Theinference validity problem in legal discovery*

R. E. K. Stirewalt’, LauraK. Dillonf, and Eileen T. Kraemer*

fDept. of Computer Science and Engineering
Michigan State University
East Lansing, Michigan, USA 48824
{stire,Idillon}@se. msu. edu

Abstract

This paper introduces the inference validity problem, a
software-engineering concern that manifests in and com-
plicates the pre-trial process of discovery in litigation. The
problem is related to the requirements validation problem
in traditional software engineering, but with stricter con-
straints on stakeholder communication and potentially se-
vere liability risks on the part of software engineers who
are retained as expert witnesses. We propose an approach,
based on the use of formal methods and traceability, to en-
able software engineers to avoid this problem, thereby in-
creasing the quality of written opinions while mitigating the
risk of liability.

1 Introduction

Discovery is a portion of the pre-trial litigation process
during which the parties request from one another infor-
mation that is relevant to the case. Traditional discovery
devices include interrogatories, depositions, and document
production requests. During discovery, federal courts and
most state courts require each party to disclose any re-
quested information that is reasonably calculated to lead to
the discovery of admissible evidence. Electronic discovery
(e-discovery) is a relatively new device that involves secur-
ing and searching electronic information, such as corporate
e-mail archives or databases. While the device has become
indispensable in modern litigation, its use raises a host of
knotty issues. In 2006, amendments to the Federal Rules
of Civil Procedure [5] went into effect so that the rules of
discovery could better accommodate some of these issues—

*This material is based on work supported by LogicBlox Inc, with ad-
ditional support provided by the National Science Foundation under Grant
Number CCF-0702667. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of LogicBlox or the National Science
Foundation.

*Dept. of Computer Science
The University of Georgia
Athens, Georgia, USA 30332
ei | een@s. uga. edu

including reasonableness and costs of discovery, preserva-
tion of electronic information, form in which information is
to be provided, and privacy and security [1, 7]. But current
rules of discovery do not address a more fundamental is-
sue, which we call the inference validity problem and which
falls under the purview of the software engineering profes-
sion. This paper introduces and documents this problem
and argues that formal methods offer the appropriate tools
for solving it.

The inference validity problem arises when e-discovery
is used to draw inferences or compute synthetic informa-
tion rather than to merely collect raw data. The problem
occurs both in the case of actual programs written to be
executed against a defendant’s database and to inferences
that are formed after reviewing descriptive materials, such
as programmer depositions, selected source code, and docu-
mentation. In either case, the expert renders an opinion that
contains a database query at some level of abstraction. Sim-
ply stated, the inference validity problem concerns whether
the query computes what the expert claims it computes and
whether the defendant’s database could support the query.

Inference validity is ultimately a software engineering
concern: A program must be validated against its require-
ments for its operation to be trusted. Best practices in soft-
ware engineering support validation through rich and open
communication with stakeholders. However, in the context
of litigation, communication is severely limited and many
of the relevant stakeholders are adversaries. This environ-
ment limits the validation tools available to the software en-
gineer; yet the consequences of an invalid inference could
incur astronomical costs, especially in class-action suits. In
addition, the last few years have seen a dramatic increase
in law suits brought by a party against its own expert for
negligent testimony [2]. As members of an emerging en-
gineering discipline, we believe software engineers should
take the lead in defining methods and standards for conduct-
ing validation in this context so as to maximize the quality
of inference while minimizing the professional risk carried



by an individual engineer.

To this end, we are developing a formal method for de-
veloping and validating inferences involving e-discovery.
Our process derives from Meyer’s method of using formal-
ism to structure natural-language specifications [6], which
we adapted to use formal modeling and verification tools
(in our case Z [9]). The value added by Z is its support for
precisely and cleanly:

e modeling the requirements, i.e., to precisely describe
the statutory violation that pertains to the complaint,

e modeling the defendant’s enterprise database,
e modeling the query (inference), and
o establishing traceability between these models.

The process can be used to produce opinions that are
amenable to critical analysis by an opposing expert and that
clearly document assumptions, especially party-specific in-
terpretations of statutes. In addition, the logical structure
that emerges from formal modeling can be useful for orga-
nizing and communicating complex technical ideas to the
attorneys who ultimately must argue the case in court and
who must depose the expert witness for the other party. Fi-
nally, the ability to precisely document assumptions should
mitigate the risk of negligence suits.

2 Obstaclesto validation

To address the inference-validity problem, a software en-
gineer must validate a proposed inference (i.e., a program)
against its requirements. Validation is difficult in the best
of circumstances, and this difficulty is exacerbated in the
context of litigation. We now explain some of the specific
obstacles that arise.

The first obstacle involves the need to precisely analyze
the requirements, which includes locating and understand-
ing any statutes that are relevant to the complaint. The typ-
ical software engineer will lack the expertise required to
know which statutes are relevant. Such a deficiency of do-
main expertise is common in large software projects and is
typically addressed through frequent consultation with do-
main experts. Unfortunately, in the context of litigation,
the domain experts are the attorneys for the parties in the
suit. One of these attorneys is an adversary. The other is
in a peculiar position that prevents her from actively con-
sulting with an expert witness for fear of being perceived
as influencing what should be an impartial opinion based
on technical facts. Thus, the software engineer must model
and analyze the legal requirements with only limited oppor-
tunities for consultation with domain experts.

The second obstacle involves the need for a valid ab-
stract model of the enterprise database itself. This model

describes the structure and meaning of the data that are used
by a program to draw an inference. It may be significantly
more abstract than the “as built” schemas underlying the
database®; however, for the inference to be valid, the model
must be a sound abstraction of those schemas. Often, the
expert must infer such a model by reviewing selected doc-
uments and depositions, and these inferences are prone to
error. For instance, given the volume of documentation that
an expert must assimilate to form an opinion, he or she
could easily craft a model of the database that contains in-
formation the real database does not contain. Any query
that depends on this unsound data would then be unsound,
and any inference based on the query invalid. We know of
at least one case, involving WalMart, where the soundness
of a database model was used to deny the validity of an in-
ference [10].

It is easy to understand how an engineer could arrive at
an unsound model of the database. If not provided with the
schemas, she must reverse engineer the model from what-
ever artifacts are provided or can be acquired through e-
discovery. Rarely will such artifacts convey information
such as functional dependencies and other integrity con-
straints. Understanding these constraints is critical when
validating an inference that synthesizes data from multiple
tables. Moreover, it is easy to assume the existence of a con-
straint that is not enforced by either the DBMS or the pro-
grams that operate on the database. Such assumptions may
lead an engineer to conclude that a database contains infor-
mation that it does not. We suspect this may have caused
the soundness problem articulated in Wal-Mart’s response
to a motion for class certification, which states:

“the databases analyzed do not contain the requi-
site information necessary to determine whether
and when Wal-Mart’s statutory duties were trig-
gered.” [10]

The third major obstacle involves the need to trace the
requirements outlined by the complaint to elements of the
program and/or the data the program computes. To make
this more concrete, consider the afore-mentioned case in-
volving Wal-Mart’s alleged failure to properly compensate
employees following a notice of termination. The relevant
federal statutes prescribe the duties of an employer in this
situation and may refer to events such as the date when a
terminated employee comes to pick up his final paycheck.
If such information is not stored explicitly in the database,
then an inference must somehow derive it from other infor-
mation in the database. Such derivations are prone to error
and thus require validation.

To summarize, there are essentially three major obsta-
cles to generating a valid inference and/or validating an in-
ference proffered by another party. Overcoming the first

le.g., what is specified via the "CREATE TABLE’ statement in SQL.



two obstacles requires the precise specification of the re-
quirements of the inference and contents of the enterprise
database, including functional dependency and integrity
constraints. Due to the adversarial nature of litigation, these
specification tasks must be conducted with limited stake-
holder consultation. Overcoming the third obstacle requires
the ability to trace requirements, which refer to concepts in
the legal domain, to the data computed by the inference,
which refer to concepts in the business domain.

3 Validation using formal methods

Our approach for addressing the inference validity prob-
lem borrows from Bertrand Meyer’s observations regarding
the value of formalism in constructing high-quality, well-
organized, natural-language specifications. In a classic pa-
per, he describes how formal modeling can be used to ame-
liorate a host of validation problems that manifest in what
he calls the seven sins of the specifier [6]. His thesis is that
formalism forces one to structure a complex specification
in a manner that naturally avoids the seven sins. Follow-
ing this idea, our approach advocates the construction of
explicit formal models of the requirements and of a faithful
abstraction of the database. It also includes a traceability
obligation that ensures the validity of the inference itself
pending the acceptance of a set of explicitly stated assump-
tions.

We craft our models in Z, a formal language designed
to support conceptual modeling, specification, refinement,
and proof [9], and then use the Z models in combination
with natural language documentation to systematically ad-
dress the three obstacles. As a first step, we formally model
the violation that the plaintiff claims has occurred as a set of
entities that witness the violation. In a class-action suit, this
set will comprise those individuals with whom the company
failed to perform its statutory duties. We refer to this set for-
mally as Violation and introduce it in Z using an axiomatic
description, which defines the set in terms of more primi-
tive concepts from the legal domain. For instance, a highly
simplified version of the alleged class in the Wal-Mart case
might be defined as follows:

termDate : Person - Date
finalPmtDate : Person - Date
Violation : F Person

Violation = {p : dom(termDate) |
p & dom(finalPmtDate) V
termDate(p) # finalPmtDate(p)}

The partial functions termDate and finalPmi¢Date model,
for a given employee, the dates of termination and of fi-
nal payment respectively. The set Violation contains those
employees who were terminated and who did not receive
payment on the date of termination.

Next, we model an abstraction of the enterprise database
itself using the Z schema language. This model defines the
entities, relations, and integrity constraints provided by the
database(s). For instance, cash-office databases could be
represented using a schema CashOffice? that tracks cash
inflows and outflows at the close of each business day,
whereas the regional enterprise database (which records the
generation of paychecks) might be modeled as a separate
schema CentralDB.

Our method prescribes that every element of formalism
that appears in a model of the database must be justified
with cross-reference to its source in one or more of the re-
view materials. We do this to ensure the soundness of the
abstraction. Because Z specifications are traditionally em-
bedded within LaTeX documents, these justifications ap-
pear logically very close to their introduction in the model.
Indexing into the review materials is simplified by the use
of Bates numbering, which assigns a unique identifier to ev-
ery page of every document used in a case. During model
construction, the engineer may wish to model data or in-
tegrity constraints that he believes must be valid but which
cannot be cross-referenced to a source in the review materi-
als. Such assumptions are necessary because review mate-
rials are silent on many details that might be relevant to the
construction of a sound model of the database. Our method
allows for the use of assumptions provided they are doc-
umented explicitly as such, thereby allowing an opposing
expert to challenge the assumption if needed.

Having modeled the database in Z, we then define the
set Inference to contain those individuals computed by the
inference. This set is defined within another axiomatic
description as a function whose input is the enterprise
database. This function is specified using the mathemat-
ical toolkit of Z, which contains powerful operators over
rich data types. Any inference that can be expressed as a
database query (as was the inference in our case) can be
specified in this manner, often more concisely. Also, as in
the running example, when the enterprise uses multiple dis-
tinct databases, we use the Z schema calculus to conjoin
these models, adding any relevant join constraints.

Having specified sets Violation and Inference, what re-
mains is to argue some kind of containment relationship
between the two, e.g., Inference = Violation. Because
these two sets are defined using concepts from different do-
mains, demonstrating this relation will be the most difficult
part of the process. Our method mandates that specification
of the inference must be structured in a manner that facili-
tates traceability in the form of retrieval invariants, which
show how legal-domain concepts can be retrieved (com-
puted) from business-domain concepts. For instance, we
might introduce an invariant that shows, for all employees

2definitions for schemas CashOffice and CentralDB are elided for
brevity.



p € dom(finalPmtDate), that there must exist a disburse-
ment for p on finalPmtDate(p) in either the cash-office
or the central database. These invariants represent another
kind of assumption and must therefore be formally specified
and documented as such. They may then be used as lemmas
to prove the containment relationship.

At the end of the process, we have constructed a model of
the inference and validated it against a model of the require-
ments and the database. Any assumptions made in demon-
strating validity are explicitly documented and stated in a
form that is amenable to challenge by an opposing expert.
Each assumption will either be accepted by the other party
in the suit or it will be challenged. If all assumptions are
accepted by the other party, then that party will have no
choice but to accept that the inference is valid, assuming
there are no errors in the proof itself. On the other hand, if
the other party challenges an assumption, then the attorneys
may focus on reconciling these disagreements. This process
is generally simpler than arguing over the larger validity of
the inference because the explicit statement of working as-
sumptions focuses inquiry.

Regarding benefits to stakeholders, our approach sup-
ports a lone engineer, working largely without consultation
with domain experts, in the construction of valid inferences
and/or in validating the inferences proposed by others. The
resulting structure of the inference specification leads to
clear explanation to attorneys and judges because it is trace-
able to the requirements, which are formulated in a domain
they understand. Moreover, as argued by Meyer, the result-
ing structure unfolds complexity in bite-sized chunks and
explicitly represents key assumptions, which might other-
wise go unstated. In our experience, the organization af-
forded by this structure greatly simplifies the construction
of a written opinion. Finally, this structure offloads much of
the risk currently carried by expert witnesses because, if the
proof itself is sound, then the inference must hold once all
of the assumptions are accepted.

4 Related and future work

Our use of formalism in this domain is most closely re-
lated to that of Sergot et al., who used Prolog to codify
the British Nationality Act for purposes of validation and
exploration [8]. A Prolog program has the benefit of exe-
cutability, thereby potentially allowing the expert to simu-
late and pose queries against her models during validation.
While successful simulation does not guarantee the valid-
ity of models, the technique has proved effective in finding
counter-examples [4]. Current tool support for simulating Z
specifications is sparse. On the other hand, Z specifications
are more modular and readable than large Prolog programs.

To reconcile these competing concerns, we are investi-
gating the application of other conceptual modeling nota-

tions and methodologies, specifically Object Role Model-
ing (ORM) [3]. ORM is supported by a mature modeling
and validation environment, called NORMA. We are cur-
rently working with the developers of NORMA to produce
a Datalog backend, which will allow for the creation and
static validation of models using ORM followed by simula-
tion and search for counter-examples using Datalog queries.
Such an integrated platform could support the methodology
outlined in this paper and could be used to reconcile the
claims of competing experts.

References

[1] T.Y. Allman. The impact of the proposed e-discovery
rules. Richmond Journal of Law and Technology,
X11(4):1-25, 2006.

[2] T. Baldas. Hot seat gets hotter for expert witnesses.
The National Law Journal, May 2008.

[3] T. Halpin and T. Morgan. Information Modeling and
Relational Databases. Morgan Kaufmann, second
edition, 2008.

[4] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, 2006.

[5] Federal rules of civil procedure. Legal Informa-
tion Institute, Cornell University Law School, 2007.
http://www.law.cornell.edu/rules/frcp.

[6] B. Meyer. On formalism in specification. IEEE Soft-
ware, pages 6-26, January 1985.

[7] L. H. Rosenthal. A few thoughts on electronic discov-
ery after December 1, 2006. The Yale Law Journal
Pocket Part, 116:167-191, 2006.

[8] M. J. Sergot et al. The British Nationality Act
as a logic program. Communications of the ACM,
29(5):370-386, 1986.

[9] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall International Series in Computer Sci-
ence. Prentice Hall, New York, 1992.

[10] In Re Wal-Mart Stores, Inc. Wage and Hour Litiga-
tion. No. C06-2069, U.S. Dist. LEXIS 14756 (N.D.
Cal. Feb. 13, 2008).



