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Figure 1: Our approach deployed in a pursuit-evasion interaction in the wild. Our policy (black
robot acting as pursuer) automatically synthesizes behaviors like slowing down and informa-
tion gathering, accelerating upon detection, and prediction and interception. Video results at
https://abajcsy.github.io/vision-based-pursuit/.

Abstract: Learning strategic robot behavior—like that required in pursuit-evasion
interactions—under real-world constraints is extremely challenging. It requires
exploiting the dynamics of the interaction, and planning through both physical
state and latent intent uncertainty. In this paper, we transform this intractable
problem into a supervised learning problem, where a fully-observable robot policy
generates supervision for a partially-observable one. We find that the quality of the
supervision signal for the partially-observable pursuer policy depends on two key
factors: the balance of diversity and optimality of the evader’s behavior, and the
strength of the modeling assumptions in the fully-observable policy. We deploy
our policy on a physical quadruped robot with an RGB-D camera on pursuit-
evasion interactions in the wild. Despite all the challenges, the sensing constraints
bring about creativity: the robot is pushed to gather information when uncertain,
predict intent from noisy measurements, and anticipate in order to intercept.
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1 Introduction

Robot learning has accelerated progress for embodied agents acting “in the wild”: quadrupedal and
wheeled robots navigate through hard-to-model terrains [1, 2, 3, 4, 5], quadrotors fly at their limits
[6], and robotic arms deftly manipulate deformable objects [7]. However, these successes are limited
to robots acting in isolation; in reality, robots deployed at scale will inevitably interact with other
agents, like people or other robots.

In-the-wild multi-agent interactions raise significant challenges: not only does a robot have to ac-
count for perception-induced uncertainty of the physical state (e.g., ego state, positions of others),
but it must also account for uncertainty in other agents’ future behavior. This problem setting is tradi-
tionally modeled by decentralized partially-observable Markov decision processes (Dec-POMDPs)
or partially-observable stochastic games (POSGs). While in theory, solutions to these formulations
would automatically yield desirable behaviors like information gathering when uncertain, in practice
they are notoriously intractable.

Nevertheless, human and animal behavior exhibits these abilities [8]. Pursuit-evasion interactions
are a canonical example: the pursuer gathers information about the hidden evader by turning and
scanning the environment; upon detection, the pursuer has to continuously strategize about its next
move without perfect knowledge of how the evader will react, all from onboard sensors. In this
work, we take the first steps towards building similar capabilities into autonomous robots.

Our key idea is to leverage a fully-observable policy to generate supervision for a partially-
observable one. However, the classic paradigm of privileged learning [9] does not apply naively
to this setting. Namely, privileged information depends not only on the robot, but also on the other
agent’s behavior, which is dictated by more than just physics; it is dictated by the other agent’s in-
tent. Therefore, we design a learning procedure to first build a low-dimensional latent representation
of intent from future evader trajectories and then learn to estimate this representation from a history
of pursuer actions and observations.

Through extensive empirical analysis, we find that the quality of the supervision signal depends on
a delicate balance between the diversity of the agents’ behavior and the optimality of the interac-
tion. In addition, there are many models for generating the fully-observable supervisor policy (e.g.,
game-theory [10], multi-agent RL [11]), each with their own potential strengths and weaknesses.
We discover that fully-observable policies obtained under strong modeling assumptions (e.g., both
agents play under perfect-state Nash equilibrium), are less effective at supervising partially observ-
able ones.

Informed by this analysis, we synthesize a policy that automatically takes actions to resolve physical
state uncertainty (e.g., looking around to see detect where the other agent is) while also generating
predictions about other agents’ intent to yield strategic behavior. We deploy this policy on a phys-
ical legged robot in a pursuit-evasion game, where it interacts with humans or other legged robots
(Fig. 1). Note that the robot only uses onboard sensing, e.g., proprioception and an RGB-D camera,
to estimate its state and other agents’ physical state and intent.

2 Related Work

Dynamic Games & Multi-Agent RL. Dynamic game theory has a long history of modeling strate-
gic interaction between multiple agents [12, 13, 14, 15] and has influenced fields like robust control
[16] and reinforcement learning [17, 18, 19]. Both traditional and modern variants of dynamic
games have predominantly assumed knowledge of perfect state. While this has been successful in
contexts like robustness to physical disturbances [18, 20, 21], it’s a limiting assumption for real-
world interaction. Partially observable stochastic games provide a mathematical model of strategic
interaction under partial observability [22], where all players have only partial information about
environment state. However, they are tremendously computationally expensive to solve, and ap-
proximations are an active area of research [23]. To make the optimization tractable, multi-agent
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reinforcement learning (MARL) algorithms exploit large-scale simulation and neural network rep-
resentations [24, 18, 25, 26, 27]. Such approaches have achieved impressive results in simulation
interactions like hide-and-seek [28], video games like Starcraft [29], diplomacy [30], and board
games like Go [31]. However, to-date, multi-agent RL approaches have not yet scaled to embodied
systems acting under real-world sensing constraints. Although these approaches cannot be applied
to our physical system out-of-the-box, we do take inspiration from this line of work in the design of
privileged fully-observable pursuer policy and a highly strategic evader policy.

Latent Intent Modeling. Recent works [32, 33, 34] learn a latent representation of agent intent
via reconstructing a dataset of fully-observed states and rewards. This line of works assumes that
the latent intent changes only between interaction episodes and not during an interaction. To handle
intent changes during interaction [35] learns an estimator of a human’s latent state to predict their
immediate next action. These works overwhelmingly assume that the only hidden state in the inter-
action is the opponent’s intent: the physical state of the robot, the opponent’s state, and possibly the
opponent’s action are assumed to be observable. We address the constraints imposed by on-board
robot perception, where the evader’s physical state, latent intent, and action are all hidden.

Multi-Quadruped Interaction. Progress in low-level control for quadrupedal robots [1, 3, 4]
has increased the interest in combining low-level controllers with high-level decision-making [36].
However, multi-agent quadruped interactions have been relatively under-explored. Most relevant
is [37] which trains a centralized high-level coordination policy with perfect (global) state for two
robots pushing a box. [38, 39] present cooperative control of robots via model predictive control
and control barrier functions. To the best of our knowledge, our work is the first to demonstrate
autonomous interaction between a quadruped and another robotic or human agent truly in the wild.

3 Overview

We seek a robot policy that can strategically interact with another agent in a decentralized fashion
(i.e., no explicit communication) and only using proprioception and a single onboard RGB-D cam-
era. Although our technical approach is general, we ground this work in pursuit-evasion games [12],
which exhibit core challenges at the heart of real-world multi-agent interaction: partial observabil-
ity, nonlinear physical dynamics (e.g., quadrupedal dynamics), low-latency decision-making, and a
need for strategic planning.

We approach this problem using privileged learning [9]. We found that directly using reinforcement
learning to train a policy that reasons strategically through partial observability was unsuccessful.
The key to our approach is to leverage a fully-observable policy to generate supervision for the
partially-observable one. During privileged training, we leverage a new type of privileged informa-
tion: the future state trajectory of the evader. We first learn a fully-observable policy (π∗) (top,
Fig. 2), that gets access the true future N -step state trajectory of the evader and the current true rel-
ative state. This enables π∗ to quickly learn actions that account for the evader’s behavior by using
a learned latent intent, zt, that encodes the future trajectory of the other agent.

We then distill this policy into a partially-observable policy (πp) which only uses an egocentric
video stream from an onboard RGB-D camera (bottom, Fig. 2). Specifically, πp gets access to a
history of relative state estimates and uncertainties which are generated via a standard Kalman Filter
[40]. Even though the Kalman filter is an incredibly coarse approximation of the true system, the
uncertainty information captured by the covariance matricies is sufficient for the prediction policy to
learn information-gathering behaviors (like turning and looking for the evader), when combined with
the teacher policy. In this light, our privileged learning approach can be viewed as an approximation
to the optimal policy obtained via solving the underlying, but intractable, decentralized partially-
observable Markov decision process (Dec-POMDP).

Our partially-observable policy can be applied zero-shot in the real world using the output of an
off-the-shelf object detector [41]. We deploy it in the wild to play a pursuit-evasion game with a
human evader and another quadrupedal robot controlled by a human operator.
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Figure 2: (top) The fully-observable policy knows the true relative state and gets privileged access
to the future evader trajectory from which it learns a representation the evader intent. (bottom) The
partially-observable policy must plan through physical and latent intent uncertainty.

4 Approach

Given an evader policy πe, we define the pursuer’s planning problem as a finite-horizon, discrete-
time optimization problem. We seek a policy for the pursuer πp : Op → Up which maps from
observations to actions that maximizes the following objective:

J(πp, πe) = Eτ∼p(τ |πp,πe)

[ T∑
t=0

γtrt

]
. (1)

Here, τ = {(xp0 , xe0, up0 , ue0, op0 , oe0, r0) . . . (xpT , xeT , upT , ueT , opT , oeT , rT )} is the joint trajectory of
states, actions, observations, and rewards induced by a pair of pursuer and evader policies, drawn
from the distribution p(τ | πp, πe). The discount factor is denoted by γ. More formally, this
optimization defines the solution to a two-agent, finite horizon decentralized partially-observable
Markov decision process (Dec-POMDP).

We denote the global physical state of the pursuer as xp ∈ Rnp and the evader to be xe ∈ Rne . Note
that the pursuer policy πp does not observe the global state of the agents. The robot’s high-level
linear and angular velocity commands are denoted by up ∈ Up and the pursuer’s low-level joint
torques are controlled via a pre-computed walking policy. The evader also controls its linear and
angular velocity, ue ∈ Ue. Both U i, i ∈ {p, e} are bounded sets, modeling actuation limits. For
example, in simulation, the maximum linear speed of the pursuer is 3 m/s, and the evader is 2.5 m/s.

The pursuer is rewarded for minimizing the distance between the two agents at each timestep, and
obtains a termination bonus upon capture:

Pursuit: rt = −||xet − xpt ||22, Capture: rT = α · 1{||xeT − xpT ||22 ≤ 0.8} (2)

Asymmetries. Our setting has three asymmetries that induce complexity: 1) information (agents
have limited FOV and partial state), 2) dynamics (e.g., robot quadruped interacting with human),
and 3) control bound asymmetry (e.g., agents with different maximum speeds).

Ego-Centric State. All agents reason about the relative physical state in their own body frame. In a
slight abuse of notation, we refer to xrel := [prelx , prely , θrel]⊤ as the true relative planar position and
orientation of the exo-centric agent in the ego-centric agent’s body frame.

State Estimation. In the wild, the true relative state is not available due to sensing limits. In-
stead, the pursuer estimates xrelt from the output of a 3D object detector using the RGB camera
[41]. Let opt ∈ Op be the 3D relative position of the evader with respect to the pursuer’s cam-
era frame2. The pursuer’s relative state estimate are the mean and covariance of a Kalman filter:

2If the evader is out of the field of view, then opt = ∅ and no measurement update is performed.
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(x̂relt , Σ̂t) = KF(op0:t, u
p
0:t). While a suite of more complex filter designs could be used for even

better performance [42], we find that using an unoptimized Kalman filter is sufficient for the robot
policy to learn information-gathering behaviors.

Evader Policy. The evader policy is key for enabling the pursuer to learn strategic maneuvers.
However, where does the evader policy come from? Datasets of quadrupeds interacting with other
agents in the wild do not exist, and simulating human-robot or robot-robot interactions that capture
the diversity of the real-world is an ongoing challenge for simulation-based robotics. Instead, we
take an investigative approach and study three simulated evader policy models: random motion
primitives, multi-agent RL, and dynamic game theory. Across all models, we assume the evader has
access to the current true relative state in their own body frame. Details are in Sec. 5.2.

4.1 Fully-Observable Policy: Teacher

To learn the pursuer teacher policy π∗, we must address the challenge that privileged information
depends on the evader’s behavior which is dictated by their dynamics and intent.

Future Evader Trajectory & Latent State. The fully-observable policy π∗ gets access to both the
true pursuer relative state, xrelt , and the future N states of the evader: xet:t+N . Since the pursuer
reasons in a relative coordinate system, the evader trajectory is converted into the pursuer’s body
frame starting from state at the start of the prediction horizon. This relative state trajectory, xrelt:t+N ∈
RN×3, is input into an encoder, E∗(xrelt:t+N ) = zt ∈ R8 which learns a low-dimensional latent
representation. Intuitively, zt should capture low-dimensional information about the evader’s near-
term behavior: for example, the evader’s goal direction, their policy class (e.g., spline coefficients),
or control bounds. At each timestep, zt is re-inferred.

Design. Although this pursuer policy is clearly not deployable in the real world, it enables us to
convert the intractable planning problem in Eq. 1 to a Markov Decision Process (MDP), amenable
to off-the-shelf RL methods [43]. We use Proximal Policy Optimization [43] for training. The policy
π∗ and the privileged encoder E∗ are both three-layer MLPs with [512, 256, 128] hidden units.

4.2 Partially-Observable Policy: Student

The partially-observable policy, πp, relies on RGB camera observations opt ∈ Op. We use a off-
the-shelf 3d object detector [41] to convert from the raw RGB image observable opt to an detected
relative position and heading in the pursuer’s camera frame, yt ∈ R3. We use a Kalman Filter to
generate an estimated relative state x̂relt and an associated covariance Σ̂t. We use a simplified state
transition model x̂relt+1 = Ax̂relt +Bupt which ignores the role of the evader (i.e., uet ≡ 0) during the
the prediction3 step (details in Appendix A.5). The history of relative state estimates and pursuer
actions are encoded into the estimated lower-dimensional latent intent E(x̂rel0:t, Σ̂0:t, u

p
0:t−1) = ẑt.

Design. We use DAGGER [44] and the fully-observable policy π∗ to supervise both the latent intent
estimate and the action at each timestep. The policy network is a 3-layer MLP with [512, 256, 128]
hidden units, and the encoder E is a 1-layer LSTM with hidden state 256.

5 Simulation Experiments

We first want to understand the design choices that are important to learn a successful pursuer policy:
1) the ability to learn strategic behavior, 2) the evader policy πe that the robot interacts with at
training time and 3) the evader interaction at deployment time. We perform a set of simulation
experiments to ablate the design of the pursuer policy (Sec. 5.1), study the effect of the evader on
distillation (Sec. 5.2), and analyze test-time adaptation of the pursuer policy to out-of-distribution
opponents (Sec. 5.3). We use Isaac Gym [45] for training and evaluation, and report results over
500 random initial conditions.

3This removes the need for a velocity estimator which can be hard to design and noisy in reality. While this
makes filtering imperfect, we empirically find that the learned policy can compensate for inaccuracies.
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Figure 3: (left) Joint trajectories reveal that using only the present state or directly a history of the
past states leads to sub-optimal performance. Supervision from the future enables prediction and
fast capture. (right) Time-to-capture as a function xrel0 : future supervision quarters the capture time.

5.1 Predictive representations enable strategic behavior

One of the key types of privileged information we leverage is future trajectory state, which leaks
information about the future intent of the other agent. In this section, we ask the question “What is
the value of learning predictive representations for action?” Here, we fix the evader policy to be
highly predictable and investigate alternative approaches to inferring the evader’s latent intent. The
evader always moves in Dubins’ paths [46] with a fixed time duration for turning or going straight
determined randomly upon the start of the episode (details in Sec. A.3.1 of the appendix). If the
pursuer has a high-quality understanding of the evader’s latent intent, it should be able to intercept
it along its weaving path. Throughout this section, all policies observe ground-truth relative states
but not the evader’s latent intent.

We consider three approaches: a reactive pursuer policy which only observes the present relative
state and does not infer any latent intent, a lookback policy which must estimate the latent intent
from a history of relative states without supervision from the future [35, 32] and a lookahead policy
(ours), which uses a history of relative states and supervision from the future to predict a latent
representation of the evader’s future trajectory. The lookback and lookahead policies use identical
LSTM architectures for intent estimation.

The reactive policy fails to predict the evader’s behavior and is unable to do better than tracking the
evader and trailing behind it (left, Fig. 3). While adding a history improves the pursuer’s strategy
(center, Fig. 3), it still struggles to estimate the evader’s intent reliably. In contrast, the lookahead
policy, trained to predict a latent representation of the evader’s future trajectory, learns effective
predictive behaviors (right, Fig. 3). In addition, the lookahead policy converges 10 times faster
than the lookback one (see Appendix Fig. 10). Overall, our experiments show that using the future
trajectory as privileged information favors training and enables strategic behaviors.

5.2 Distillation depends on balance of interaction diversity and optimality

Influence of evader model on pursuer policy. Now that we have a teacher policy architecture,

we turn to the role of the evader on the teacher pursuer policy. We compute three fully-observable
teacher policies, π∗, trained against three different evader models, πe. With a slight abuse of nota-
tion, let xrel be the relative state in the evader’s body frame. The random evader, πe

rand(t), randomly
samples a set of controls to apply each 1-3 seconds. The multi-agent RL evader, πe

marl(x
rel
t ), is

trained to evade a pre-trained pursuer policy, equivalent to a single iteration of [18]. Finally, assum-
ing perfect relative state, our setting could be modelled by a zero-sum game theory model, whose
solution characterizes the optimal pair of policies for the pursuer and the evader [16]. We com-
pute πe

game(x
rel
t ) via an off-the-shelf dynamic game solver [47]. Details on all evaders in Sec. A.3.

Top row in Fig. 4 shows that with perfect state, the pursuer capture time is indistinguishable be-
tween random and MARL evaders, while the optimal game theory evader maximally exploits the
interaction.
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Figure 4: 500 randomly sampled xrel0 initial positions and relative orientation. Colors indicate the
normalized time-to-capture starting from the shown initial condition. (top row) Policy knows perfect
physical state but infers latent intent from history of relative states and pursuer actions, trained
with three different evader models: heuristic, MARL, and zero-sum game-theoretic. (bottom row)
Partially-observable state and intent policy is supervised by the corresponding policy above.
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Figure 5: Coverage is more helpful than spe-
cialization for quick adaptation.

Distillation to partially-observable policy. Af-
ter training the fully-observable pursuer policy
against each evader, we supervise the correspond-
ing partially-observable pursuer policy (bottom row,
Fig. 4). We find that the game-theoretic pursuer pol-
icy makes for a poor supervisor because the super-
vision and interaction data operate under a perfect
state-feedback Nash equilibrium assumption that is
too hard to satisfy for the partially-observable pol-
icy. In contrast, robots trained against noisily-
optimal (MARL) or extremely diverse (random)
evaders have smaller in-distribution performance
drops. This indicates that the interaction assump-
tions under which the teacher policy is obtained must
be feasible for the partially-observable student.

5.3 For adaptation, coverage is more helpful than specialization

Ultimately, the test-time distribution of the evader is unknown a priori. Thus, we ask “How quickly
and how effectively can different partially-observable pursuer policies adapt to an out of distribution
evader?” We simulate interaction between πp

rand, π
p
marl, π

p
game and the highly predictable Dubins’

agent (Sec. A.3.1). None of the pursuers were trained on this behavior. We collect batches of joint
state trajectories, and then finetune the weights of the pursuer’s encoder E by supervising the latent
ẑt at each timestep via the privileged encoder E∗. Since πp

rand has a generic prior on the evader
motion, the representation in E is rich enough to triple its capture frequency in just 5 min. (Fig. 5).
πp
marl is good at the start, but, due to its prior on the evader motion, it is less flexible and needs

more data to see improvements. πp
game, with a stronger prior than πp

marl, fails to adapt and reaches a
sub-optimal performance with the limited data. This indicates that to quickly adapt to agents “in the
wild”, which are neither random nor optimal, coverage is more helpful than specialization.

6 Real-World Results

Real-world interactions are out-of-distribution for two main reasons: (1) the behavior of the evader
is unscripted and possibly very different to what was observed in simulation, and (2) the physical
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Figure 6: Single-shot interaction between a vision-based pursuer policy and a human. Left: Since
the human starts outside the FOV of the robot, the latter turns and seeks until it gets the first detection.
Center: The robot predicts the human will go straight and gallops to where the person will be.
Right: Human strategically hides outside robot’s FOV to escape.

dynamics of the evader do not follow the unicycle model as in simulation. We run two sets of
experiments to study how our policies react to such conditions.

First, we ablate the pursuer policy and deploy πp
rand, πp

marl, π
p
game on a physical quadruped robot

to interact with a human. We observe that πp
rand and πp

marl perform qualitatively similarly. They
showcase information-seeking motions when the evader is not in the field of view and predictive
strategies when the evader is visible, i.e., heading towards where the evader will be, not where it is
(Fig. 6). However, πp

marl shows slightly better anticipation and faster reaction times. Conversely,
πp
game shows inefficient information-seeking motions, taking long detours to reach the evader. Such

performance, inline with the experiments from Sec. 5, confirms that the diversity of interaction data
collected by a game-theoretic supervisor is not high enough to be robust to real-world interactions.

Second, we keep the pursuer policy fixed and ablate the dynamics of the evader. Concretely, we
compare the performance of πp

rand when interacting against a human or another quadruped teleop-
erated by a human (Fig. 1). In both cases, we observe aspects of strategic behavior. However, such
behavior is more apparent during interaction with another robot. This is due to the robot’s dynamics
being closer to the unicycle model the policy was trained on in simulation. See website for videos.

7 Discussion

Limitations. Our current approach does not model the affordances of the environment, like obsta-
cles, that could be strategically used by the pursuer. However, to achieve this, the pursuer needs
to sense the environment geometry, potentially making optimization much more challenging. Ad-
ditionally, the limited FOV assumption could be alleviated with different sensor designs (e.g., high-
resolution 360 FOV camera), but introduce additional challenges like the computational burden of
processing high-resolution images, that are interesting future work.

Conclusions. Our paper takes the first steps toward learning vision-based robot policies that can
reason strategically through partially-observable physical state and latent intent. We find interesting
pursuer behaviors when deployed on a physical quadruped robot with an RGB-D camera: informa-
tion gathering under uncertainty, intent prediction from noisy state estimates, and anticipation of
agents’ motion.
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A Appendix

A.1 Pursuer capture time as a function of train vs. test evader

Figure 7: Each pursuer policy is trained on a unique distribution of evader behavior—random,
MARL, or zero-sum game-theoretic—and deployed to interact with each other possible evader. The
plots reveal how pursuer policies trained on more optimal but less diverse behavior “overfit” to those
types of maneuvers. For example, consider the top-right where the pursuer policy is trained against
a game theory evader but tested against the random evader. The random evader does not explicitly
strategize, but the capture time distribution of the game-theory policy mirrors the distribution when
interacting with the game-theoretic evader (Fig. 4).

A.2 Simulation & training details

Quadruped High & Low-level Control. The quadruped uses a pre-computed low-level controller

for walking, and is just learning a high-level strategic policy. In this way, our method is agnostic
to the specific low-level controller. We use an off-the-shelf RL-based approach to train a walking
policy [45]. We use this policy during all simulation experiments and during training the high-level
strategic policy. The high-level policy we present in this work controls linear and angular velocity,
up = [vpx, v

R
θ ] ∈ Up. The control inputs are bounded: vpx ∈ [0, 3]ms and vpθ ∈ [−2, 2] rads . Note that

the pursuer has a ∼ 17% linear speed advantage over the evader (detailed in Appendix A.3).

Optimization Details. The episode length for interactions in the Isaac Gym simulator is always

T = 20s. The high-level quadruped policy runs at 5 Hz, and simulates a new control applied every
δt = 0.2s. The low-level quadruped policy runs at 50 Hz. We use the Adam optimizer for both
PPO and for DAGGER. We use Exponential Linear Unit (ELU) activations for the policy network
and for the encoders. The future state trajectory of the evader is always N = 4s = 8 steps. We train
the teacher policies with 3, 000 environments, and the student policy with 8, 000 environments. We
always train the high level policy on flat terrain in an infinite plane. Otherwise, we use all the default
parameters from [45] but remove the cross-entropy loss during PPO.
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A.3 Evader simulation & policy design

We simulate the evader as a unicycle dynamical system, controlling linear and angular velocity,
ue = [vex, v

e
θ] ∈ Ue. The control inputs are bounded: vex ∈ [0, 2.5]ms and veθ ∈ [−2, 2] rads . The

discrete-time dynamics model we use is:p
e
x
pey
pez
θe


t+δt

=

p
e
x
pey
pez
θe


t

+ δt

v
e
x cos(θ

e)
vex cos(θ

e)
0
veθ

 . (3)

The evader’s initial condition is randomly initialized at the start of each episode and after each
environment reset. Specifically, the initial xy-position of the evader is offset from the pursuer initial
xy-position via p

e
x
pey
pez
θe


0

=

p
p
x
ppy
0
0


0

+

 r0 cos(ψ0)
r0 sin(ψ0)
0.001

tan−1(pe,0y /pe,0x )

 ,
where r0 ∼ Unif[2, 6] is drawn uniformly at random between 2 and 6 meters, and ψ0 ∼ Unif[−π, π]
so that the evader spawns at random angles relative to the pursuer. The z-position is always fixed at
0.001 and the yaw angle θe is chosen so the evader is facing away from the pursuer at the start of
the episode.

A.3.1 Dubins’ policy

This evader always moves in Dubins’ paths [46] with a fixed time duration for turning or going
straight determined randomly upon the start of the episode. Let vex ∈ [vx, v̄x] be the min and max
linear velocity commands and veθ ∈ [vθ, v̄θ] be the min and max angular velocity commands. Let
τfwd be the number of seconds for which the evader goes forward, and τturn be the number of
seconds to turn. At the start of the episode, each parameter is sampled from the corresponding
uniform distribution:

τfwd ∼ Unif[2, 4], τturn ∼ Unif[0.6, 1.4].

The Dubins’ policy switches between two maneuvers depending on if the current time t matches the
time interval τfwd or τturn:

• τfwd: evader goes forward at max linear velocity, applying ue = [v̄x, 0]

• τturn: evader turns while moving at max linear velocity. With 70% probability the evader
turns the opposite direction as the last turn, and with 30% turning the same direction as last
time): ue = [v̄x, v̄θ] or ue = [v̄x, vθ]

At the start of the episode, the evader uniformly at random chooses to turn left or right.

A.3.2 Random policy

This evader, πe
rand(t), randomly samples a motion primitive to apply for a fixed number of seconds,

before re-sampling another motion primitive. The set of motion primitives MP are the Cartesian
product of regularly discretized linear and angular velocities:

Vx = [vx, 0.5vx, 0, 0.5v̄x, v̄x], Vθ = [vθ, 0.5vθ, 0, 0.5v̄θ, v̄θ], MP := Vx × Vθ

At the start of each episode, the duration for applying a motion primitive is randomly sampled to
be between 1 − 3 seconds. When it is time to switch motion primitives, πe

rand(t) ≡ (vx, vθ) ∼
Unif[MP].
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A.3.3 MARL policy

This evader, πe
marl(x

rel
t ), is trained to evade a pre-trained pursuer policy, equivalent to a single

iteration of [18]. The evader is rewarded for maximizing the distance between the two agents at
each timestep, and obtains a termination penalty upon capture:

Evasion: rt = 2 · ||xet − xpt ||22, Capture: rT = −80 · 1{||xeT − xpT ||22 ≤ 0.8}. (4)

The evader trains against a pre-trained, fully-observable pursuer policy: π∗(xrel, zt). This pursuer
was originally trained against a random evader, πe

rand(t). Since the pursuer is pre-trained, its policy
is already highly capable of capturing the evader making it difficult for the MARL agent to learn. To
tackle this, we use a curriculum set at where at each fixed iteration, the pursuer speed in increased
by 20%. The curriculum is set to [1800, 2000, 2400, 2800, 3100, 3800] iterations.

Figure 8: Global and relative coordinate system with respect to the pursuer’s coordinate frame.

A.4 Zero-sum game policies: pursuer and evader

For one of our candidate fully-observable supervisor policies, we use an off-the-shelf zero sum
differential game solver [16, 47]. It computes the optimal value of the two-player game, V (xrel, t)
at each time t ∈ [0, T ] via solving the Hamilton-Jacobi Isaacs Partial Differential Equation, whose
solution yields optimal game-theoretic policies for both the pursuer and the evader. Each agents’
state is their global position and their heading angle: xi := [pix, p

i
y, θ

i]⊤, i ∈ {p, e} (see Fig. 8).
Each agent controls their linear and angular yaw velocity: ui := [vix, v

i
θ] ∈ U i and the dynamics

evolve via a unicycle model: ṗixṗiy
θ̇i

 =

vix cos(θi)vix sin(θ
i)

viθ

 . (5)

Each agent’s policy is defined in their respective relative coordinate system (see Fig. 8 for relative
coordinate system in pursuer’s body frame). From the perspective of the pursuer, the relative state
xrel := [prelx , prely , θrel]⊤ consists of the relative xy-position and heading:

θrel := θe − θp,

[
prelx

prely

]
:=

[
cos(θp) sin(θp)
− sin(θp) cos(θp)

] [
pex − ppx
pey − ppy

]
(6)

The continuous-time relative dynamics of the evader in the pursuer’s body frame is defined by:ṗrelx

ṗrely

θ̇rel

 =

−vpx + vex cos(θ
rel) + vpθp

rel
y

vex sin(θ
rel)− vpθp

rel
x

veθ − vpθ

 := f(xrel, up, ue). (7)
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Note that when solving the game, the dynamics models are assumed to be deterministic.

The game is solved over the same time horizon as the episode length in the Isaac Gym simulator:
T = 20s. The pursuer’s optimal policy is defined as:

πp
game(x

rel, t) := arg min
up∈Up

max
ue∈Ue

∇V (xrel, t)⊤f(xrel, up, ue), (8)

The evader’s optimal policy is defined similarly with two changes: 1) the relative state xrel is of the
pursuer’s state in the evader’s body frame, and 2) the min and the max are swapped in Eq. 8.

πe
game(x

rel, t) := arg max
ue∈Ue

min
up∈Up

∇V (xrel, t)⊤f(xrel, up, ue). (9)

Note that because the joint dynamics are affine in the pursuer and evader controls, the value of the
game from the pursuer and evader’s perspective is identical (also known as Isaacs’ condition [13]).

Supervising the partially-observable policy. Recall that our approach uses supervision from the

fully-observable policy. The partially-observable policy’s intent estimate, ẑt, is supervised with
the teacher’s intent encoding zt and also the pursuer actions, upt , are supervised with the teacher
policy actions, up,∗t . However, the game-theoretic policy does not generate an explicit latent state
zt the way that the MARL and Random policy architectures do. Thus, we only supervise partially
observable policy’s with the game theory policy πp,∗(xrelt , t) at each timestep and we update the
latent intent encoder E and the policy πp weight’s. In the continual learning of Sec. 5.3 we follow
this same paradigm: finetune the weights of the encoder and the policy from just action supervision.
Otherwise the architecture of the partially observable student policy is identical (LSTM for encoding
with 3-layer MLP for action network).

A.5 Kalman Filter

We use a linear state transition model,

xrelt+δt = Axrelt +Bupt + w

which ignores the role of the evader (i.e., uet ≡ 0) during the the prediction step, and a linear
observation model,

yt = Hxrelt + v.

Note that while the Kalman filter ignores the motion of the evader, the student policy does not.
Indeed, the student policy uses a history of relative states to predict the future evader’s motion
(Fig. 2). We intentionally ignore the evader’s motion in the Kalman filter prediction step to waive
the requirement for a velocity estimator (which can be cumbersome to obtain and noisy in the real
world). While this makes filtering imperfect, we empirically found that the learned policy can cope
with the resulting inaccuracies.

The state transition model assumes the relative state evolves via a single integrator model, assuming
up := [vx, vy, vθ], which directly influence the time derivatives of the relative x, y and θ states. The
quadruped we used in the experiments cannot control vy directly, so at deployment time this entry of
the control input is set to zero. The process covariance w ∼ N (0, Q), the measurement covariance
v ∼ N (0, R), initial error covariance matrix P0, observation matrixH , and state transition matricies
are:

Q = 0.01 · I3×3, R = diag(0.2, 0.2, 0.1), P0 = I3×3, H = I3×3, (10)
A = I3×3, B = diag(−δt,−δt, δt), δt = 0.2 (11)

A.6 Real-world experiments
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Figure 9: Policy architectures for reactive (up left), lookback (low left) and lookahead policy (right).

We use an Unitree A1 robot and a Unitree Go1 robot for experiments. The policy controls the
linear speed of the robot on the x-axis in the body frame, i.e., in the forward direction (vx), and the
angular yaw velocity (vθ). Such high-level commands are executed by an off-the-shelf low-level
policy [4]. We use a Zed 2 camera for object detection in 3D. The object detection pipeline and the
Kalman filter run onboard in a Jetson Tx2, while the low-level controller runs on an Intel UP Board.
Communication happens through ROS using the implementation of [4].

Our policy only controls the pursuer Unitree A1 robot, while the evader is either a human or a Go1
robot teleoperated by a human. In both cases, the evader policy is neither pre-scripted nor explicitly
strategic. The evader tries to avoid the pursuer with short-horizon evasion maneuvers, but it is not
strategic in a long horizon to keep the interaction spatially constrained. We switch between tracking
a person and another robot by changing the tracking class from PERSON to ANIMAL in the ZED
2 camera configs. We assume that only a single evader is present in the scene; therefore, we do not
keep track of object identity. We empirically find that the ANIMAL class has more mis-detections
than the PERSON class since the visual features of the quadruped differ from a real dog. Still, the
detection performance was sufficient for continuous interaction.

A.7 Section 5.1 details: Reactive, Lookback, Lookahead policies

All policies use the same simulation setup as in Sec. A.2. The main differences are in the inputs
and in the latent intent learning. Fig. 9 visualizes the policy architectures for the reactive, lookback
and lookahead policies. We also compare training time of our lookahead approach–which uses
future trajectory information as privileged info to learn the latent intent–to a lookback policy which
must estimate the latent intent only from a history of relative states via an LSTM. We see that future
trajectory supervision enables 10 times faster training compared to the lookback policy (Fig. 10) as
well as higher overall reward.
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Figure 10: The lookahead policy (orange) converges to a higher reward 10 times faster than the
lookback policy (green)
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A.8 Note on directly learning a strategic pursuer policy with PPO

We tried to directly learn a policy with partial observations, π(x̂t,Σt), using PPO. However, our
policies never got a performance better than random. We believe the main reason to be the difficulty
of the optimization problem. Indeed, such a policy needs to learn at the same time: (1) strategy,
i.e., learning to predict where the evader will be, (2) control, i.e., learning to move towards a desired
location on the x-y plane, and (3) estimation, i.e., learning to reason over the noisy states from the
Kalman filter to get an estimate of the real position of the evader. We empirically found that PPO
fails to do all these tasks simultaneously. However, we found that PPO could easily solve (1) and
(2) if provided with a short-horizon future trajectory of the evader: this corresponds to our fully-
observable training. To reduce sample complexity, we learn (3) using distillation learning, even
though it could as well be trained with a further stage of reinforcement learning. An interesting
venue for future work is to see how to learn such policy directly.
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