
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Dependency Profiles for Software
Architecture Evaluations

Eric Bouwers, Arie van Deursen, Joost Visser

Report TUD-SERG-2011-015

SERG

TUD-SERG-2011-015

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 27th IEEE International Conference on Software
Maintenance (ICSM), 2011, IEEE Computer Society.

c© copyright 2011, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Dependency Profiles for Software Architecture
Evaluations

Eric Bouwers∗‡, Arie van Deursen‡ and Joost Visser∗

∗ Software Improvement Group, Amsterdam, The Netherlands
E-mail {e.bouwers,j.visser}@sig.eu

‡ Delft University of Technology, Delft, The Netherlands
E-mail {Arie.vanDeursen,E.M.Bouwers}@tudelft.nl

Abstract—In this paper we introduce the concept of a “de-
pendency profile”, a system level metric aimed at quantifying
the level of encapsulation and independence within a system. We
verify that these profiles are suitable to be used in an evaluation
context by inspecting the dependency profiles for a repository
of almost 100 systems. Furthermore we outline the steps we are
taking to validate the usefulness and applicability of the proposed
profiles.

I. INTRODUCTION

Software architecture is loosely defined as the organizational
structure of a software system including components, connec-
tions, constraints, and rationale [7]. Since the architecture of
a software system greatly influences all of a system’s quality
attributes [4], it is important to regularly evaluate the actual,
as-implemented, software architecture of a system.

In order to reduce the amount of time and effort needed
to perform such an evaluation, an evaluator can use software
metrics to spot outliers and identify areas within a system
which are in need of a more detailed evaluation. Additionally,
the use of metrics reduces the need for expert opinion, thus
making the evaluation more objective and repeatable.

For a metric to be useful in an evaluation context, several
characteristics are desirable [6]. For instance, the metric needs
to be simple to explain to ensure that non-technical decision
makers can understand them. Furthermore, in order to allow an
evaluation of a diverse application portfolio the metrics should
be as independent of technology as possible. The ability to
perform a root-cause analysis is also desirable to ensure that
the metrics can provide a basis to determine which actions
need to be taken. Lastly, metrics which are easy to implement
and compute are desired as to reduce the initial investment for
performing evaluations.

Research on metrics for software architectures has tradition-
ally focussed on the way components depend on each other
and how components are internally structured (coupling and
cohesion [9], [10]). To the best of our knowledge, all of the
existing metrics for architecture level dependencies fail to meet
at least one of the desired characteristics outlined above.

In this paper we propose the concept of a dependency
profile which categorizes all modules in a system based on
their dependencies. This purpose of the dependency profile
is two-fold. On the one hand it is aimed at capturing the

degree in which the components within a system encapsulate
the functionality they offer. On the other hand, the profile
quantifies the degree in which components are dependent upon
each other. We assess to what extent the dependency profile
meet the four criteria just discussed by examining a benchmark
of almost 100 systems totaling over 12.5 million lines of code.
Additionally we outline a plan to validate the profile against
the type of changes that occur within a system.

II. BACKGROUND

To illustrate why existing metrics for quantifying the depen-
dencies between components of a system are less suitable to
be used in an evaluation context we present a short overview
of typically found shortcomings.

To start, metrics which are simple to explain such as the
basic number of incoming and outgoing dependencies allow
for root-cause analyses. However, since larger systems tend to
have a higher number of dependencies these metrics should
be normalized against the size of the system to allow systems
of various sizes to be compared.

More complex coupling/cohesion metrics such as those
defined by Briand et al. [2] or in the well-known C&K
suite of metrics [3] (including variations), suffer from the
same problem of not being normalized against the size of
the software unit they are measuring. Additionally, these
class-level metrics are designed to target systems written in
object-oriented languages, while ideally a metric would be
independent of technology.

And although there are extensions to these coupling metrics
that are normalized, see for example Gui [5], the proposed
normalization process tends to decrease the ability to perform
root-cause analyses because the outliers in the data, which
are the interesting data-points, are usually hidden by the
normalization. The same problem applies to metrics defined
to rank cluster algorithms, for example the Modularization
Quality-metric defined by Mancoridis et al. [8].

III. DEPENDENCY PROFILES

We define a metric to quantify the dependencies within a
system by placing all modules of a system (e.g., Java classes
or C files) into four distinct categories. This categorization
is based on the way in which the modules are grouped into

SERG Bouwers, van Deursen & Visser – Dependency Profiles for Software Architecture Evaluations

TUD-SERG-2011-015 1

components (e.g., Java packages or C directories) and how the
modules interact with modules outside their own component.

A. Terminology

Let S = 〈M,C,D〉 be a system, consisting of a set of
modules M , a set of components C and a set of dependencies
between modules D. Each module is assigned to a component
and none of the components overlap. More formally, the set
C ⊆ P(M) is a partition of M , i.e.,
• ∀c1, c2 ∈ C : c1 6= c2 ⇒ c1 ∩ c2 = ∅.
•

⋃
c∈C = M

For (m,m′) ∈ D we write m → m′ to represents a directed
dependency from module m ∈M to module m′ ∈M .

For each module m ∈ M it is possible to obtain the con-
taining component through a function component : M → C.
In addition, for a component c ∈ C we use c to denote the
complement of c, i.e., all modules not contained in c.

Lastly, each module has a given size (measured by, for
example, the lines of code or function points), which is
captured by a function size : M → N. The volume of a
component c ∈ C is defined simply as the sum of the size of
its modules, thus:

volume(c) =
∑

m∈c
size(m)

B. Types of code

Each module within the components of a system can be
divided into one of four categories, see Fig. 1:
• Hidden modules (1): modules which only have depen-

dencies (either incoming or outgoing) involving modules
inside the component.

• Inbound modules (2): modules which do not have outgo-
ing dependencies to modules outside the component, but
have incoming dependencies from modules outside the
component.

• Outbound modules (3): modules which do not have
incoming dependencies from modules outside the compo-
nent, but have outgoing dependencies to modules outside
the component.

• Transit modules (4): modules which have dependencies
(both incoming and outgoing) coming from/going to
modules outside the component.

For each of these categories a function of type C → 2M can
be defined which, given a component C, returns the set of
modules within that component which belong to that category.
Table III-A lists the definitions of those functions. Using these
functions, each category of modules can be turned into a
normalized metric by calculating the percentage of code in
a system which belongs to each category. For example, the
percentage of hiddenCode of a system is defined as:

hiddenCode(S) =
∑

c∈S

volume(hiddenModules(c))

volume(c)

Definitions of the metrics for inboundCode, outboundCode and
transitCode are similar.

B C

A

1

2

3

4

Fig. 1. Three components illustrating the four different types of modules
within a system; 1) hidden modules, 2) inbound modules, 3) outbound
modules and 4) transit modules. Arrows denote dependencies from/to modules
within other components.

C. Dependency Profile

Using the metrics defined above we define a Dependency
Profile as a quadruple of the four types of code:

〈 hiddenCode(S) , inboundCode(S)

outboundCode(S) , transitCode(S) 〉

A typical instantiation of such a profile is
〈75%, 10%, 15%, 5%〉, which means that 75 percent of
the volume of the system falls into the hiddenCode-category,
10 percent falls into the inboundCode-category, etc. We
hypothesize that this dependency profile can be used to
quantify two quality aspects of a software system: the degree
of encapsulation and the degree of independence.

The concept of encapsulation is often used to refer to the
level in which the implementation details of functionality are
abstracted away by an interface. A high level of encapsu-
lation is desirable since this should mean that changes to
the implementation can be done without the need to change
clients which are using the interface. We expect that the
inboundCode metric can be used to measure this quality
aspect. To illustrate we compare a system A with a dependency
profile of 〈50%, 30%, 18%, 2%〉 with a system B with a
dependency profile of 〈50%, 15%, 34%, 1%〉. In system A
there is a higher percentage of code which is called from
outside the component in which it is defined, which leads
to a higher chance that a change in this specific component
propagates to other components in the system. We hypothesize
that a high value of inboundCode shows that there is a low
level of encapsulation in the system.

Analogously, independence is used to refer to the level in
which components of a system rely on other components
(either interface or implementation) in the implementation
of their own functionality. A high level of independence is
desirable since this should mean that changes in modules
outside the component should not propagate to the component
itself. We expect that the outboundCode metric can be used
to measure this quality aspect since this metric quantifies the
portion of the system which is used by other components. In
the example systems above, system B has a higher percentage
of code which depends on code outside the component in
which it is defined. This leads to a higher chance that a change
in a component will propagate to this specific component. We
hypothesize that a high value of outboundCode indicates that
there is a low level of independence in the system.

Bouwers, van Deursen & Visser – Dependency Profiles for Software Architecture Evaluations SERG

2 TUD-SERG-2011-015

Name Collection
hiddenModules(c) {m ∈ c | @ mi ∈ c : mi → m ∈ D ∧ @ mo ∈ c : m → mo ∈ D}

inboundModules(c) {m ∈ c | ∃ mi ∈ c : mi → m ∈ D ∧ @ mo ∈ c : m → mo ∈ D}
outboundModules(c) {m ∈ c | @ mi ∈ c : mi → m ∈ D ∧ ∃ mo ∈ c : m → mo ∈ D}

transitModules(c) {m ∈ c | ∃ mi ∈ c : mi → m ∈ D ∧ ∃ mo ∈ c : m → mo ∈ D}

TABLE I
CONDITIONS FOR EACH OF THE FOUR CATEGORIES OF MODULES

In both cases the percentage of transitCode should also
be taken into account. This category contains those modules
which both use and are used by modules in other components
and are thus even more likely to propagate changes between
components. Because of this issue, we hypothesize that al-
though there might be some need for transitCode, for example
in a component which connects two other components, it is
desirable to have a low percentage of transitCode in a system.

IV. PRELIMINARY OBSERVATIONS

As a first evaluation of the dependency profiles we instan-
tiate the above metric framework and use a repository of
systems to observe the distribution for this specific instanti-
ation. The repository is an extended version of the one used
in [1] and contains systems of different sizes, development
context (open-source versus industry) and technologies. The
following table characterizes the repository in terms of number
of systems per technology and development context:

Java .NET C/C++ Total
Industry 45 17 6 68

Open source 20 4 3 27
Total 65 21 9 95

To ensure that the metrics can be calculated for all technolo-
gies we instantiate “module” as a source-file, “dependency”
as a direct call relation and “component” as the first level of
decomposition in the system. Determining the components of
the systems follows the approach in [1], i.e., for all systems
the top-level decomposition was made by a technical analyst
of the Software Improvement Group based on the directory
structure of the system and available documentation. For the
industry systems this decomposition was validated with the
development team. A chart showing the distribution of the
dependency profiles for this repository and this instantiation
is given in Fig. 2.

A. General Observations

A first observation that is clear from Fig. 2 is that the
percentage of hiddenCode differs considerably for the systems
in the repository, ranging from 7 to 100 percent with a median
of 35 percent. Since having 100 percent of hiddenCode is
strange, we investigated this particular system, an industry
system written in C#, and found that each top-level component
in the system was a specific service built upon an external
framework. Since each service is independent from the all
other services none of the services have code in common.

Another observation that can be made about the distribution
is that a large portion of the repository (18 systems) does
not have any transitCode, which corresponds with our initial

hiddenCode inboundCode outboundCode transitCode

0 20 40 60 80 100

Fig. 2. Dependency profiles for a repository of systems, ordered by the
percentage of hiddenCode. Each line represents a system.

expectation. However, the amount of transitCode rises to over
20 percent for 10 systems, having a maximum of 53 percent
in the repository. Within these systems we expect to see a high
frequency of propagating changes. In Section VI we provide
an outline of how we plan to validate this hypothesis.

A last observation that can be made is that in almost all
cases (only 9 exceptions) the amount of outboundCode is
larger than the amount of inboundCode. This could indicate
that, in general, there is a stronger focus on the design of
the provided interface of a component than on restricting the
required interface of a component.

B. Statistical Observations

To enable a fair comparison between systems of different
sizes we need to ensure that there is no strong correlation
between the size of the systems and the percentages in the
dependency profiles. To assess this we use a Spearman rank
correlation test using the size of the system in lines of code
and the percentage of code in each of the four categories.
No significant correlations were found for hiddenCode and
transitCode, while both inboundCode and outboundCode have
a weak correlation of −0.28 and 0.32 (p < 0.01) respectively.
Thus we can conclude that there is no strong correlation
between the size of a system and any of the four categories.

In addition, using a two-sided Kolmogorov−Smirnov test
we can determine whether there is a significant difference
between the distributions of two data samples. Using this
test we did not find any significant differences between the
distribution of the values for different development contexts

SERG Bouwers, van Deursen & Visser – Dependency Profiles for Software Architecture Evaluations

TUD-SERG-2011-015 3

(industry versus open-source) or system type (application ver-
sus libraries). However, there are differences between the dis-
tribution in the values of hiddenCode for the Java technology
versus other technologies. Inspecting the distributions shows
that systems written in Java tend to have a lower percentage
of hiddenCode. This difference in distribution does not mean
that the metrics are technology dependent, but only that the
metrics might consistently produce lower values for certain
technologies. Determining the reasons, scope and impact of
this issue is part of our future work.

V. DISCUSSION

As discussed before there are four desirable characteristics
of metrics to be useful in an practical evaluation setting [6].
We argue that the metrics used in the dependency profile as
described in Section III feature these characteristics.

First of all, the metrics should be simple to explain. Even
though the formal definition of the metrics can be considered
complex, we believe that the intuition behind the metrics are
easy to explain given the visual support of Fig. 1.

Secondly, the metrics should be as technology independent
as possible. The definition of the four metrics contains no
technology specific constraints, although certain definitions of
“module” or “dependency” could make the metrics technology
specific. By using a generic instantiation of the metrics as
given in Section III there are no practical problems in com-
paring systems written in different technologies.

Furthermore, the metrics should allow for a root-cause
analysis, which is relatively straight-forward. After first using
the system level dependency profiles to discover a system in
need of further investigation, the profile can be calculated on
component level to determine which component contributes
the most to each category of code. After the most interesting
component has been found, the modules in the category of
interest can be sorted according to their size to discover which
module is contributing the most to this category. After deter-
mining the most interesting modules an expert should inspect
the dependencies to/from these modules to determine why
these dependencies are there and whether they are problematic.

Lastly, the metrics should be straight-forward to implement.
We believe that existing tools which are capable of extracting
dependencies and calculating the size of modules should have
no problems implementing the needed metrics, and that this
should require only a small amount of effort.

VI. EVALUATION DESIGN

To determine whether the intuition as described in Sec-
tion III-C is correct we plan to test the following hypothesis:
• Systems with a low percentage of inboundCode plus

transitCode have a better encapsulation and therefore
changes in a component will less likely propagate to other
components

• Systems with a low percentage of outboundCode plus
transitCode have more independent components and
therefore changes in a component will less likely propa-
gate to other components

In order to validate these hypothesis we plan to perform a
case-study examining the change-sets of a system using the
framework proposed by Yu et al. [11]. This framework defines
co-evolution of a system as either being internal (i.e., all mod-
ules in a change-set belong to a single component) or external
(a change-set contains modules of multiple components).

We plan to calculate the frequency of external co-evolutions
for a number of open-source systems. By correlating this
frequency with the values of inboundCode plus transitCode,
outboundCode plus transitCode, and a combination of the two
measures we plan to validate or reject our two hypothesis.

Concurrently a more qualitative study will be performed in
the form of case-studies on previously analyzed systems. In
these case-studies the intuition of the metrics will be validated
by connecting the dependency profiles with known architec-
tural problems within the studied systems. Alternatively, the
profiles are used in combination with existing techniques to
determine whether there are problems in systems not previ-
ously evaluated. This qualitative study will also address the
issue raised in Section IV-B.

VII. CONCLUSIONS

This paper makes the following contributions:
• The definition of a dependency profile with desirable

characteristics for use in a software evaluation setting
• A first analysis of these profiles using a large repository

of systems
• An outline of the evaluation strategy for the profiles

We are currently working on setting up the evaluation exper-
iment and hope to report on the results in the near future.

REFERENCES

[1] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying the
analyzability of software architectures. In Proc. 9th Working IEEE/IFIP
Conf. on Software Architecture. IEEE Computer Society, 2011.

[2] L. Briand, J. Daly, and J. Wust. A unified framework for coupling
measurement in object-oriented systems. IEEE Trans. Softw. Eng.,
25(1):91 –121, jan/feb 1999.

[3] S. Chidamber and C. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., 20:476–493, 1994.

[4] P. Clements, R. Kazman, and M. Klein. Evaluating software architec-
tures. Addison-Wesley, 2005.

[5] G. Gui and P. Scott. Ranking reusability of software components using
coupling metrics. Journal of Systems and Software, 80(9):1450–1459,
Sept. 2007.

[6] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring
maintainability. In QUATIC ’07: Proc. 6th Int. Conf. on Quality
of Information and Communications Technology, pages 30–39. IEEE
Computer Society, 2007.

[7] P. Kogut and P. Clements. The software architecture renaissance.
Crosstalk - The Journal of Defense Software Engineering, 7:20–24,
1994.

[8] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch:
A clustering tool for the recovery and maintenance of software system
structures. In Proc. IEEE Int. Conf. on Software Maintenance, ICSM
’99, pages 50–, Washington, DC, USA, 1999. IEEE Computer Society.

[9] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Syst. J., 13(2):115–139, 1974.

[10] E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design. Prentice-Hall,
Inc., 1979.

[11] L. Yu, A. Mishra, and S. Ramaswamy. Component co-evolution and
component dependency: speculations and verifications. IET Software,
4(4):252–267, 2010.

Bouwers, van Deursen & Visser – Dependency Profiles for Software Architecture Evaluations SERG

4 TUD-SERG-2011-015

TUD-SERG-2011-015
ISSN 1872-5392 SERG

