centroid of the clusters. This

produces realistic Leap Motion data at a single point in

time, but not over time. All time-related data is discarded

producing ‘mechanical’ hands with no animation. See



Figure 3b for an example sequence of hands generated

using this approach.

3) N-gram Model Generation: Use the generated N-gram

models to select the next cluster centroid to seed.

This preserves time-related data, but using separate

models eliminates the static relationships between models

preserved in the single model method by Hunt et al.

However, the benefit is that a wider range of data can be

produced, e.g., a single hand shape at various positions

in the Controller’s 3-D space can be generated, including

positions that the user did not provide for the respective

hand shape. See Figure 3c for example data generated

using a single model (Hunt et al.) or Figure 3d for an

example using multiple models.

Each technique reconstructs hands using the following

method: 1) generate model data in isolation by selecting cluster

centroids; 2) combine generated features into single data objects.

Using an N-gram model produces a sequence of data that

are statistically similar to the order of hands seen during user

recording. In contrast, selecting random clusters produces more

uniform data.

A. Executing Leap Motion Tests

Our technique generates tests for applications which use the

Leap Motion Controller [10]. The Controller allows interaction

with applications through hand tracking. The Leap API supports

many target source code languages, and works through a

background service installed on a machine, which provides a

continuous stream of data to applications registered as listeners.

Our framework functions as a layer that sits between the

application under test and the Leap Motion background service,

replacing the Leap Motion’s stream of data with automatically

generated data. We use a full mock of the Leap Motion’s Java

API. During test generation, when applications register as a

listener for the Leap Motion, our framework now provides a

stream of data in place of the Leap Motion background service.

To save tests, we store the ordered cluster labels of each

model and the execution time which the generated data frame

was seeded to the AUT. Replaying a test involves using these

stored cluster labels to select the cluster centroids for all models

at the appropriate point in time, before combining all centroids

into a data frame. Currently, playback of tests takes the same

time as generation, but future work is to minimize the generated

tests by removing sub-sequences which have no impact on final

code coverage. Tests produced by our tool currently produce

sequences of hands that can be played back into an application.

This is useful for regression testing: ensuring that the current

program state after seeding data on the modified application is

equal to the state seen during generation.

V. EVALUATION

To study NUI testing on the Leap Motion in more detail,

we investigated the following research questions:

• RQ1: How well does NUI testing with N-gram models

work on Leap Motion apps?

• RQ2: How does the quantity of training data influence

the effectiveness of NUI testing?

• RQ3: How does separation of NUI data into multiple

models influence the effectiveness of NUI testing?

A. Experimental Setup

To answer RQ1, we compare the test generation techniques

outlined in Section IV, i.e., random test data, random clusters,

and N-gram based test generation. For the Microsoft Kinect,

Hunt et al. [8] observed that the use of an N-gram model

resulted in substantial code coverage increases over the random

baselines, and the main question is whether this effect can also

be observed on Leap Motion applications, where input data is

more complex than on the Microsoft Kinect.

To answer RQ2, we compare models created using only

a single user’s data, against models created using data from

many users. Intuitively, assuming an equal value of K when

clustering, using data from many users should lead to N-gram

models which are less sparse, and have a higher diversity in the

set of centroids. However, anatomical differences (e.g., different

hand sizes) could have unexpected effects in the clustering

process. To evaluate the effect of user data in test generation,

we use the N-gram model technique with multiple models.

To answer RQ3, we evaluate the effects of splitting the Leap

Motion data structure into multiple models. The baseline is the

approach outlined by Hunt et al. [8] for the Microsoft Kinect,

i.e., creating a single model with the complete Leap Motion data

structure interpreted as a flattened vector of features. To evaluate

the effectiveness of splitting Leap Motion data into multiple

models, we use the N-gram model generation technique with

models trained on data from many users for each application.

Our metric for comparison is line coverage; the amount of

lines executed in an application divided by the total lines of the

application. We measured line coverage using instrumentation

provided by an open source tool1. To test for significance,

we used a Wilcoxon rank-sum test, with a significant result

occurring when p < 0.05. To find the better approach, we use a

Vargha-Delaney Â12 effect size, with a value trending towards

1 indicating an improvement over the baseline, 0.5 being no

improvement and trending towards zero being a negative impact.

To account for the random nature of our generation techniques,

we ran each configuration for 30 iterations [1], and the code

coverage achieved at the end of a one hour period was used

in comparisons.

A one-hour generation time was selected due to coverage

increases still being attained at this point for certain applications.

To select the value of K for clustering, tests were generated

using predefined sets of clusters between 200 − 2000 and

the value of K achieving the highest coverage was used in

experiments. The value of N was tuned in the same manner

but for values between 2 and 4. As data is recorded separate

for each application, values are also tuned separate.

For evaluation, we chose five applications: four from the

Leap Motion Airspace Apps Marketplace, and one open source

application.

1https://github.com/thomasdeanwhite/Scythe



(a) ASLDigits (b) GorogoaPuzzle (c) PaintLeapMotion (d) PolyDrop (e) Virtual Piano

Fig. 4. The five applications under test, used to empirically evaluate our framework.

• ASLDigits (Figure 4a) is an educational game teaching

American Sign Language for the numbers 0-9. There is

also a game in which users score points for using the

correct signs for numbers displayed in a given time limit.

ASLDigits contains around 4213 Lines of Code (LOC)

• GorogoaPuzzle (Figure 4b) is a puzzle game where unique

interactions are performed with the Leap Motion in order

to advance the story, and thereby move to different

program states. GorogoaPuzzle contains around 19633

LOC.

• PaintLeapMotion (Figure 4c) is an open source app

published on GitHub. This application allows users to

paint onto a canvas with a selection of tools using the

Leap Motion. PaintLeapMotion contains around 1579

LOC.

• PolyDrop (Figure 4d) is a physics game in which blocks

fall on to the screen and the player needs to catch them on

a bridge controlled by Leap Motion interaction. PolyDrop

contains around 8212 LOC.

• Virtual Piano for Beginners (VPfB, Figure 4e) is an

application which allows users to play an “air piano”.

There is a free play mode and also an educational mode

which teaches users to play certain songs. VPfB contains

around 2276 LOC.

We chose these applications due to their variety of use in the

Leap API. These applications include use of the gestures API,

2-D menu interactions, advanced processing of the Leap data

structures and other areas. The applications are also dissimilar

to one another. The only information that our technique has of

each application is the data from the Leap background service

when user interaction occurred.

Data was recorded from five users. The users first practiced

interacting with the Leap Motion on the “Leap Motion

Playground”, a training app provided by Leap Motion. Then,

users explored each application in sequence for five minutes.

We did not instruct them to perform specific tasks with the

applications but allowed them to freely explore applications.

B. Threats to Validity

We chose a subset of available applications which use the

Leap Motion Controller. To decide if our framework was

applicable to an application, we use the following criteria:1)

the applications must be in Java, and use the Leap Motion

Java API; 2) the application must be available publicly, either

on the Leap Motion Airspace Apps Store or open source. The

applications chosen use different areas of the Leap Motion API.

Some applications, like PolyDrop, make use of the stabilized

TABLE I
CODE COVERAGE FOR DIFFERENT DATA GENERATION TECHNIQUES FOR

EACH APPLICATION. BOLD IS SIGNIFICANT (P < 0.05).

N-gram Model Comparison
Random Random Clusters N-gram Model Random Random Clusters

Application Cov. Cov. Cov. A12 P-value A12 P-value

ASLDigits 0.425 0.441 0.468 0.963 < 0.001 0.884 < 0.001

Gorogoa 0.364 0.371 0.371 1.000 < 0.001 0.366 0.109

PaintLM 0.625 0.706 0.689 1.000 < 0.001 0.080 < 0.001

PolyDrop 0.459 0.505 0.534 1.000 < 0.001 0.513 0.838

VPfB 0.589 0.663 0.778 1.000 < 0.001 0.849 0.002

vectors for menu interactions, whereas others like ASLDigits

use the raw finger joint positions. Only GorogoaPuzzle uses

gestures, and only a circle gesture. The variance in usage of

the API means that our technique can be used on a wide range

of applications which use the Leap Motion Java API.

A threat to external validity is whether the data used in

training models is representative of data that actual users would

provide. To mitigate this, we use data from five users, each

interacting with the application under no guidance. Users were

given a short training session on how to use the Leap Motion

Controller, but not on how to use each application. Users

recorded data for five minutes per application, with breaks

in between each app. It is possible that the order of data

recording gave users a chance to learn more about the Leap

Motion Controller and improve usage on later applications.

The order in which application data was recorded changed per

person to mitigate against this.

As we are recreating and mocking an API, there is a question

as to whether our mimic API represents the real Leap API.

The version of the Leap API used for these experiments does

not support replay of data, so playback of data through the

physical device cannot occur, therefore the mock API must be

used. The Leap API is sparsely documented, and it is infeasible

to recreate the API exactly without knowledge and calculations

that are missing from the documentation. To mitigate against

this threat, we have techniques of reconstructing the raw data

using our API before clustering occurs and we ensure that

the reconstructed data seeded through our framework performs

similar to the original user data.

With any developed software there is a potential for faults to

occur. To mitigate against this threat, we have a unit test suite

and also make all the artifacts available publicly on GitHub2.

C. RQ1: How well does NUI testing with N-gram models work

on Leap Motion apps?

Table I shows the line coverage achieved by different tech-

niques of data generation. The two right-most columns show the

2https://github.com/thomasdeanwhite/NuiMimic/tree/nuimimic



ASLDigits Gorogoa PaintLM PolyDrop VPfB

Ran
do

m

Ran
do

m C
lus

ter
s

N-gr
am

 M
od

el

Ran
do

m

Ran
do

m C
lus

ter
s

N-gr
am

 M
od

el

Ran
do

m

Ran
do

m C
lus

ter
s

N-gr
am

 M
od

el

Ran
do

m

Ran
do

m C
lus

ter
s

N-gr
am

 M
od

el

Ran
do

m

Ran
do

m C
lus

ter
s

N-gr
am

 M
od

el

0.6

0.7

0.8

0.3

0.4

0.5

0.62

0.64

0.66

0.68

0.70

0.364

0.366

0.368

0.370

0.372

0.45

0.50

0.55
Li

ne
 C

ov
er

ag
e

Fig. 5. Line Coverage for different data generation techniques for each application.

A12 effect size when comparing the N-gram model technique to

random and random clusters respectively. Random generation

achieves the overall lowest code coverage, compared to both

random clusters and N-gram based generation. Statistical

comparison between N-gram based generation and random

generation shows that the difference is significant in all five

cases, as can be seen in Figure 5. Using random clusters for

test generation leads to substantial coverage increase on all 5

apps. The difference between the random and random clusters

approach is that the random clusters approach exploits domain

knowledge, selecting random cluster centroids from the model

generation stage. Combining these centroids generates data

similar to that which the original user provided i.e. real data

that the Leap Motion could provide to an application. However,

the random approach generates unrealistic hands and is very

unlikely to generate something resembling actual human data

from the Leap Motion under normal use. This demonstrates

how important it is to generate realistic data. Compared to

random clusters, the N-gram based generation adds animation.

N-gram based generation allows not only the current hand to

appear realistic, but a sequence of hands to be human-like.

This leads to a significant coverage increase in two of the

applications. For Paint Leap Motion the use of the N-gram

interestingly leads to a significant decrease in coverage; for

GorogoaPuzzle and PolyDrop there is no significant change.

While overall there is a small average coverage increase, this

result justifies a closer look at the individual applications under

test. ASLDigits and Virtual Piano for Beginners (VPfB), the

applications where the N-gram based approach performs best,

use a Java game engine with Leap Motion integration. They

both require the hand data to represent specific positions and

gestures. For example, ASLDigits uses a machine learning

approach to determine if signs are correctly shown, and Virtual

Piano for Beginners requires specific hand shapes with minute

changes over time. Furthermore, both applications use complex

menus which require precise interactions with menu elements.

All these aspects are more likely to occur with N-gram based

test generation, leading to around 114 and 262 more lines

of code being covered for ASLDigits and VPfB respectively.

PaintLeapMotion, the application where the random cluster

technique achieved higher coverage than the N-gram based

approach, is a painting application, where users paint on a

canvas using hand gestures. While the N-gram based approach

generates more realistic hand sequences, these do not matter for

this application: PaintLeapMotion only uses the finger tips area

of the Leap Motion API. Users can change tools by moving

their hand towards the back of the Leap Motion Controller’s

view and selecting a new tool from the pop-up menu. Here is

a code snippet from PaintLeapMotion:

if (minDepth < ...DRAWING_DEPTH) {

menuPanel.hide();

draw(i);

} else if (minDepth > ...MENU_DEPTH) {

menuPanel.show();

} else {

tool.stopDrawing();

menuPanel.hide();

setLastPosition(i, null, null);

}

In this code, minDepth is the minimum position of a finger

tip. The Leap Motion API uses a negative Z-axis so this is the

front-most part of the hand. The selection of random clusters

more uniformly samples combinations of cluster centroids,

therefore more rapidly changing between the branches in this

function. In the application, this is reflected by alternating

between showing the menu, selecting new tools, and painting

on the canvas very quickly. This leads to an increase of around

43 lines of code over the N-gram model approach. Using the

N-gram model technique can also change tools, but does so

at much less speed, following realistic movement. Random

generation of test data is unlikely to move all points in the hand

behind the threshold to activate the pop-up menu so can only

paint on the screen using the default tool, and thus performs

poorly on this application. For GorogoaPuzzle and PolyDrop

the likely reason that coverage does not increase with the use

of N-gram models is that both apps require very specific and

complex interactions (e.g., balancing elements on a horizontal

bar in PolyDrop). While N-gram based generation may produce

more realistic data sequences, these sequences would need to

be tailored to the specific state of the gameplay. Consequently,

both random clusters and N-gram based generation are likely

stuck at the same point in the application. Overall, the benefits

of using an N-gram model in data generation are application

specific. On applications such as PaintLeapMotion, which do

not rely on a steady stream of data with small change over

time, random clusters performs well. Other applications such

as Virtual Piano For Beginners require precise gestures and

slow interactions with menu items, which the N-gram based



ASLDigits Gorogoa PaintLM PolyDrop VPfB

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
0.0

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.1

0.2

0.3

0.4

Runtime (minutes)

Li
ne

 C
ov

er
ag

e

Technique Random Random Clusters N-gram Model

Fig. 6. Line Coverage for different data generation techniques for each application across time.

ASLDigits Gorogoa PaintLM PolyDrop VPfB

Sing
le 

Sou
rce

Merg
ed

Sing
le 

Sou
rce

Merg
ed

Sing
le 

Sou
rce

Merg
ed

Sing
le 

Sou
rce

Merg
ed

Sing
le 

Sou
rce

Merg
ed

0.7

0.8

0.30

0.35

0.40

0.45

0.50

0.60

0.63

0.66

0.69

0.3708

0.3710

0.3712

0.3714

0.3716

0.45

0.50

0.55

Li
ne

 C
ov

er
ag

e

Fig. 7. Line Coverage for models using either multiple or single person data when training for each application.

approach handles well, while it is unlikely that the random

cluster approach will generate a hand that remains still long

enough to activate a button. Figure 6 shows the change in line

coverage during test generation. In three of five applications,

line coverage is still increasing after 30 minutes for an N-

gram model based approach to generation. In two of five, line

coverage is still increasing after 50 minutes. Given enough

time, it is plausible that the N-gram model based approach

will achieve an equal level of coverage on PaintLeapMotion

than random clusters.

Although code can be executed by seeding NUI data, it is

impossible to achieve 100% coverage in certain circumstances.

For example, GorogoaPuzzle has defensive programming when

loading images, ensuring that the image exists. The cases

where an image does not exist cannot be executed by seeding

Leap Motion data alone. Another example of unreachable code

is in PaintLeapMotion, which contains both NUI and mouse

interactions. For our experiments, no mouse interaction could

take place hence there is no possible way to test this code.

RQ1: NUI test generation approaches increase coverage on

Leap Motion applications, but applications may only use

subsets of the complex NUI input data structures, limiting

benefits achievable with N-gram modeling.

D. RQ2: How does the training data influence the effectiveness

of NUI testing?

Table II shows the mean coverage for different generation

techniques using models trained on both a) a single user’s data

or b) all users’ data for the respective application. For all five

applications, the mean coverage was greater for a ‘merged’

TABLE II
CODE COVERAGE DIFFERENCE BETWEEN SINGLE AND MERGED DATA

SOURCES FOR EACH APPLICATION. BOLD IS SIGNIFICANT (P < 0.05).

Source Single Source Merged Source
Application Cov Cov A12 P-value

ASLDigits 0.444 0.468 0.725 0.017

Gorogoa 0.371 0.371 0.536 0.590

PaintLM 0.672 0.689 0.759 < 0.001

PolyDrop 0.467 0.534 0.965 < 0.001

VPfB 0.738 0.778 0.711 0.080

model that was trained on all users’ data, as confirmed in

Figure 7. Of the five applications tested, three applications

achieved a significantly higher code coverage when tested with

the merged model. From this, we can make two conclusions.

Firstly, models that have been trained with more data yield

higher code coverage. Secondly, a greater volume of training

data is beneficial even when it originates from a number of

different users.

Increasing the amount of data available to produce models

increases the individuals assigned to each cluster, producing a

more diverse set of cluster centroids to be chosen by models

when generating data. As each cluster contains more elements,

the N-gram models representing transitions between clusters

are less sparse, allowing a greater variance in the sequences

generated. The finding that a benefit accrues from a larger

amount of training data, even when it originates from a diverse

pool of users, is not entirely expected. Users interacting with

the Leap Motion have different anatomy (e.g., hand sizes, finger

lengths) and may interact with the controller in specific ways.

Apparently, the benefits of generalizing over a diverse pool

of data outweigh the disadvantages that might be expected



ASLDigits Gorogoa PaintLM PolyDrop VPfB

Sing
le 

Mod
el

Mult
ipl

e M
od

els

Sing
le 

Mod
el

Mult
ipl

e M
od

els

Sing
le 

Mod
el

Mult
ipl

e M
od

els

Sing
le 

Mod
el

Mult
ipl

e M
od

els

Sing
le 

Mod
el

Mult
ipl

e M
od

els
0.6

0.7

0.8

0.35

0.40

0.45

0.50

0.67

0.68

0.69

0.70

0.369

0.370

0.371

0.45

0.50

0.55
Li

ne
 C

ov
er

ag
e

Fig. 8. Line Coverage for models using either single or multiple model generation for each application.

TABLE III
CODE COVERAGE FOR SINGLE OR MULTIPLE MODEL GENERATION FOR

EACH APPLICATION. BOLD IS SIGNIFICANT (P < 0.05).

Data Generation Single Model Multiple Models
Application Cov Cov A12 P-value

ASLDigits 0.452 0.468 0.751 < 0.001

Gorogoa 0.369 0.371 1.000 < 0.001

PaintLM 0.706 0.689 0.070 < 0.001

PolyDrop 0.479 0.534 0.510 0.926

VPfB 0.781 0.778 0.483 0.879

from anatomical differences. This suggests that in future work,

crowd-sourcing interactions from a large pool of users should

be an effective way of building models for NUI testing.

RQ2: Test generation using models trained with more than

one source of training data outperformed those using only a

single data source. This suggests that pooling data across a

number of users is beneficial, even though the users differ in

their anatomy (e.g., their hand sizes and finger lengths).

E. RQ3: How does separation of NUI data into multiple models

influence the effectiveness of NUI testing?

Table III shows the mean code coverage after testing the

two forms of model generation: a single model or multiple

models. The single model approach generates entire data

frames at once, by selecting a centroid from Leap Motion

data clustered as a complete set of features. The multiple

model approach generates data from models clustered from

subsets of the data set, then combining data from each

model into a data frame. On ASLDigits and GorogoaPuzzle

the multiple model based approach achieves a significantly

higher code coverage; on PaintLeapMotion the coverage is

significantly lower. The coverage difference can be seen in

Figure 8. On the other two applications the mean coverage

is slightly higher with multiple models, but differences are

not significant. These results show that the decision to use

multiple models for generating data is application dependent.

The application which benefits mostly from use of a single

model is PaintLeapMotion. From RQ1 we already know that

random clusters perform better at interacting with the tool

menu items of this application. Similarly, using a single model

is more likely to reproduce the interactions with the tool menu

in the training data, while creating separate models leads to

less reproduction, and exploration of new combinations. For

example, on PaintLeapMotion we used 1200 clusters, and the

single model simply learns the temporal relationships between

these clusters. In contrast, when splitting the data into five

models, we end up with substantially more possible ways of

interactions (i.e., 12005 possible combinations). A single model

approach explores the input space much quicker, leading to 27

more lines of code being covered than using multiple models.

Consequently, applications with simple interactions may be

more suited to a single model approach, whereas applications

which require more complex sequences of inputs are better

suited for a multiple model approach.

GorogoaPuzzle benefits from the use of multiple models.

It uses two main forms of interaction: circle gestures and

hand movements. The first screen of GorogoaPuzzle requires

a specific circle gesture before progression in the story can

occur. However, advancing in the story does not necessarily

increase code coverage, as the same code is used to handle all

circle interactions. To achieve a higher coverage, tests need

to advance far into the storyline, where complex sequences

of interactions are introduced and needed to advance further.

Using multiple models allows for more degrees of freedom in

the generated data, and thus succeeds slightly more often in

progressing in the GorogoaPuzzle storyline, achieving around

39 more lines of code covered.

ASLDigits also attained a significantly higher code coverage

using a multiple model approach. Multiple models performs

better than single model due to the application expecting

specific finger-joint shapes corresponding to the ASL sign for

0-9, requested by the application. The single model approach

merges hand positions and rotations from all interactions with

the application, which decreases the amount of unique finger-

joint shapes available; in contrast, the multi-model approach

covers this with an explicit model, achieving around 67 more

lines of code covered. Virtual Piano for Beginners is an

interesting application when comparing single to multiple

models. In RQ1, N-gram generation achieved a higher coverage

than random clusters because it could generate a still hand to

interact with the game menu. However, a single model approach

can also generate a steady hand. Single model works well for

this application due to the position and rotation being encoded

with finger positions. To play the correct key on the piano in a

tutorial song, the single model N-gram has to generate a single



sequence corresponding to the user pressing the key. However,

similar to with PaintLeapMotion, the multiple model approach

has a much higher search space, so is less likely to generate

the sequence to activate the key and progress with the song,

covering around 7 less lines of code than using a single model.

RQ3: Using multiple models is beneficial when applications

use specific features in isolation. If a more precise

replication of the training data is required, using a single

model approach may be beneficial.

VI. CONCLUSIONS

The Leap Motion allows users to interact with applications

through hand tracking. We have created a model and test gen-

eration framework for the Leap Motion, capable of generating

data by learning from real user interactions. This demonstrates

that the idea of NUI testing generalizing to other, more complex

NUI devices than the previously studied Microsoft Kinect. It is

also conceivable that the approach generalizes to other systems

which use complex inputs e.g., Autonomous Driver-Assistance

Systems, which alert drivers to possible future hazards [5],

[11].

Splitting Leap Motion data structures into separate models

exponentially increases the amount of data available during

generation. Each model generates data in isolation, and interacts

with other models when combining data in complex ways,

producing data that was never recorded from the original user.

However, if applications rely on precise positioning of a user’s

hands for interaction as captured in the training data, then

the increased quantity of possible data can be as much a

hindrance than an advantage. In our experiments, two out of five

applications showed a clear benefit from splitting data, but we

also found an example where coverage decreased. A challenge

thus lies in identifying when to split data, and when not to split

data. A possible solution might be to use a hybrid approach,

where data is sampled from either of the two approaches with

a different probability.

When training models from multiple sources of training

data, increased data size leads to higher code coverage. This

occurs even when the data is from different users. Potentially,

this insight opens up the possibility to gather data through

crowdsourcing from many individuals, and using that to train

user-independent models for data generation. A further angle

for future work lies in the generalization of models. We limited

training data to individual applications, but will it be possible

to create generalized models that can be used on applications

without previous user data to train models with? Currently, our

tool only provides a sequence of Leap Motion data that can be

played back into the AUT. Future work involves identifying

the current program state from the contents of the screen and

providing regression tests with oracles. This can then be used

in mutation testing. Finally, our experiments have also shown

that programs controlled with complex NUI interfaces may also

have complex program behavior, where blindly generating data

may not achieve best results. In games like GorogoaPuzzle,

thorough testing requires actions that are tailored towards the

current state of the application. This suggests future work on

identifying such program states, and learning different models

for different program states.

REFERENCES

[1] A. Arcuri and L. Briand. A Hitchhikers Guide to Statistical Tests for
Assessing Randomized Algorithms in Software Engineering. Software

Testing, Verification and Reliability, 24(3):219–250, 2014.
[2] P. A. Brooks and A. M. Memon. Automated GUI Testing Guided

by Usage Profiles. In Proceedings of the Twenty-second IEEE/ACM

International Conference on Automated Software Engineering, ASE ’07,
pages 333–342, New York, NY, USA, 2007. ACM.

[3] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In Proceedings

of the 4th USENIX Windows System Symposium, pages 59–68. Seattle,
2000.

[4] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software

engineering, pages 416–419. ACM, 2011.
[5] D. Greene, J. Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito, and

T. Mikami. An Efficient Computational Architecture for a Collision
Early-Warning System for Vehicles, Pedestrians, and Bicyclists. IEEE

Transactions on Intelligent Transportation Systems, 12(4):942–953, Dec
2011.

[6] T. Griebe and V. Gruhn. A Model-based Approach to Test Automation for
Context-aware Mobile Applications. In Proceedings of the 29th Annual

ACM Symposium on Applied Computing, SAC ’14, pages 420–427, New
York, NY, USA, 2014. ACM.

[7] T. Griebe, M. Hesenius, and V. Gruhn. Towards Automated UI-Tests for
Sensor-Based Mobile Applications. In Intelligent Software Methodologies,

Tools and Techniques - 14th International Conference, SoMeT 2015,

Naples, Italy, September 15-17, 2015. Proceedings, pages 3–17, 2015.
[8] C. Hunt, G. Brown, and G. Fraser. Automatic Testing of Natural User

Interfaces. In Software Testing, Verification and Validation (ICST), 2014

IEEE Seventh International Conference on, pages 123–132, March 2014.
[9] D. C. Ince. The Automatic Generation of Test Data. The Computer

Journal, 30(1):63–69, 1987.
[10] Leap Motion. Leap Motion — Mac & PC Motion Controller for Games,

Design, Virtual Reality & More. https://www.leapmotion.com. Accessed:
2016-09-13.

[11] D. F. Llorca, V. Milanes, I. P. Alonso, M. Gavilan, I. G. Daza, J. Perez,
and M. . Sotelo. Autonomous pedestrian collision avoidance using a
fuzzy steering controller. IEEE Transactions on Intelligent Transportation

Systems, 12(2):390–401, June 2011.
[12] L. Mariani, M. Pezz, O. Riganelli, and M. Santoro. Automatic Testing of

GUI-based Applications. Software Testing, Verification and Reliability,
24(5):341–366, 2014.

[13] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the
Reliability of UNIX Utilities. Communications of the ACM, 33(12):32–
44, 1990.

[14] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed Random
Testing for Java. In Companion to the 22Nd ACM SIGPLAN Conference

on Object-oriented Programming Systems and Applications Companion,
OOPSLA ’07, pages 815–816, New York, NY, USA, 2007. ACM.

[15] M. Shardlow. An Analysis of Feature Selection Techniques.
[16] G. H. Walton, J. H. Poore, and C. J. Trammell. Statistical Testing of

Software Based on a Usage Model. Softw. Pract. Exper., 25(1):97–108,
Jan. 1995.

[17] J. A. Whittaker and J. H. Poore. Markov Analysis of Software Specifi-
cations. ACM Transactions on Software Engineering and Methodology

(TOSEM), 2(1):93–106, 1993.
[18] J. A. Whittaker and M. G. Thomason. A Markov Chain Model for

Statistical Software Testing. IEEE Transactions on Software Engineering,
20(10):812–824, Oct 1994.

[19] D. Wigdor and D. Wixon. Brave NUI World: Designing Natural User

Interfaces for Touch and Gesture. Elsevier, 2011.
[20] S. Wood, K. Reidy, N. Bell, K. Feeney, and H. Meredith. The emerging

role of Microsoft Kinect in physiotherapy rehabilitation for stroke pa-
tients. https://www.physio-pedia.com/The emerging role of Microsoft
Kinect in physiotherapy rehabilitation for stroke patients. Accessed:
2017-10-12.


