University

of Glasgow

Edwards, N., Jongsuebchoke, D. and Storer, T. (2019) Sciit: Aligning
Source Control Management and Issue Tracking Architectures. In: 35th
IEEE International Conference on Software Maintenance and Evolution
(ICSME 2019), Cleveland, OH, USA, 30 Sep - 04 Oct 2019, pp. 402-405.
ISBN 9781728130958 (doi:10.1109/ICSME.2019.00069)

The material cannot be used for any other purpose without further
permission of the publisher and is for private use only.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/192034/

Deposited on 08 August 2019

Enlighten — Research publications by members of the University of
Glasgow
http://eprints.gla.ac.uk



http://dx.doi.org/10.1109/ICSME.2019.00069
http://eprints.gla.ac.uk/192034/
http://eprints.gla.ac.uk/

Sciit: Aligning Source Control Management and
Issue Tracking Architectures

Nystrom Edwards, Dhitiwat Jongsuebchoke and Tim Storer
School of Computing Science
University of Glasgow
Glasgow, United Kingdom

Abstract—This paper presents sciit, a distributed issue tracker.
Distributed issue tracking eliminates much of the friction that is
otherwise necessitated by separately maintaining source code in
a distributed source control management system (SCM) and task
information in a centralised issue tracker. Sciit goes beyond the
state of the art in distributed issue tracking by treating issues
as first class change control items, represented as fragments
of text anywhere within the SCM. This approach treats issues
as representations of work in progress alongside other project
artefacts. This alignment allows much of the meta-data about
an issue, such as status, affected components and participants
to be inferred directly from the state of the SCM, rather than
requiring maintenance of this information by a developer. The
paper presents a scenario to illustrate the benefits of sciit and
an outline of the tool’s architecture.

Index Terms—distributed issue tracking; source control man-
agement; software life cycle

I. INTRODUCTION

A centralised issue tracker has become the de facto means
of coordinating work effort in agile software projects. In a
typical workflow, project tasks are logged as issues, small
self contained packages of work. These may then be further
elaborated by the project team and annotated with additional
meta-data, such as type (feature, bug etc.), priority, milestone,
estimated effort and affected project components. Issues are
then assigned to a developer for resolution. The developer
works on the necessary changes, gradually making commits
to a branch in the project’s source configuration management
system (SCM). Eventually, the work is completed and the
developer requests for the changes to be reviewed within the
team’s quality assurance (QA) process. Once approved, the
changes are merged from the feature branch into the main
line of development, via a merge or pull request. Once these
changes are accepted the issue status can be manually changed
to resolved and the issue archived.

Reviewing this workflow reveals that software developers
are required to manually maintain the consistency of informa-
tion between their SCM and issue tracker. Curating this infor-
mation accurately can substantially reduce the costs of, and
increase the probability of issue resolution [3]. Unfortunately,
this requires additional effort that may lead to information in
different systems that is incorrect, incomplete, inconsistent or
out of date [4].

For example, when work begins on an issue, a developer
must create a new branch in the SCM and the issue must be

marked as ‘In progress’ in the issue tracker. When an issue
moves to QA, the developer must remember to mark it as ‘in
QA’ in the issue tracker, then merge the work to a QA branch,
or create a merge request. Finally, when an issue is resolved by
merging a development branch into production, the developer
must also remember to record this step in the issue tracker by
changing the status to ‘Resolved’.

Fundamentally, the redundancy arises because of the mis-

match between the distributed architecture for source control
management and the centralised architecture for issue tracking.
We therefore argue that issues are early stage representations
of software development work, that have strong dependencies
on artefacts within the SCM and will eventually be represented
through alterations to artefacts within the SCM. Issues should
themselves therefore be treated as first class configuration
items. All the changes necessary to realise the feature can be
tracked in the SCM as change sets with associated commit
messages. Storing the description of the work to be done
as an early representation of the consequent implementation
allows the associations between the two and their concurrently
developing histories to be explicitly, rather than incidentally,
linked. Many of the items of project meta-data, such as issue
status can also be inferred from change sets without requiring
data to be manually maintained. For example, once a feature
has been fully implemented it can be simply deleted in the
last change set that realises the change. As a further conse-
quence, reliable issue tracking and associated work history
record allows for more reliable project-scale metrics and better
informed decision making.
Contribution: We have designed and implemented a proof of
concept tool, sciit, based on the popular Git SCM. We describe
the design of sciit and demonstrate how the features presented
eliminates much of the friction necessary in issue-tracking
based project coordination and enable many of the desirable
items of information concerning project management to be in-
ferred directly from the history of change sets within a project.
Alongside the paper we provide a complete implementation
of sciit as an open source project that combines a command
line user interface extension to git and integration with the
GitLab issue tracking web application to enable convenient
migration[6].

This paper is structured as follows. Section II presents the
workflow for interacting with sciit and illustrates how many
aspects of redundancy in the software project management



@issue photo-upload-on-claim

@title Photo Upload on Claim
@description

We need a photo upload feature so that
customers can provide supplemental
evidence for their insurance claim, e.g.
of damage during a Road Traffic Accident.
@priority medium

backlog/upload-photo.md
(@

+ git-sciit.exe issue photo-upload-on-claim

Title: Photo Upload on Claim

ID: photo-upload-on-claim

Status:

Last Change: twsswt | Wed Oct 31 16:21:55 2018 +0000
Created: twsswt | Wed Oct 31 16:21:55 2018 +0000
Participants: twsswt

Priority: medium

Size: 335

Latest file path: docs/issues/photo-upload-on-claim.md

Description:

We need a photo upload
feature so that customers can
provide supplemental evidence
for their insurance claim,
e.g. of damage during a Road
Traffic Accident.

s 3 e S R R S S ok SR i S ok s ok sk e e ok o i ol e R R ol RO i SR R e s ol sl o ol ol e s ok ol i ol ok o ok sk sk R R kR R

(W)

Fig. 1. Example of an issue in the backlog in sciit. The issue is created
as a markdown formatted text file in a directory containing all the issues in
the project backlog (la). The issue as presented by the sciit command line
tool combines information from the markdown file and the Git repository’s
meta-data (1b).

workflow can be eliminated by treating issues as source control
items within the SCM. Section III presents the design and
implementation of the sciit tool and its integration with the
Git and GitLab packages. Finally, Section IV briefly describes
the advance sciit makes compared with existing distributed
issue trackers and outlines future work.

II. EXAMPLE OF USING SCIIT FOR ISSUE TRACKING

We present an example scenario using sciit to illustrate the
benefits of embedding issues in SCM artefacts. In the sce-
nario, a product owner identifies new user stories concerning
uploading photos for an insurance claims application. The
product owner creates a new issue using the GitLab issue
tracker interface. Sciit detects this and creates a new branch
for the issue in the project repository on the server, creates a
new markdown file in the backlog directory of the project
repository source (as shown in Figure 1a), adds the file to the
index and performs a commit.

Later, a software developer then pulls updates from the
team’s GitLab server to their local repository and receives the
new issue. Figure 1b shows the new issue on the command
line user interface. Notice that the summary presented by sciit

contains extra information about the issue, such as the issue
participants, that is not present in the text file itself, but is
instead inferred from the version control system meta-data.
The issue status is also reported as Open (proposed) because
sciit interprets the presence of an issue in a feature branch, but
not in master, as having not yet been accepted into the project.
Whenever the branch is merged to master (e.g. through a pull
request) the issue will be interpreted as Open (accepted).

The developer decides that the acceptance test suite must be
extended to include the new feature. A new issue is therefore
created within a Gherkin feature file (Figure 2a), since sciit
allows issues to be defined anywhere within a programming
language specific comment format. The location of the issue
is shown to the developer in the sciit interface, giving the user
information about where the work will need to be done to
resolve the issue. Sciit reports the issue Open (in progress) as
soon as the developer makes a commit to the branch after the
initial merge to master, as shown in Figure 2b. The branch can
be pushed to the team’s GitLab server so that other developers
can receive the new issue.

The developer eventually completes all the work for the
feature. At this stage the issue comment is simply deleted
and a commit is made to the feature branch in the SCM.
Reviewing the status of the project in sciit, the developer see
that the issue’s status is now reported as Open (In review).
Sciit assumes that since the issue no longer exists in the
development branch, the author is awaiting approval for the
completed changes to be merged into master. Finally, the
feature passes the team’s QA review process and the developer
merges the branch into master, which causes the issue to
be deleted from master. The issue is now marked as Closed
(resolved), as shown in Figure 2c. Alongside the change in
status, sciit also automatically adds a closed time to the issue.

At the end of the sprint, the whole team reviews progress
on the project. The full revision history of an issue can be
reviewed using the command line interface or in the GitLab
web application. For each change made to an issue, sciit
reports the identifier of the contributor who made the commit,
the date of the commit, an itemised list of changes to the issue
and the commit message summary. The set of commits that
the issue was present in is also listed. The issue tracker also
reports the full history of all branches and file paths that the
issue resided in during its life cycle. Supplementary metrics,
such as the duration of the issue (the time between the first in
progress commit and the issue being closed) are also reported.

III. IMPLEMENTATION

Figure 3 illustrates the software components of sciit, imple-
mented on top of a peer-to-peer network of git repositories.
The figure shows that sciit comprises a library for managing
a cache of issue snapshots extracted from a git repository;
a command line user interface git extension; and a GitLab
integration that ensures consistency between a GitLab issue
database and sciit git issue repository.

Sciit Library is a python package implemented on top of git-
python [7]. The library has two main functions: maintaining



@issue photo-upload-on-claim-uat
@title Photo Upload on Claim UAT
@description

Extend existing claim user stories with

scenarios that include photo upload.
* k%

Feature: Photo upload for claims

Scenario: Small JPEG Upload with Description
Given a claim

And a small JPEG

And a description

When I select the photograph

And I enter a description

And I click submit

Then the photograph is stored

And a database entry is created.

features/claim. feature

(a)

$ git sciit issue photo—up1Ead—on—ciaim—uat

Title: Photo Upload on Claim UAT
ID: photo-upload-on-claim-uat
Status:

Last Change:
Created:

twsswt | Thu Dec 06 23:17:22 2018 +0000
twsswt | Thu Dec 06 22:58:39 2018 +0000

Participants: twsswt
Size: 672
Latest file path: features/claim.feature

Description:
Extend existing claim user stories
with scenarios that include photo
upload

(b)

$ git sciit issue photo-upload-on-claim

Title: Photo Upload on Claim

in: photo-upload-on-claim

Status: Closed (Res ed)

Closed: twsswt | Thu Jan 17 18:52:19 2019 +0000
Last Change: twsswt | Thu Jan 17 18:52:05 2019 +0000
Created: twsswt | Thu Jan 17 18:51:34 2019 +0000
Participants: twsswt

Priority: med1um

Blockers: photo-upload-on-claim-uat(Closed), photo-
Size: 1612

Latest file path: backlog/photo-upload-on-claim.md

Description:

wWe need a photo upload
feature so that customers can
provide supplemental evidence
for their insurance claim,
e.g. of damage during a Road
Traffic Accident.

e L

©

Fig. 2. Making progress on an issue. The developer extends the feature file
in the sub-issue branch (2a). Sciit detects that a commit in the feature branch
means that work on the issue is now ahead of the status in master and so
reports the feature as Open (In progress) (2b). Sciit reports issues as Closed
(resolved) when the issue is deleted from master (2c).

a cache of issue snapshots as commits are added to the
repository; and reconstructing an issue history from the cache
when interrogated by clients.

The cache update mechanism is invoked on a repository
following commits, merges or pulls. Sciit is notified of these
events by hooks in the host git repository. Sciit first determines
which commits in the repository have not yet been cached. The
set of changed file paths for each of these is then extracted
from the repository. Each file is then scanned for issues marked
by an @Qissue tag. Sciit assumes that issues are contained
within comment strings of the language indicated by the file
extension. Issue snapshots in files with a .java extension are
assumed to be contained within /*x..*x/ comments, for
example. Each issue snapshot is then cached to an Sqlite
database within the git repository.

Sciit uses the cache of snapshots taken from commits to
build the history of issues. All snapshots are retrieved from the
cache and grouped by issue id. The current status of each issue
for many fields, such as title, description and last modification
can be extracted directly from the latest snapshot for an issue.
More complex properties can be inferred from analysis of the
entire snapshot history. For example, the set of participants in
an issue can be inferred from the usernames of commit authors
who made modifications to issues. The status of an issue can
be inferred by its historical presence in different branches in
the project repository. The entire history of changes to an issue
can also be extracted from the snapshots.

Git Extension is a git extension that enables users to review the
status of issues in their repository. Issues can be presented in
several different views including a status summary of all issues
in the repository; a tracker view providing detailed information
about a single issue, including its full history; and a log view
providing a summary of any changes to an issue in a single
commit.

The command line user interface can also be used to
initialise and, if necessary, rebuild the sciit issue snapshot
cache. Several commands have also been implemented to
combine workflows steps that would otherwise have to be
executed separately. For example, the new command creates
a new branch, creates a new markdown file for an issue,
performs a commit and then returns the user to the starting
branch. This command also supports the creation of sub issues
by enabling further issue branching from feature branches.

GitLab Integration allows GitLab to be used as a user interface
for issues stored in the git repository, ensuring they are
consistent with issues stored in the web application database.
The integration updates the status of the GitLab issue database
when commits are received on the server following a push
from a client; and makes commits to the repository as a
result of changes to the GitLab issue database. Interaction with
GitLab is performed by a GitLab communicator module that
exploits the GitLab REST API. This can be used to be notified
of changes to information stored on GitLab and make changes
to the issue database.



GitLab Web Application Server

GitLab
Web Ul

GitLab
Integration

Sciit
Library

Y

Business Analyst Bare Git Repository

Local Development Environment

Sciit
Library

Sciit Git

Extension Git Shell

Git Repository Developer

Post
receive hook

Post commit/
merge hook

Y

Fig. 3. The architecture of the sciit package within the Git/GitLab ecosystem.

IV. CONCLUSIONS

Issue trackers play a pivotal role in the coordination of a
software project. Nonetheless, they are a significant source of
redundant information because much of the information can
already be inferred from the SCM, the primary representation
of work for a software project. This paper presents sciit,
a distributed issue tracker, in which issues are treated as
first class control items within a SCM. Although a particular
software workflow and issue type were used to illustrate sciit,
the purpose is to demonstrate that the status of any software
task and workflow is best elicited from the focus of that work,
the source control repository, rather than secondary systems,
such as issue trackers.

There are several existing tools that support distributed issue
tracking, with a list maintained in the Sciit README file
[6]. Some approaches, such as the Git-issue git extension [2],
provide a similar command line interface to sciit, allowing
users to manage issues within a git repository. Issues are stored
in the git data structure and changes to issues can be migrated
between repositories via push/pull operations. Others, such
as the Bugs Everywhere project [1] provide issue tracking
facilities on top of a number of different SCMs. A third
category, including Fossil [5], are SCMs in their own right,
with integrated issue tracking and wikis.

The architecture of sciit is an advance on these existing
distributed issue trackers. First, sciit allows issues to be treated
just the same as any other artefact in the source control system,
rather than providing a separate data storage format for them.
Issues can be created anywhere within a text file in the SCM
repository, allowing a closer alignment between sciit issues
and the work to be undertaken (or completed). Second, sciit
leverages the close alignment of issue tracking content and
other artefacts to allow many of the properties of an issue,
such as status, component and participants to be inferred
directly from the state of the issue in the repository, rather
than requiring these to be updated manually. Unlike other
approaches, Sciit relies on git for primary data storage, but
also maintains a cached representation of issues drawn from
git commits in order to present information efficiently.

We plan further integrations for sciit with popular software
engineering tools, including IDEs and web based issue track-

ers to continue to develop sciit. Several new features have
also been proposed, such as the inference of more types of
meta-data based on the state of the SCM. Examples include
exploiting change set characteristics (such as files and/or lines
changed) to estimate costs for tickets.

We also plan a more extensive study of the benefits of
using distributed issue tracking within real software projects.
The dearth of academic literature in this area is a significant
gap. Case study research of such experiences is necessary to
understand how to best adapt existing software workflows to
distributed issue tracking. Studies of this form also provide
insights as to potential analytics for a project that can be
derived from issue tracking data stored in sciit. We anticipate
that longer term studies will generate significant insights
for the development of successful distributed issue tracking
systems.

REFERENCES

[1] “Bugs everywhere project,” Available at
http://www.bugseverywhere.org/, November 2012.

[2] “Git issue,” Available at https://github.com/dspinellis/git-
issue, 2019.

[3] P. Hooimeijer and W. Weimer, “Modeling bug report
quality,” in 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA, R. E. K. Stirewalt,
A. Egyed, and B. Fischer, Eds. =~ ACM, 2007, pp. 34—
43.

[4] M. Korkala and F. Maurer, “Waste identification as the
means for improving communication in globally dis-
tributed agile software development,” The Journal of Sys-
tems and Software, vol. 95, pp. 122-140, 2014.

[5] J. Schimpf, Fossil Version Control A Users Guide,
2nd ed., Pandora Products, 215 Uschak Road, Derry,
PA 15627, United States of America, November
2012, available at http://www.fossil-scm.org/schimpf-
book/doc/2ndEdition/fossilbook.pdf.

[6] “Sciit,” Available at http://gitlab.com/sciit/. Accessed 22nd
March 2019.

[7] M. Triers and S. Thiel, GitPython Documentation, 2015,
available at https://gitpython.readthedocs.io/en/stable/.



	Cover Sheet (AFV)-16
	192034

