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Abstract— Machine Learning (ML) has replaced handcrafted
methods for perception and prediction in autonomous vehicles.
Yet for the equally important planning task, the adoption of
ML-based techniques is slow. We present nuPlan, the world’s
first real-world autonomous driving dataset and benchmark.
The benchmark is designed to test the ability of ML-based
planners to handle diverse driving situations and to make
safe and efficient decisions. We introduce a new large-scale
dataset that consists of 1282 hours of diverse driving scenarios
from 4 cities (Las Vegas, Boston, Pittsburgh, and Singapore)
and includes high-quality auto-labeled object tracks and traffic
light data. We mine and taxonomize common & rare driving
scenarios which are used during evaluation to get fine-grained
insights into the performance and characteristics of a planner.
Beyond the dataset, we provide a simulation and evaluation
framework that enables a planner’s actions to be simulated in
closed-loop to account for interactions with other traffic partici-
pants. We present a detailed analysis of numerous baselines and
investigate gaps between ML-based and traditional methods.
Find the nuPlan dataset and code at nuplan.org.

I. INTRODUCTION

N the last decade, autonomous vehicle perception and pre-

diction have been revolutionized by deep learning-based
methods trained on large-scale datasets [1], [2], [3], [4],
[51, [6], [7]. While similar attempts have been made in the
field of learning-based or neural planning, these are not yet
able to surpass their rule-based counterparts. One possible
reason is the difficulty of generalizing driving scenarios when
learned from a limited number of examples. Furthermore,
driving scenarios typically follow a long-tail distribution,
which further exacerbates the generalization issue. Finally,
learning-based planning lacks formal safety guarantees, thus
making it potentially unsafe and challenging to certify.

We introduce the nuPlan dataset and simulation framework
for autonomous vehicle planning. Our goal is to create a
testbed for open-loop and closed-loop planning starting in
real-world scenarios. This test bed is then used to compare
traditional, learning-based, and hybrid planners. nuPlan en-
ables numerous novel types of research, such as learning-
based planning, the interplay between prediction and plan-
ning, and end-to-end planning using a large amount of
published sensor data. We make the following contributions:

o We release the largest dataset for autonomous driving

to date, with a total of 1282h from 4 cities. We also
publish an unprecedented 128h of sensor data.

o We develop techniques to auto-label the dataset with

accurate object tracks, traffic lights, and scenario labels.
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Fig. 1. An overview of the nuPlan simulation framework.

e We publish our closed-loop simulation and evaluation
framework (Fig. 1) and compare the performance of
traditional and learning-based planners to identify gaps.

II. RELATED WORK

In this section we discuss the most important datasets
and simulators for autonomous vehicle planning. Based on
these, we introduce the main categories of planners: classical,
learning-based, and hybrid planners.

A. Datasets

Tab. I provides an overview of large-scale prediction and
planning datasets with more than 20h of data. We omit
smaller datasets like Interaction [8], highD [9], inD [10],
OpenDD [11] and CommonRoad [12] and subsets of datasets
not focused on prediction or planning [13], [14], [15].
With the exception of nuPlan and CommonRoad [12], all
datasets focus on prediction (motion forecasting). Offline
perception [16] is crucial to train and evaluate planners using
high-quality object tracks, but only present in Waymo [17],
MONA [18] and nuPlan. Likewise, the availability of traffic
light statuses is crucial for realistic traffic simulation, but
only Waymo [17] and Lyft [19] contain these and only
from an online perception system, rather than developing
offline traffic light status inference as in nuPlan. To assess
planning performance we need to focus on specific scenarios
and evaluate them in closed-loop. nuPlan is the first dataset
to feature both scenario tags and a closed-loop simulation
framework. Lyft [19] provides interactive tutorials for closed-
loop simulation, but they lack the modular framework,
evaluation server, and hold-out test set of nuPlan. Finally,
we need a large-scale dataset to generalize well. Only the
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Lyft [19], Shifts [15] and nuPlan datasets provide more than
1000h of driving data and nuPlan was the first such dataset
that provides lidar and camera sensor data (128h), although
Waymo [17] later also released compressed lidar data.

B. Simulation

Many works in the literature use proprietary simula-
tors [20], [21]. While sharing their approaches to planning,
they do not provide enough information to reproduce their
experimental results. Graphical simulators like CARLA [22]
and AirSim [23] focus on photorealistic rendering, but lack
the realism of real-world maps and agent behavior. Com-
monRoad [12] was the first open-source simulator focused
on planning. However, CommonRoad [12] does not provide
a real world dataset as the basis for the simulation, instead
resorting to a small number of manually crafted scenarios
and tools to import other datasets, albeit without any sensor
data. With nuPlan we aim to overcome the above limita-
tions by releasing a large-scale real-world dataset and an
open-source closed-loop simulator. Following the release of
nuPlan, ScenarioNet [24] focused specifically on Reinforce-
ment Learning and integrated nuPlan and other datasets into
their pipeline. They also interfaced with MetaDrive [25] that
enables graphical simulation of nuPlan.

C. Planning

Classical planning. The planning problem has long been
treated as an optimization problem in the traditional ap-
proaches [26], [27], [28], [29], [30], [31]. By carefully
designing a cost function, the optimization aims to gener-
ate the optimal trajectory that minimizes the cost function
in the corresponding search space (e.g., A* search [27],
[28], sampling-based methods [32], [33], dynamic program-
ming [30]). While these approaches enjoy the theoretical
guarantees on the convergence to an optimal solution, hand-
crafting the cost function that represents the human-like
driving behavior is challenging. In practice, many studies rely
on tremendous engineering efforts to fine-tune the solution.

Learning based planning. Pioneering by the study of
[34], the idea of using a neural network to imitate expert
driver and directly output driving control command provides
an alternative planning solution. With the recent success of
deep learning, the learning based planning received consid-
erable attention [35], [36], [37], [38], [39], [40], [20], [41].

Imitation learning (IL) and inverse reinforcement learning
(IRL): IL trains a model to either map the sensor data directly
(end-to-end system), or indirectly through the perception and
prediction models (modularized system), to the expert driver
actions (e.g. steering and speed profile) [34], [37], [36],
[42]. With the advancements in deep learning literature, IL
studies adopt the state-of-the-art supervised learning models
architectures to learn better scene representations [43], [20].
IL often suffers from a poor generalization where the com-
pounding error leads to driving scenarios that are outside of
the training data, known as “covariate shift” [34]. Carefully
designed data augmentation is often used to address this
issue [36]. As an alternative to directly imitating the driver

behavior, IRL aims to learn an unknown reward function
that explains expert demonstrations [44]. Once learned, such
reward function is used to infer the optimal trajectory from
a set of pre-defined or generated trajectories [45]. The max-
imum entropy formulation of IRL [46] has been applied to
autonomous driving where the reward function is estimated
based on a set of handcrafted features in [47], [48], [49].

Reinforcement learning (RL): RL learns the optimal driv-
ing behavior by interacting with the environment and opti-
mizing a given reward function. RL is well-suited for han-
dling the interaction between the agent and the environment
in a sequential decision process. However, due to its learning
by “trial-and-error” search nature, studies in RL rely on the
driving simulation to provide the environment [50], [51],
[52]. These studies have demonstrated strong performance
in simulations. The real-world applications of RL in au-
tonomous driving are also reported in [53], [54].

Hybrid solutions. Hybrid solutions are proposed to lever-
age the advantages of both the classical and learning based
planning. Several studies use learning to improve the clas-
sical planning algorithm. These include using a learning
model to guide the exploration for sampling-based path-
planners [55], using a learning model to improve the effi-
ciency of sampling-based motion-planners in high dimen-
sional setting [56], applying optimizer to actively rectifies
the learning model’s plan to satisfy the safety and comfort
requirements [57], [40]. Other studies leverage the classical
planning to generate the trajectory candidates, which are
passed to an ML-based model to evaluate [49], [38], [58].

System design. While planning is the ultimate goal of
the autonomous driving system, different system designs to
assemble the perception and prediction introduce opportu-
nities and challenges to improve the planning performance.
Most autonomous driving systems use a multi-stage pipeline
of independent tasks like perception, prediction and plan-
ning [59], [60], [61]. The hope is that the performance
gain on individual tasks translates to a better planning
performance. In contrast, various studies consider multi-task
learning (MTL) where they jointly train models to perform
perception, prediction and planning simultaneously [62],
[63], [58], [38]. These works have shown that MTL achieves
better data utilization at lower computation cost. Recently,
some studies leverage the query-based design in transformer
architectures to integrate all tasks in a unified framework
that is trainable end-to-end [64], [65], [66], [67], [41], [68].
Such a framework encourages better spatio-temporal feature
learning from the sensor data and directly improves the
planning performance.

ITI. DATASET
In this section, we describe how we collect the nuPlan
dataset. We enhance it by auto-labeling the object tracks of
other agents and traffic lights, as well as mining for scenarios
that are relevant for tracking.
A. Data collection

We collected data from 4 cities (Boston, Pittsburgh, Las
Vegas, and Singapore) to build a benchmark dataset for ML-



TABLE I
AN OVERVIEW OF DATASETS FOR PREDICTION AND PLANNING (* SEE SEC. II-A FOR A DETAILED DISCUSSION)

Dataset Year Tasks Perception Traffic Lights ~ Scenario Tags  Closed-loop  Total Volume (h)  Sensor Volume (h)
Argoverse 1 [13] 2019 Pred online no no no 320

‘Waymo [17] 2019 Pred offline online no no 574 0*
Lyft [19] 2020 Pred online online no no* 1118 0
Shifts [15] 2021 Pred n/a no no no 1667* 0
MONA [18] 2022 Pred offline no no no 130 0
Argoverse 2 [14] 2023 Pred online no no no 763 0

nuPlan 2021 Pred+Plan offline offline yes yes 1282 128
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Fig. 2. The data collection vehicle’s sensor setup.
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vehicle follows the ground-truth trajectories. In CL, ego vehicle follows the
planner model output. As shown above, starting from the initial scenario
(left), using a trained machine learning planner (Urban Driver model in
Sec. V), we show the different simulation roll-out in open-loop (middle) and

closed-loop (right). [ , Planner output trajectory]
based planning. In total, we have 1282 hours of challenging
and real-world driving scenarios. For example, double park-
ing in Boston, custom precedence patterns for left turns in
Pittsburgh, crowded pick-up and drop-off points (PUDOs) in
casinos in Las Vegas, and left-hand traffic in Singapore. We
exclude heavy rain and night data, as these would impact the
quality of our perception system (see Sec. III-B).

Manual driving. We use Chrysler Pacifica Plug-in Hybrid
Electric Vehicles (PHEV) to drive in these cities. See Fig. 2
for the sensor setup. Our vehicle operators (VOs) are in-
structed to use a natural driving style and drive safely. Since
our focus is on planning, it is crucial that we drive manually,
while most other datasets [13], [14], [17], [19] use a com-
bination of manual and automated driving, which may lead
the planner to imitate less desirable driving behavior. The
VOs drive from a predefined starting point to a goal using a
known route. For example, we drive between various hotels
and casinos on the Las Vegas strip, which are typical routes
for our robotaxi and are known and mapped beforehand.

Sensor data. Sensor data include lidar point clouds and
camera images. Due to the vast scale of the full sensor
dataset (200+ TB), we only release a subset of the sensor data
which totals 128 hours. This subset was selected to satisfy

all stratification constraints as described below.

Maps. Similar to nuScenes [69], nuPlan provides detailed
human-annotated 2D high-definition semantic maps of the
driving locations. We release rasterized and vectorized maps.
While rasterized maps are useful for simplicity and efficient
lookup, vectorized maps provide more precise geometric
information and metadata. Examples of semantic map layers
are lanes, car parks, crosswalks and stop lines (see Fig. 4).

B. Auto-labeling

In order to faithfully reconstruct various driving scenarios,
we develop an auto-labeling system. It first generates the
tracks for all the objects in the scene; then traffic light
statuses are inferred from these tracks. Based on the above
labels, we can reliably mine different driving scenarios.

Offline perception. We build an offline perception system
to label the objects in the scene [16] automatically. Compared
with the online perception systems used in many other
datasets [19], [13], the offline version is not constrained by
latency and causality. Therefore, the fidelity of the generated
tracks is drastically higher, enabling us to evaluate planning
performance under very limited perception noise.

Inspired by [16], our offline perception system contains
three stages: 3D object detection, offline tracking, and global
track refinement. The detector in the first stage takes the
point clouds from both the top lidar and side lidars as
input and detects the bounding boxes through a large neural
network [70]. The offline tracker leverages both past and
future detections in an extended time window to generate
tracks. In the last step, a novel network is developed to load
both tracks and points clouds within the tracks to refine the
attributes of all the bounding boxes of vehicle class, such as
positions, headings, sizes and velocity.

Traffic light status. To create a realistic simulation of the
environment, it is crucial to capture the traffic light statuses.
Existing datasets lack traffic lights [13], [14] or use online
vision-based systems to detect their statuses [17], [19]. In
contrast, we develop a novel offline system to automatically
label the statuses of traffic lights by inferring them from the
motion of the actors present in the scene. Our labeling system
is able to cover all lanes with observed agents.

We make use of the detections and tracks produced by our
offline perception system, as well as map information. To in-
fer a green traffic light status within a given intersection, we
determine if there are agents moving within the intersection
in the direction controlled by the particular traffic light. To
infer a red traffic light status, we check for agents slowing
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Fig. 4. Semantic map of nuPlan with 10 semantic layers in different colors,
polygons and lines. It also includes traffic light statuses encoded into the
lane connectors.

down or being stationary in the lane that approaches the
intersection and controlled by the particular traffic light.
Scenario mining. Traditional approaches to evaluate plan-
ning performance are dominated by monotonous lane fol-
lowing scenarios. To get a fine-grained understanding of
the planning performance, we develop a scenario taxonomy
and scenario mining algorithms using low-level attributes
like vehicle speed and state transitions. The attributes can
be inferred from offline perception tracks and traffic light
statuses. In total, we have 73 unique scenario types.

IV. SIMULATION

nuPlan provides a simulation framework (Fig. 1) that is
modular and flexible to work with different datasets and
setups. The simulation is initialized with the real-world
observations captured in the dataset, namely raw sensor data
or object tracks. Given these environment observations, an
agent model can be used to predict the future trajectories
of all agents. Observations and agent trajectories are passed
to a planner that predicts the best route for the ego vehicle
given the other agents’ routes. Finally, a controller converts
the intended route into a feasible trajectory. The simulation
can either playback the actions recorded in the dataset (open-
loop) or allow the simulation to deviate from the recording
by incorporating the ego’s actions (closed-loop). Below are
the simulation components in detail.

A. Agents

Of the 6 object classes, vehicle, pedestrian, generic object,
traffic cone, barrier, bicycle, construction zone sign, 3 are
moving object classes simulated as agents: vehicles, pedestri-
ans, and cyclists. Agents are dynamic objects that can move
as the scenario evolves.

A well-known method is to simply propagate agents
according to the logged data. We refer to these as non-
reactive log-replay agents. Log-replay agents are used to
simulate scenarios both in open-loop and closed-loop, a near-
perfect recreation of the recorded data. However, closed-loop

simulation quickly diverges if the planner decides to take
different actions from what is recorded in the log. Thus, in
closed-loop simulation agents can be also simulated with the
aim to interact with the ego vehicle and with each other by
producing novel simulation states that resemble real agent
behaviors. We refer to these as reactive agents. Reactive
agents are only relevant in closed-loop simulation and by
definition open-loop simulation uses non-reactive agents.

We develop reactive agents following the Intelligent Driver
Model [71] (IDM) policy. IDM agents are initialized with
the initial pose and velocity of the logged agents. The
agents follow the lane center line of the underlying map.
The longitudinal control is dictated by the IDM policy. This
allows the agents to react to the ego’s actions, as well as other
reactive agents. In turn, this reduces false collisions and lets
scenarios play out for longer. Note that we only apply this
policy to vehicles, while Vulnerable Road Users (VRUs) are
replayed from the log. We choose not to model VRUs as
reactive agents as their behavior is often uncooperative and
thus hard to model.

B. Controller

In nuPlan, planners provide a trajectory as a sequence of
poses in SE(2), without any kinematic feasibility require-
ment. This trajectory is assumed to be sampled at specific
times in the future according to the simulation configura-
tion. To assert kinematic feasibility and prevent users from
cheating, we require the use of a controller. nuPlan provides
the flexibility to use any controller, such as perfect tracking,
which simply interpolates poses along the planned trajectory.

We developed a two-stage controller to propagate the
simulation in closed-loop. This controller consists of two
parts, a trajectory tracker and a motion model to forward-
integrate the simulation. We implement a Linear Quadratic
Regulator (LQR) [72], [73] as the tracker. The found optimal
control policy is then fed to the second part of the simulation
controller, a kinematic bicycle model which is forward-
integrated to propagate the simulation state. Alternatively,
we also support different trackers in the two-stage controller,
such as an iterative-LQR tracker.

C. Evaluation

Different metrics and frameworks have been explored for
scoring models in prediction and motion planning bench-
marks [17], [74], [75], [76], [77], [78], [79], [80]. In this
paper, we select a set of metrics and design an aggregation
method to compare the performance of planners. In open-
loop, we only evaluate the closeness of the planner generated
trajectory to the human-driven trajectory. The open-loop met-
rics are modified Average Displacement Error (ADE), Final
Displacement Error (FDE), Average Heading Error (AHE),
Final Heading Error (FHE), and Miss Rate (MR) in which
we calculate the metrics over different horizons and report
their average score. For closed-loop, we use a combination
of metrics to evaluate lawfulness and compliance with traffic
rules consisting of no at-fault collisions, trajectories inside
drivable area, no trajectories in lanes belonging to oncoming



TABLE II
PLANNER METRICS THEIR AND WEIGHTS

Simulation Metric name Mult.1 plier Aver age
weight weight

MR within bound {0, 1} -

Open-loop AHE and FHE within bound - 2

ADE and FDE within bound - 1

No at-fault collisions {0, 0.5, 1} -

Drivable area compliance {0, 1} -

Making progress {0, 1} -

Driving direction compliance {0, 0.5, 1} -

Closed-loop TTC within bound - 5

Progress along route ratio - 5

Speed limit compliance - 4

Comfort - 2

traffic, not driving above the speed limit and maintaining
enough Time To Collision (TTC) with other road users,
metrics to evaluate progress towards the goal and measure
the rider comfort. All metrics’ scores are normalized to the
range [0 — 1] using thresholds that are selected based on
legal requirements and natural human driving. A higher score
indicates a better performance.

The final score of a planner is computed by averaging
the scores for its generated trajectories across all scenarios.
The score of a trajectory in a scenario is given by a hybrid
weighted average of all metrics’ scores.

The rest of the metrics are weighted according to their
importance (See Tab. II) and then averaged to compute the
scenario score as:

Z weight; x score;

J Eaverage metrics

scenario score = H score; X

4 Emultiplier metrics

We define the score for each challenge (open-loop, closed-
loop non-reactive, and closed-loop reactive) as the average
scenario score across all scenarios for that challenge.

V. EXPERIMENTS

Here we present a number of planning baselines and their
results when evaluated on the nuPlan benchmark. We analyze
how the planning performance is impacted by lower quality
perception inputs, as well as how it generalizes to other
cities. Finally, we discuss the new state-of-the-art set by the
submissions to the first nuPlan challenge.

A. Planning baselines

We implement several planning methods that are represen-
tative of the literature.

a) Simple Planner: The Simple planner has little plan-
ning capability. The planner plans a straight line at a constant
speed. The only logic of this planner is to decelerate if the
current velocity exceeds the max velocity.

b) IDM Planner: The Intelligent Driver Model (IDM)
planner is essentially an Adaptive Cruise Control (ACC)
policy [81]. The planner consists of two parts: path planning
and longitudinal control. The path planning component is
a breadth-first search algorithm. It finds a center-line path
toward the mission goal extracted from the underlying map
structure. The longitudinal control follows the IDM policy.
The policy describes how fast the planner should go based
on the distance between itself and the closest leading agent.

TABLE III
MAIN RESULTS

. Closed-loop  Closed-loop
Planner Open-loop Non-reactive Reactive
Simple Planner 0.22 0.32 0.37
IDM Planner 0.30 0.73 0.76
Raster Planner 0.52 0.47 0.46
UrbanDriver 0.90 0.68 0.67

c) Raster ML planner: Similar to the encoder in [36],
[82], the raster planner uses ResNet-50 [83] as the backbone
to encode features from an ego-centric multi-channel raster
representing the ego, the agents and the map. The model
directly outputs the final ego trajectory. The planner does not
perform any post-processing on the predicted ego trajectory.

d) UrbanDriver ML Planner: We adopted an open-
loop training variant of the UrbanDriver model [84] as a
representative machine learning planner baseline. The model
processes vectorized agents and map inputs into local feature
descriptors that are passed to a global attention mechanism
for yielding a predicted ego trajectory. We train the model
using imitation learning to match expert trajectories available
in the nuPlan dataset. Data augmentation is additionally per-
formed on the agents and expert trajectory provided during
training to mitigate data distribution drift encountered during
closed-loop simulation. This version was used for the chal-
lenge. We also implemented a multi-step prediction baseline
variant as discussed in [84] and originally proposed in [85]
to further address the distribution shift, for the experiments
in this work but do not open-source this implementation.

B. Main results

Tab. III shows the planning results for the proposed
baselines in each of the three challenge setups. Supervised
learning-based planners excel in an open-loop setting. This
is unsurprising as the task is akin to the traditional motion
forecasting challenge. This suggests that an ML planner
can choose to make similar decisions to a human driver
in open-loop settings. However, ML planners still struggle
to overcome the distribution shift in closed-loop. A closed-
loop scenario can develop into a new situation that was never
present in the training dataset. Even techniques such as data
augmentation and closed-loop training fail to overcome this
domain gap. This is evident in both the literature [36] and
our experiments. Rule-based planners, on the other hand, face
no such issues. Policies like IDM can produce decent driving
behavior. This is confirmed by the metrics as it achieved the
highest scores for closed-loop. It should be noted though that
the reactive agents are also modelled with a similar IDM.
The use of similar assumptions on the vehicle behavior may
result in giving the IDM planner an unfair advantage over
other planners in closed-loop evaluation. It is evident that
sufficiently sophisticated rule-based planners still outperform
purely learned planners in closed-loop settings.

C. Perturbation

As the nuPlan dataset is created with offline perception, to
capture the original probability distribution of data collected
online, we injected uniform noise on the detections. Noise



TABLE IV
DETECTION PERTURBATION IN CLOSED-LOOP REACTIVE SIMULATION

Simulation Agents | UrbanDriver  UrbanDriverOnline
Original 0.67 0.60
Perturbed 0.64 0.59
TABLE V

URBANDRIVER LOCATION GENERALIZATION

. Closed-Loop  Closed-Loop
Locations Open-Loop Non-reactive Reactive
Las Vegas 0.91 0.57 0.57
Singapore 0.28 0.23 0.18
Boston 0.57 0.49 0.50
Pittsburgh 0.41 0.39 0.32

was added in the dimensions and the pose of the detected
agents, with variance extracted by comparing offline and
online detections. The scores of planners under nominal and
noise-injected simulations in closed-loop reactive mode are
presented in Tab. IV. A version of UrbanDriver trained on
the perturbed data is called UrbanDriverOnline, which shows
a performance deterioration compared to the nominal model
on both nominal and injected data. This indicates the value
of high-quality offline annotations in the dataset and the
learning pipeline.

D. Generalization

The location generalization experiment is shown in Tab. V.
The experiment aims to test a model’s generalization capa-
bilities. The UrbanDriver model was trained purely on data
from Las Vegas. The model was tested separately on scenar-
ios from Singapore, Boston, Pittsburgh, and Las Vegas. The
open-loop performance dropped by 53.8%, while closed-loop
non-reactive and closed-loop reactive performance dropped
by 35.1% and 41.5% respectively. The worst-performing
location is Singapore. This can be explained by the left-
hand traffic, while the model was trained on right-hand
traffic. One insight is that the correlation between the model’s
open-loop and closed-loop performance is relatively weak.
The difference between open and closed-loop scores across
Singapore, Boston, and Pittsburgh is only 16.3%, while for
Las Vegas it is more than double at 37.3%. This indicates that
a good motion forecasting model does not translate to closed-
loop capabilities. Thus a major challenge is to overcome
the domain gap between open-loop and closed-loop before
tackling larger generalization problems.

E. nuPlan challenge

In the nuPlan motion planning challenge contestants cre-
ate a planner to traverse a set of diverse and challenging
scenarios across all four cities. Tab. VI shows the Overall
Score, which is the average across Open-loop, Closed-loop
Non-reactive, and Closed-loop Reactive challenges of the
top four planners. In the open-loop challenge, planners that
incorporated supervised learned methods scored relatively
well. In the closed-loop challenges, planners employed a
combination of learned and handcrafted components. A
common theme was the use of a learned model to first predict
the ego’s planned trajectory. [82] uses a raster-based model

TABLE VI
NUPLAN CHALLENGE LEADERBOARD

Team name Approach Overall Score
CS Tu [87] Rule-based + ML refinement 0.895
AutoHorizon [82] ML + optimizer 0.875
Pegasus ML + collision checking 0.848
AID [86] ML + hierarchical game theory 0.829

that outputs a spatial-temporal heatmap for the ego and an
occupancy map for the surrounding agents. [86] are vector-
based using transformers as a backbone. Once the trajectory
is obtained, the planner has a further refinement stage used
to ensure kinematic feasibility and collision avoidance. The
highest-scoring planner in closed-loop was mostly rule-based
[87]. It generates a handful of trajectories by perturbing
the center line laterally at different velocities. Trajectories
are selected with a heuristic that considers factors such as
collision, drivable areas, traffic laws, and comfort. An ML-
generated trajectory is fused to correct the long-term planned
horizon. This limited the influence of the learned model.
We draw two conclusions from the challenge results. First,
ML-based methods require additional post-processing for
closed-loop driving. Second, hybrid methods appear to be
the most effective approach, combining traditional and data-
driven methods.

VI. CONCLUSION

We presented nuPlan, the first real-world driving bench-
mark and the largest existing labeled autonomous driving
dataset. The dataset consists of 1282 hours of diverse driving
scenarios across 4 cities as well as an unprecedented 128
hours of raw sensor data and is accompanied by an evaluation
framework powered by a closed-loop simulator; the dataset
and the evaluation framework are publicly available. We
investigated the state of current rule-based and learned-
based planners by evaluating multiple approaches on the
nuPlan dataset across challenging driving scenarios. The first
public nuPlan challenge demonstrated that rule-based plan-
ners outperform purely ML-based ones, but hybrid planners
with learned-based components show the most promise in
handling difficult scenarios. In the future, we plan to mine
for richer long-tail driving scenarios, design scenario-based
metrics, provide ML-based planning and agent baselines and
explore end-to-end planner training directly from sensor data.
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SUPPLEMENTARY MATERIAL

In this supplementary material we provide additional
information about the creation of the nuPlan dataset, the
simulation framework and evaluation protocol, as well as
additional experiments.

VII. DATASET
A. Data collection

Here we describe the sensor setup, synchronization,
dataset splits, semantic map layers and object annotation
statistics.

Sensor setup. The nuPlan sensor setup is collected by a
fleet of 31 vehicles with identical sensor setup (Tab. VII).
The vehicles are equipped with 5 lidars, 8 cameras, as
well as GNSS & IMU. Thus both lidars and cameras cover
the full 360-degree environment and minimize blindspots
(Fig. 5). The lidars can generate lidar point clouds with up to
360k and 720k points for 20-channel and 40-channel lidars,
respectively.

Synchronization. To ensure high-quality data alignment
between multiple sensors, lidar sensors are synchronized
with the system time on the car in multiple lidar periods.
The exposure of each camera is triggered in the same way
plus a camera-specific offset, where the offset is an optimal
value to ensure images are acquired right when the lidars
are sweeping through each camera’s FOV. Given there are
multiple lidar sweeps in a spin, we merge a full sweep from
each lidar sensor into a merged sweep since they complete
a revolution at nearly the same instance. After they are
merged, the merged point clouds are transformed to the
same frame coordinate and timestamp. We also perform ego
motion compensation to take ego position into account when
the points are acquired.

Dataset splits. The dataset splits (train, val, and test) are
geographically overlapping, which means they can cover the
same region in a city. However, to minimize temporal data
leakage, data from the same day and city is not shared
across splits. In addition, the dataset is stratified across days,
cities, and driving scenarios to ensure all splits have similar
balances across these dimensions.

o A R
H Wwm—

Fig. 5. Examples of nuPlan sensor data. We can see the lidar data and
map in the center and 6 camera views around it. All views show the highly
accurate autolabeling annotations.

TABLE VII
SENSOR SETUP IN NUPLAN

Sensor Make Freq. Details
Spinning, 40 channels, 360°
Ix Top Pandar horizontal FOV, < 200m
Lidar 40P 20Hz range, < i 2cm, 40° ([-25°,
15°]) vertical FOV, < 720k
points per second
Spinning, 40 channels, 360°
2x Pandar horizontal FOV, < 200m
A-Pillar 40P 20Hz range, < + 2cm, 40° ([-25°,
Lidars 15°]) vertical FOV, < 720k
points per second
Spinning, 20 channels, 360°
Pandar horizontal FOV, < 200m
2x 20PA range, < + 2cm, 33° ([-25°,
Bumper front, 20Hz 8°)) front vertical FOV, 22°
Lidars 20PB ([-19°, 3°]) rear vertical
rear FOV, < 360k points per
second
D3 2
8x Engi- RGB, 1/2.7 CMQS sensor,
. 10Hz 2000x1200 resolution,
Cameras | neering .
D3RCM split-pixel image sensor
Ix glr;m— 20Hz Posigion latency < 20ms,
GNSS BX992 0.10° roll/pitch
Honey- MEMS gyroscopes,
1x IMU well 100Hz. accelerometers and
HG1120 magnetometers

Map layers. We define the semantic map layers in nuPlan.
The map layers are designed with planning in mind. A
graph can be constructed from the network of lane and
lane connectors. Additionally, the map is annotated with
important road features (stop lines, crosswalks, car parks)
that impact the decision-making of the AV. See Tab. VIII for
more details.

Annotation statistics. Here we present more statistics
for the annotations in nuPlan. Fig. 6 shows the number of
tracks for each of the 6 object classes in nuPlan. While there
are about 2 orders of magnitude between the most (generic
object) and least (construction zone sign) common class, the
dataset is nevertheless less long-tailed than other datasets
with more fine-grained classes [69]. Furthermore, even the
rarest class still has more than 10° tracks, which shows the
advantage of such a large dataset.

We also present size statistics for different classes in
Fig. 7. These show that our boxes are statistically stable
in their sizes except for the vehicle class that includes
construction vehicles with irregular shapes.

Fig. 8 shows the absolute velocities for three classes
(vehicle, pedestrian, and bicycle), since other classes are
static most of the time. We observe that most of the objects
are slow-moving, which represents primarily urban scenar-
ios, while a small number of pedestrians and bicycles are
moving at unrealistically high speeds, possibly due to noisy
annotations.

Fig. 9 shows the object (box) orientations relative to the
ego vehicle orientation. Due to the grid-like road layout, most
vehicles have orientations that are multiples of + 90°.



TABLE VIII
SEMANTIC MAP LAYERS IN NUPLAN

Layer name Layer description

Baseline paths The center line along lanes and lane connectors.
Carpark areas Polygons representing car parks.

Crosswalks Polygons representing crosswalks.

Generic Polygons representing areas where the AV is

allowed to drive.
An area connecting multiple road segments

drivable areas

Intersections together.

Lane Road segments connecting two lanes. Typically,
connectors they exist within an intersection.

Lane group A group of adjacent lane connectors that travel in

the same direction

A group of adjacent lanes that travel in the same
direction.

Polygons representing a lane.

Groupings of lane groups that travel in opposite
directions from one another.

Polygon in which the AV may be required to stop.
3D locations of a set of traffic lights.

Polygons representing walkways.

connectors
Lane groups

polygons
Lanes polygons

Road segments

Stop polygons
Traffic lights
Walkways

Counts

Fig. 6. Number of tracks per category.

Fig. 10 shows the spatial coverage of our ego vehicles
across all maps. In Las Vegas, most routes start and end
in PUDOs, which leads to these areas being visited more
often. In other cities, the distribution is more uniform, with
key intersections being visited the most.

B. Autolabeling

As described in the main paper, We developed an offboard
perception system to generate the bounding boxes and tracks
for the objects in the scene. It consists of three stages: object
detection, offline tracking, and global track refinement. The
system is deployed on the raw sensor data from nuPlan
dataset.

Object detection. For the first stage, we extend the state-
of-the-art MVF++ [88], [16] as our lidar-based 3D object
detector. We select n past frames (n = 7) and compensate
the points based on ego-motion, which significantly densifies
the point clouds in the scene. We find that there is no
improvement in incorporating future frames as well. To

further boost the performance, we make several changes to
the architecture. First, different from other works [16], [89],
we propose to include the points from four side lidars in
addition to the top lidar, so the objects closer to the ego
vehicle will not be missed. To use these points properly,
we adopt the cylindrical view [89] in MVF++, instead of
the perspective view, to mitigate the collision of points
from different lidars. Second, we enlarge the model capacity
by using a RegNet [70] backbone. The RegNet backbone
processes voxelized outputs from MVF++ and generates
expressive feature maps for final detection heads. Third,
a CenterPoint [5] detection head is applied to predict the
bounding boxes. Since the resulting object boxes are often
flipped, we perform majority voting using past and future
detections and adjust the heading accordingly.

Offline tracking. Given the instantaneous bounding boxes
generated from the first stage, a Kalman filter based multi-
object tracker [90] is applied to associate the boxes across
timestamps. Since the tracker is running in offline mode, we
leverage more information from both past and future frames
to manage tracks: First, after Bir,,;, frames of detections
are used to confirm a track, the track is initiated from the
first frame of Bir,,;, frames, instead of the last one [90]. As
a result, the number of False Negatives is reduced. Second,
compared with online tracking [90], we increase Age,,q. to
maintain a longer memory before coasting a track. While a
higher Ageq. slows down the method, the number of ID
switches is reduced significantly.

Global track refinement. Even though the detection
network takes n frames of lidar point clouds as input, it still
perceives the scene in a short time window. The resulting
points are limited to a certain perspective, posing challenges
to estimating the size and heading accurately. Moreover,
although the bounding boxes from the detection network
have been smoothed to some extent by a Kalman Filter
based tracker, the smoothing does not happen at a global
scale. To mitigate this effect, we introduce a novel neural
network. Inspired by recent works [16], [91], our network
loads tracks along with the aggregated point clouds within
the tracks and refines the bounding boxes in the tracks in
terms of position, heading, size and velocity. Notably, instead
of using two networks for static and dynamic objects [16],
or for different purposes (size, position or heading) [91],
we design a single network, which achieves the above goals
in one shot. In practice, the proposed method reduces the
deployment overhead compared to other works [16], [91],
because the order of the two networks is not clear and the
classification of dynamic/static is arbitrary for some slow-
moving objects. Similar to these works, we also only apply
this network to the vehicle class.

Implementation Details. For simplicity, we consider ob-
jects on a 2D bird’s eye view plane only and denote (x,y) as
the object’s position, (w, [, h) as size, (vg, vy) as velocity and
6 as heading. An object at timestamp ¢ in a track is denoted as
;. It has a bounding box B; = (¢, ys, 2t, Wy, he, Iy, 04) that
tightly contains the points P;. We select the boxes from the
past and future n; frames. These (2n;, + 1) bounding boxes
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are concatenated as the input for the trajectory encoding
branch. Meanwhile, the point clouds are cropped in both
past and future n,, frames and then transformed to the current
frame t. The aggregated point cloud is processed by dynamic
voxelization [88] and taken as input by the point encoding
branch. Convolutional layers and global average pooling
are applied for each branch to generate expressive features,
which are concatenated for the final MLP. In training, we use
a smooth L1 loss to regress the residuals between the ground
truth and input B;. In deployment, after getting the refined
bounding boxes for the whole track, we choose the median

value of the size for all the bounding boxes. We update the
position and velocity of each box according to the outputs
of the network.

C. Evaluation of the autolabeling system

Dataset. To evaluate the proposed autolabeling system we
use an internal dataset that follows a similar data distribution
to nuPlan and contains 3098 human-labeled scenes collected
from Singapore, Boston, Pittsburgh and Las Vegas. Among
them, 2958 scenes are used for training, 49 for validation
and 91 for testing.

Metrics. The performance of the detection network and
the global track refinement are evaluated using the maximum
F1 scores for all the classes. The performance of the offline
tracker is evaluated using AMOTA, ID switches, recall and
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Fig. 10. Spatial data coverage for four cities in nuPlan. Colors indicate
the number of scenarios with subsampled ego vehicle poses within a 100m
radius. There is more ego vehicles in a location as the colors become more
yellow.

F1 score. Vehicles are divided into two categories depending
on whether their lengths are larger than 7m. We use Birds
Eye View 2D IOU as the matching criterion. The 10U
threshold is 0.7 for vehicles, 0.5 for cyclists and pedestrians,
0.3 for barriers and generic objects, 0.15 for traffic cones.
3d object detection. The detection network proposed in
this paper is compared with a modified CenterPoint [5]
detector, termed mCenterPoint. Our goal is to compare our
proposed network with a detection network often deployed
onboard for autonomous vehicles. We choose mCenterPoint
as a baseline because it is lightweight and meets the real-time
requirement. It differs from our offline detection network
in three aspects. First, it aggregates past 3 sweeps of point
clouds as input to the network. Second, mCenterPoint uses
the vanilla PointPillars [2] for voxelization. Third, a more
compact backbone is used to extract features for the Center-
Point detection heads. In contrast, the offline model is applied
on 7 sweeps of point clouds with a multi-view encoder [16]
and a heavy backbone [70]. The max F1 scores for each
class are shown in Tab. IX. From the table, we can see the
proposed detection network can outperform mCenterPoint by
a large margin. It clearly shows that using more sweeps of
point clouds as well as a more complex network architecture

TABLE IX
DETECTION PERFORMANCE (MAX F1) OF THE PROPOSED
AUTOLABELING DETECTOR, COMPARED TO A MODIFIED VERSION OF
THE COMMONLY USED CENTERPOINT DETECTOR

Class mCenterPoint  Ours
Short vehicle 72.0 86.2
Long vehicle 63.9 74.8

Cyclist 64.3 73.0

Pedestrian 59.5 75.1
Traffic cone 68.7 78.3

Barrier 60.0 68.3

Generic object 60.2 68.8
Average 64.1 74.9
TABLE X

COMPARISON OF TRACKING METRICS BETWEEN THE PROPOSED
OFFLINE TRACKER AND THE MODIFIED AB3DMOT

Method AMOTA  ID switch  Recall FI score
mAB3DMOT 0.611 9779 0.696 0.828
Ours 0.684 2129 0.727 0.868

improves the performance drastically.

Offline tracker. We also implemented a modified version
of AB3DMOT [90] as a baseline in the tracking experiments.
Similar to mCenterPoint, mAB3DMOT is configured for
real-time deployment onboard for autonomous vehicles. In
particular, Bir,,;, and Age,q, are set to be 3 and 0.4s for
mAB3DMOT, respectively. In comparison, the offline tracker
uses Agemqar = 2s and back-traces the first 2 frames with
Biry,in = 3. From Tab. X we see a significant improvement
on all tracking metrics. In particular, the number of ID
switches has been reduced by 78%, which is due to the
significantly enlarged Age,nq.. The fewer number of ID
switches indicates that the tracks in nuPlan dataset are less
fragmented and thus reflect the agents’ movement in the real
world.

Global track refinement. To evaluate global track refine-
ment, we compare it against the outputs of the offline tracker.
Because the offline tracker will interpolate and suppress
some bounding boxes from the detection network, the F1
scores reported here are different from Tab. IX. The results
are presented in Tab. XI. It is shown that the vehicle F1
score is consistently improved by global track refinement.
In particular, when a stricter matching criterion is applied
(BEV IOU = 0.9), we see a relative boost of 56.8%,
which demonstrates the efficacy and necessity of global track
refinement in producing high-quality bounding boxes.

TABLE XI
COMPARISON OF F1 SCORES OF VEHICLE BOUNDING BOXES BETWEEN
THE PROPOSED GLOBAL TRACK REFINEMENT AND THE OFFLINE

TRACKER.
Method 10U 0.7 10U 0.9
Offline-tracker 83.4 21.3
Global track refinement 87.5 334




D. Traffic lights

To automatically label traffic light statuses within nuPlan,
we make use of the tracks produced by our autolabeling
system, as well as the human-annotated map information.
The map indicates the intersections with traffic lights. Within
each traffic light intersection, the individual traffic lights
control the flow of vehicles from a lane on one side of
the intersection to another lane. Each such pair of lanes
is connected via a lane connector in our map. Hence, we
encode the status of the traffic lights in the corresponding
lane connectors.

Green and amber statuses. We consider both green and
amber statues of traffic lights to be the same, i.e. green, since
vehicles are allowed to move under both light statuses. To
infer the presence of a green traffic light on a particular
lane, we determine if there are agents moving along the
lane connector corresponding to the traffic light. We do
this by comparing the directed Hausdorff distance between
the trajectories of all the agents within the traffic light
intersection, and the lane connector. Note that as the traffic
light labeling system is offline, we are able to make use of
both the past and future trajectories of each agent. If the
directed Hausdorff distance is small, we surmise that there
are agents moving along the lane connector, and thus the
traffic light controlling that lane connector is likely green.

Red statuses. To infer the presence of a red traffic light
on a particular lane, we check for the minimum speed of
the agents that are on that lane. Note that we only take into
account agents which are of a certain distance from the traffic
light intersection. If the minimum speed of the agents on that
lane is low, we surmise that the agents are stopped. We also
consider the deceleration of the agents on the various lanes.
When a traffic light is red, it is common for drivers to begin
decelerating as they approach the intersection. Thus, we set
a threshold for the deceleration magnitude above which we
consider the agent in a lane to be decelerating. If we find that
either the agents on a given lane are stopped or decelerating,
then we infer that the traffic light controlling that lane
connector is likely red. For lanes and lane connectors for
which there are no observable agents, we set the status of
the corresponding traffic light to ‘unknown®.

Post-processing. After inferring the per-frame green and
red statuses, we perform post-processing to refine the infer-
ences. First, we perform grouping. Our map stores informa-
tion on lane connectors that go in a ”parallel” direction, and
therefore share the same traffic light statuses. We use this
information to set all lane connectors in the parallel direction
to have the same status. This helps to reduce false negatives,
especially in situations when there are no observed agents
on some of the lanes going in the same direction.

Second, we perform back-filling. When a traffic light
changes from red to green, drivers often have a certain
reaction time before moving off. Similarly, when a traffic
light changes from yellow to red, there may be drivers still
crossing the intersection. This might lead to the system
inferring a green traffic light for the particular frame, even

though the lights have changed in reality. Hence there is a
slight lag in the transitions identified via motion inference
with respect to the actual transition. To account for this, for
all green statuses, we go back a specified time horizon into
the past and override the statuses of each lane connector by
setting them to green. We do the same for the red statuses and
override the past statuses within the specified time horizon
with red.

Evaluation. To perform a more quantitative evaluation
of our traffic light labeling system, we select scenes where
the ego vehicle is moving through traffic light intersections
and manually label the traffic light statuses for a subset of
the data. We select scenes from various cities and various
traffic light behaviors (e.g. constant, transition). We manually
label about 1000 frames. We seek to compare our system
against a more conventional traffic light detection system.
Such a system is usually deep-learning based and vision-
only. Consequently, for the baseline, we use YOLOvV3 [92],
as implemented by [93] and trained on the LISA Traffic
Light Dataset [94], which contains 113,888 annotated traffic
lights. We do not fine-tune YOLOvV3 on any nuPlan data.
By labeling the statuses of the traffic lights via motion
inferences, we are able to recover 5.2x more traffic light
statuses than YOLOv3. We find that YOLOv3 [92] misses
several traffic lights at long distances. It also performs
poorly at very close distances to the traffic light due to the
perspective warping of the cameras. Using YOLOV3 [92], the
traffic light classification accuracy among visible traffic lights
is 66.4%. In contrast, our system performs slightly better
with an accuracy of 68.7%. We find that the transitions of
the traffic light statuses are difficult to infer for our system,
due to the lag in the agents moving off, slowing down or
stopping whenever the traffic lights change. A data-driven
alternative could provide better results here.

E. Scenario mining

We propose the following approach to mine scenarios from
the nuPlan dataset. First, we compute a large number of
atomic primitives. These primitives model an attribute (ve-
hicle speed) or state transition (a vehicle being in two lanes
simultaneously) and can be extracted from the entire dataset
in a single pass. Second, we combine several primitives into
an SQL query that can be run efficiently on a database. Third,
we post-process the query results by including a sequence of
10 seconds before and after the returned time step. Finally,
we manually QA 100 examples for each scenario. If the false
positive rate is below 90%, we either refine the query by
adding more attributes or tuning hyperparameters or discard
the scenario. This approach results in high-precision scenario
labels, while recall is less relevant for us. We have a total of
73 unique scenario types in the dataset, and their distributions
per city are shown in Fig. 11. The details and parameters of
the 14 scenarios that were used to grade the nuPlan planning
challenge can be found in Tab. XII.
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Fig. 11. Distribution of scenario types in each city.

VIII. SIMULATION

A. Agents

The differential equation behind the IDM policy operates
based on a focus agent - the vehicle that the IDM policy is
controlling - and a lead object. The policy is parameterized
by the distance to a lead object. However, in closed-loop
simulation identifying the correct lead object is not trivial.
Fig. 12 shows how the closest leading object is identified.
Searching for the closest object often returns another agent
in the adjacent lane. Hence, the search space is reduced to
only the other objects in the scene that are or can potentially
intersect with the agent’s planned path. The euclidean dis-
tance between the two closest points of the focus agent and
the lead object is computed.

Merging situations can be tricky because IDM does not
inherently account for multi-lane interactions. One way to
simulate this is to extend all other objects’ footprints in the

These objects are

ignored

Agent's reference
path

Leading objects
intersecting the
agent's baseline

relative distance to lead object

lane centerline f H

Fig. 12. Filtering for all other objects (green) that intersect with the agent’s
(blue) baseline. The baseline is expanded into a polygon along the path
and as wide as the agent’s width. All other objects (yellow) are ignored.
Checking for the nearest object out of the filtered ones.

Extended footprint

oncoming agent

Fig. 13. Footprint projection of other objects in the scene.



TABLE XII

NUPLAN PLANNING CHALLENGE SCENARIO DETAILS

Scenario type

Scenario description

starting straight
traffic light
intersection
traversal

Ego at the start of a traversal going straight across
an intersection area controlled by traffic lights
while not stopped.

high lateral
acceleration

Ego high ego acceleration
(1.5 < acceleration < 3m/s?) across the lateral
axis with high yaw rate while not turning.

changing lane

Ego at the start of a lane change towards an
adjacent lane.

high magnitude
speed

Ego high velocity magnitude with low acceleration
(velocity > 9m/s).

low magnitude
speed

Ego low ego velocity magnitude
(0.3 < velocity < 1.2m/s) with low acceleration
while not stopped.

starting left
turn

Ego at the start of a traversal turning left across an
intersection area while not stopped.

starting right
turn

Ego at the start of a traversal turning right across
an intersection area while not stopped.

stopping with
lead

Ego starting to decelerate

(acceleration magnitude <

—0.6m/s?, velocity magnitude < 0.3m/s)
with a leading vehicle ahead (distance < 6m) at
any area.

following lane
with lead

Ego following (velocity > 3.5m/s) its current
lane with a moving leading vehicle ahead on the
same lane (velocity >

3.5m/s, longitudinal distance < 7.5m).

near multiple
vehicles

Ego nearby (distance < 8m) of multiple (> 6)
moving vehicles while ego is moving
(velocity > 6m/s).

traversing
pickup dropoff

Ego during the traversal of a pickup/drop-off area
while not stopped.

behind long
vehicle

Ego behind

(3m < longitudinal distance < 10m) a long
(length > 8m) vehicle in the same lane as ego
(lateral distance < 0.5m).

waiting for
pedestrian to
cross

Ego waiting for a nearby

(distance < 8m, time to intersection < 1.5m)
pedestrian to cross a crosswalk area while ego is
not stopped and the pedestrian is not at a
pickup/drop-off area.

stationary in
traffic

Ego is stationary with multiple (> 6) vehicles
nearby (distance < 8m).

scene proportional to their speed. Fig. 13 shows an example
of a situation where an extended footprint can help in lane-
merge situations. The lead agent search will identify the
oncoming agent. The agent will know to slow down sooner,
giving way to the oncoming objects.

The final IDM algorithm looks as such:

1) Breadth-first search path planning for a set distance.

2) Identifying the closest leading object.

3) Perform a one-step forward euler numerical integration
on the IDM differential equations.

4) Propagate the agent along the planned path according
to the solution of step 3.

5) Repeat for all agents in the scene.

6) Repeat for all simulation propagation steps.

The attempt to re-purpose prevailing motion forecasting
models such as LaneGCN for traffic simulation proved
less trivial than initially thought. The model independently
predicts agents, resulting in a lack of scene cohesion, for
example, predicting colliding trajectories. The model is also

susceptible to distribution shift issues that arise in closed-
loop simulation. When applied to traffic simulation, the
model induces unrealistic driving scenarios [95]. Further-
more, the number of simulated agents had to be limited to
maintain acceptable simulation runtime. It can be concluded
that motion forecasting alone cannot achieve realistic, scene-
coherent traffic simulation.

B. Evaluation

Metrics. As explained in the main paper, we design a set
of metrics along with a scoring function to compare the per-
formance of planners. The previously mentioned open-loop
metrics are described in detail in Tab. XIII. For each metric,
we evaluate an aggregated error/MR considering different
time horizons within the planning horizon (i.e., H = 3, 5, 8s)
and with the same sampling frequency of 1H z. This method
allows us to have a fair comparison across planners with
different planning horizons or sampling rates. Additionally,
by taking the mean across the selected horizons, the errors
at the beginning of the horizon will have more impact on the
averaged value. The ”within bound” metric score used in the
cost structure is found by comparing the average error/MR
value to a maximum acceptable threshold (8m for distance
errors, 0.8rad for heading errors, and 0.3 for MR). It is
0 if the average value is more than the threshold, and 1
otherwise. For example, ‘MR within bound’ from open-loop
metrics, and ‘drivable area compliance’ from the closed-loop
metrics. Multiplier metrics are assigned a score of 1 or 0,
except for ‘no at-fault collision’ which takes 0 (if there is
an at-fault collision with a vehicle, bicycle, or pedestrian,
or there are multiple at-fault collisions with objects), 0.5 (if
there’s an at-fault collision with a single object), and 1 (if
there’s no at-fault collision).

In the following, we include additional information about
closed-loop metrics mentioned in the main paper:

o When identifying at-fault collisions, we only penalize
the planner when the ego vehicle could be responsible
for the collision, which includes collisions with stopped
agents, collisions with agents in front of ego and colli-
sions with agents in adjacent lanes while making a lane
change. On the other hand, the ego is not penalized for
rear-end collisions or other agents colliding with the ego
when it is stopped. To further emphasize the importance
of different agent types, at-fault collisions are grouped
into vulnerable road users (including pedestrians and
bicyclists), vehicles and objects (traffic cones, barriers
and generic objects).

o For drivable area violation, we measure the maximum
distance of the corners of the ego bounding box from
the nearest drivable area.

o For driving direction, the movement of the ego during a
1s time horizon is calculated along the driving direction
of its lane.

o Speed limit violation is defined based on the magnitude
and duration of the violation.

o Time to collision is defined as the time required for
ego and another object to collide if they continue at



TABLE XIII
OPEN-LOOP METRICS AND THEIR DEFINITIONS

Metric name Metric definition

At each sampled time, ADE is defined as the
average of pointwise L2 distances between the
planner trajectory (x-y) and expert trajectory, up to
the selected comparison horizon in the future.

ADE Within
Bound

At each sampled time, FDE is defined as the L2
distance between the planner trajectory (x-y) and
expert trajectory at the final time available in the
sampled trajectories.

FDE Within
Bound

At each sampled time, AHE is defined as the
average of absolute differences between the planner
trajectory heading and expert trajectory heading up
to the selected comparison horizon in the future.

AHE Within
Bound

At each sampled time, FHE is defined as the
absolute differences between the planner trajectory
heading and expert trajectory heading at the final
time available in the sampled trajectories.

FHE Within
Bound

At each sampled time, if the maximum of the
pointwise L2 distances between the planner
trajectory and expert trajectory up to the selected
comparison horizon in the future is greater than its
corresponding maximum displacement threshold (6,
8 and 16m for horizons 3, 5 and 8s, respectively),
we consider the planner trajectory at that time as a
miss. Miss rate is the ratio of sampled times where
the trajectory was marked as a miss over the
number of the sampled times.

Miss Rate
Within Bound

their present speed and heading. We only compute time
to collision for objects in front of the ego, cross-traffic
objects and lateral objects on the sides, when the ego
is making a lane change or is in the intersection.

o Rider comfort is measured based on jerk, acceleration
and steering rate which are compared to those observed
in human driving.

o Progress of the planner trajectory towards the goal is
evaluated by comparing its progress along expert’s route
in the same scenario. The metric quantifies the progress
as the ratio of overall ego progress to the overall expert’s
progress during the scenario.

Final score structure. The final score of a planner is
computed by averaging its scores across all scenarios as
defined in the main paper. What follows helps explain the
equation: For open-loop planners, the driven trajectory in a
scenario is assigned a zero score if the miss rate is above
the selected threshold (0.3), otherwise, a weighted average of
other metrics’ scores is used as the score. All weights were
tuned with the objective to maximize the overall performance
of the planner against human-driven future trajectories across
multiple scenarios. The weights can be found in the main
paper. For closed-loop planners, the driven trajectory in a
scenario is assigned:

e A zero score if 1) there is an at-fault collision with a
vehicle or a VRU, or 2) there are multiple at-fault colli-
sions with objects (e.g. a cone), or 3) there is a drivable
area violation, or 4) ego drives into oncoming traffic
more than 6m (driving distance), or 5) ego progress
towards the destination is smaller than a threshold.

« The weighted average of other metrics’ scores is mul-

TABLE XIV
CLOSED-LOOP METRICS, SCORES AND WEIGHTS

Metric name Metric score

No at-fault Collisions 0,050r1
Drivable Area Compliance boolean
Driving Direction Compliance 0,050r1
Making progress boolean

Speed limit compliance fspeed—timit

Time to Collision within bound boolean

Progress along route 80 PTOBTESS
expert progress

Comfort boolean

tiplied with 0.5 if there is one at-fault collision with
an object (e.g. a cone), or if ego drives into oncoming
traffic more than 2m, but less than 6m.

o A weighted average of other metrics’ scores, otherwise.

Closed-loop metric scores are summarized in Tab. XIV.
fspeed—1imst 18 a function that returns 1 if there are no speed
limit violations and approaches O as the violation increases.
Furthermore, the comfort metric accounts for jerk amplitude,
lateral and longitudinal acceleration, and jerk, and yaw rate
and acceleration. It is assigned a zero score if one of the
comfort bounds is violated. Our scoring heuristic described
above is an initial proposal that accounts for the natural
importance of each metric and is hand-tuned for our dataset
and simulation framework.

IX. EXPERIMENTS
A. Planning experiments

Detailed scenario-stratified metrics for all four planner
baselines (rule-based and learned) across the three chal-
lenges (open-loop, closed-loop non-reactive, and closed-loop
reactive) can be found in Tab. XV. The metric breakdown
corroborates the statement in the main paper that metrics
reward conservative driving. Planners that do not collide
and stay within the drivable area may score better than
planners that attempt to mimic human drivers. Hence, finer
grain and scenario-based metrics are required to distinguish
between simple rules-abiding driving from desirable human-
like driving behaviors.

B. nuPlan Challenge

The distribution of planners’ scores across the nuPlan
challenge can be seen in Fig. 14 for open-loop, Fig. 15 for
closed-loop non-reactive and Fig. 16 for closed-loop reactive.
Most submitted planners were able to score well in the
open-loop challenge. The most common scores lie between
0.8 - 0.85. The scores significantly dropped for closed-loop
challenges. The most common scores lie between 0.65 -
0.7. A 0.15 drop from the open-loop challenge. This further
supports the argument that most purely learned models fail
to generalize to closed-loop scenarios. For an overview of
the leaderboard, please refer to I

Ihttps://eval.ai/web/challenges/challenge-page/
1856/leaderboard/4360
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TABLE XV

THE METRICS BREAKDOWN BY SCENARIO TYPES ACROSS THE THREE CHALLENGES FOR ALL PLANNERS: SIMPLEPLANNER (SP), IDMPLANNER
(IDM), RASTER PLANNER (RP), AND URBANDRIVER (UD)

Scenario type Open-loop Closed-loop Non-reactive Closed-loop Reactive
SP IDM RP UD SP IDM RP UD SP IDM RP UuD
all 022 030 052 090 032 073 047 0.68 037 076 046 0.67
behind long vehicle 074 054 079 095 0.17 099 079 0.99 044 1.00 090 098
changing lane 0.16 029 041 0.89 035 061 043 0381 041 059 042 074
following lane with lead 0.15 0.05 030 0.89 040 077 048 0.77 047 091 026 082
high lateral acceleration 007 032 041 086 0.13 0.84 024 058 0.14 085 022 054
high magnitude speed 0.02 0.I5 050 0.90 064 077 057 0.89 071 0.89 047 090
low magnitude speed 049 045 0.66 092 029 083 057 0.68 038 080 0.61 079
near multiple vehicles 020 026 037 093 045 0.82 061 0.89 052 084 050 0.80
starting left turn 0.00 0.13 039 0385 021 056 0.07 048 021 063 0.17 051
starting right turn 0.00 0.18 041 087 009 033 020 0.14 0.09 040 027 0.12
intersection traversal 0.02 021 047 091 055 081 053 0.78 057 078 044 0.77
stationary in traffic 073 070 0.87 097 071 097 086 094 073 097 087 093
stopping with lead 054 054 079 095 009 095 077 091 025 095 072 084
traversing pickup dropoff 0.18 026 045 0.87 0.17 0.68 035 0.49 0.17 071 037 048
waiting for pedestrian to cross 0.13 0.17 051 0.81 0.09 030 029 022 0.13 038 037 0.24
TABLE XVI
" feamngbesed OPEN-LOOP CHALLENGE
|DMPlanner UrbanDriver
.t rule-based Metric CS Tu  AutoHorizon Pegasus  AID
I Overall score 0.829 0.852 0.876  0.840
g ADE within bound 0.815 0.836 0.843 0.811
Poa FDE within bound 0.597 0.665 0.727 0.639
s Miss rate within bound | 0.962 0.960 0.960 0.966
AHE within bound 0.944 0.958 0.947 0.937
DI).ZU 025 030 035 040 045 050 055 0.60 065 070 075 0.80 085 0.90 0.91 091 FHE Wlthln bound 0.921 0'938 0.935 0.925
Fig. 14. nuPlan challenge open-loop score distribution.
TABLE XVII
Uibanbrver CLOSED-LOOP NON-REACTIVE CHALLENGE
IoMPlanner Metric CS Tu  AutoHorizon ~ Pegasus  AID
6 S— Overall score 0.928 0.890 0.817 0.809
. Making progress 0.994 0.978 0.929 0.936
e, Drivable area compliance 1.000 0.990 0.948 0.962
£ Driving direction compliance 1.000 0.988 0.955 0.992
s Comfort 0.919 0.990 0.927 0.940
z No at-fault collisions 0.988 0.963 0.926 0.939
TTC within bound 0.925 0.905 0.879 0.883
l;.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.93 0.93 Progress along expert route 0.914 0'915 0.793 0.841
e Speed limit compliance 0.997 0.960 0.934 0.974
Fig. 15. nuPlan challenge closed-loop non-reactive score distribution.
TABLE XVIII
OMPlanmer CLOSED-LOOP REACTIVE CHALLENGE
6 UrbanDriver
s Metric CS Tu  AutoHorizon  Pegasus  AID
Overall score 0.929 0.881 0.851 0.838
¢ Making progress 0.992 0.980 0.946 0.946
H Drivable area compliance 1.000 0.992 0.952 0.966
s, Driving direction compliance 1.000 0.992 0.962 0.996
ego is comfortable 0.925 0.992 0.952 0.972
No at-fault collisions 0.993 0.965 0.946 0.969
‘;10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.93 0.93 TTC Wlthln bound 0'954 0.921 0‘907 0.919
o Progress along expert route 0.885 0.882 0.799  0.828
Speed limit compliance 0.997 0.964 0.940 0.981

Fig. 16.

nuPlan challenge closed-loop reactive score distribution.




