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Fig. 1: From an input RBG-D image, Multi-FinGAN generates a diverse set of grasps from all around the object in about
a second, and then executes the highest scoring grasp on the real robot.

Abstract— While there exists many methods for manipulating
rigid objects with parallel-jaw grippers, grasping with multi-
finger robotic hands remains a quite unexplored research
topic. Reasoning and planning collision-free trajectories on the
additional degrees of freedom of several fingers represents an
important challenge that, so far, involves computationally costly
and slow processes. In this work, we present Multi-FinGAN,
a fast generative multi-finger grasp sampling method that
synthesizes high quality grasps directly from RGB-D images
in about a second. We achieve this by training in an end-to-
end fashion a coarse-to-fine model composed of a classification
network that distinguishes grasp types according to a specific
taxonomy and a refinement network that produces refined
grasp poses and joint angles. We experimentally validate and
benchmark our method against a standard grasp-sampling
method on 790 grasps in simulation and 20 grasps on a real
Franka Emika Panda. All experimental results using our method
show consistent improvements both in terms of grasp quality
metrics and grasp success rate. Remarkably, our approach
is up to 20-30 times faster than the baseline, a significant
improvement that opens the door to feedback-based grasp re-
planning and task informative grasping. Code is available at
https://irobotics.aalto.fi/multi-fingan/.

I. INTRODUCTION

Generating multi-fingered grasps for unknown objects
such as the one shown in Fig. 1 is still non-trivial and con-
siderably more challenging than using parallel-jaw grippers
for the same task. However, by actuating more joints, multi-
fingered grippers allow a robot to perform more advanced
manipulations, including precision grasping flat disks or
power grasping spherical objects.
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Typical methods for multi-fingered grasp generation re-
quire known 3D object models and poses in order to sample a
large space of candidate grasps and then evaluate them based
on physical grasping metrics such as the ε-quality [1]. In case
of unknown object poses, pose estimation is the de facto
standard solution [2], while for unknown models estimating
the shape through, e.g., shape completion or mirroring has
shown to work well in many scenarios [3]–[5]. Nevertheless,
generating good candidate grasps with these methods is
computationally expensive as it usually relies on a stochastic
search process such as simulated annealing over a large
search space. For instance, the search space for the robotic
hand we consider in this work, the Barrett hand seen in
Fig. 1, has 7 Degrees-Of-Freedom (DOF) which together
with the 6D object poses (3 rotations and 3 translations)
result in a 13 dimensional search space. Despite clever
solutions to reduce the search space, such as limiting the
search over eigengrasps [6], the process is still inherently
slow (in the order of several tens of seconds) due to the
stochastic search procedure.

In this work, we present a deep network inspired by recent
work from the computer vision community on human hand
grasp synthesis [7], [8] that can generate and evaluate multi-
finger grasps on unknown objects in roughly a second. To
achieve this, we devise a generative architecture for coarse-
to-fine grasp sampling named Multi-FinGAN that is purely
trained on synthetic data. Especially the integration of a
novel parameter-free finger refinement layer based on a fully
differentiable forward kinematics layer of the Barrett hand
facilitates fast learning and robust grasp generation.

The proposed sampling method is quantitatively evaluated
in both simulation, where we compare over 790 grasps
against the baseline in terms of analytical grasp quality
metrics, and on a real Franka Emika Panda equipped with
a Barrett hand, where we evaluate grasp success rate on 10
grasps per method. In both cases, our approach demonstrates
a significant reduction in running time compared to the base-
line while still generating grasps with high quality metrics
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and success rate.
In summary, the main contributions of this work are:

(i) a novel generative method for multi-finger grasp selection
that enables fast sampling with high coverage; (ii) a novel
loss function for guiding grasps towards the object while
minimizing interpenetration; and (iii) an empirical evaluation
of the proposed method against state-of-the-art, presenting,
both in simulation and on real hardware, improvements in
terms of running time, grasp ranking, and grasp success rate.

II. RELATED WORK

When considering parallel-jaw grippers, a large corpus of
data-driven generative [9]–[13] and classification based [14],
[15] grasping methods exist. Many of these approaches [9],
[14] reach a grasp success rate over 90% on a wide variety of
objects by constraining to top-down-only grasps. However,
as recently discussed by Wu et al. [16], the simplifications
made in these works exclude many solutions that could be
used for applications like semantic and affordance grasping
[17] or multi-finger grasping for dexterous manipulation.

Despite the limitations of parallel-jaw grippers, alternative
methods using multi-fingered hands have not seen as much
development [16]–[22]. These approaches generally under-
perform both in terms of running time and grasp success
rate compared to their parallel-jaw counterparts.

One of the earliest deep-learning-based multi-finger grasp-
ing work trained a network to detect the palm and fingertip
positions of stable grasps directly from an RGB-D view [18].
That method achieved a 75% grasp success rate on 8 objects
but relied on an external planner (GraspIt!) at run-time to
generate grasp samples which made the method slow (16.6
seconds on average to generate a grasp). Our generative
method also takes RGB-D images as input but does not re-
quire any external planner, making it a much faster solution.

To remove the need of a slow external planner, recent
work also focused on generating grasps [19], [20], [22]. For
instance, in [22], the authors train a network that regresses
from a voxel grid representation of the object to the output
pose and configuration of the gripper. Similar to ours, this
work also employs the known forward kinematics equation
of the gripper to compute a collision loss. At run-time the
generated grasp is refined by searching over all ground-truth
grasps, selecting the grasp closest to the generated one. The
main drawback is that the grasps are viewpoint dependent so,
to generate grasps in all possible locations around the object,
the input representation needs to be rotated. Our method, on
the other hand, can generate grasps from any orientation in
just a single forward pass.

Aktas et al. [20] proposed a generative-evaluative model
which both generates grasps and subsequently test them.
Grasps are produced through stochastic hill-climbing on a
product of experts, which is a sequential and time-consuming
process. Our model, on the other hand, only requires one
forward pass to generate a grasp that is then evaluated by
computing analytical quality metrics [1].

The work most similar to ours is by Lu et al. [19].
It proposes a deep network that, given an initial grasp

configuration and a RGB-D or voxel representation of the
object, optimizes a hand pose and finger joints to increase
grasp success. The proposed method reached an average
grasp success rate of 57.5% but requires roughly 5–10
seconds to generate a grasp. That work was later improved
in terms of data-efficiency [21], but still the method required
3–10 seconds to generate a grasp. Our work, in comparison,
does not require an explicit initial hand configuration as the
network implicitly learns to predict such a configuration.
Moreover, our method is much faster at generating grasps.

Tangential to training a multi-finger grasp sampler with
supervised learning is to use Reinforcement Learning (RL).
In [16], Wu et al. learned a deep 6-DOF multi-finger grasping
policy directly from RGB-D inputs. That work introduced a
novel attention mechanism that zooms in and focuses on sub-
regions of the depth image to achieve better grasps in dense
clutter. Although the policy was trained purely in simulation,
it transferred seamlessly to the real world and attained a high
grasp success rate on a diverse set of objects. Nevertheless,
training such a method requires an elaborate simulation setup
and fine-tuning of hyper-parameters for the RL method to
work well.

III. PROBLEM FORMULATION

In this work, we consider the problem of grasping un-
known objects with a multi-fingered robotic hand. This
implies producing a grasp that does not interpenetrate the
object but has several contact points with it. More formally,
we train a model M that takes as input an RGB-D image
I and produces a grasp type c, a 6D gripper pose p, and a
valid hand joint configuration q:

M : I =⇒ {c,p,q} .

We represent the hand joint configuration q by a 7-DOF
Barrett hand shown in Fig. 1. c is a coarse grasp class
within the 33-grasp taxonomy listed in [23]. Due to physical
constraints, the Barrett hand can achieve only 7 out of these
33 grasp types, namely: small wrap, medium wrap, large
wrap, power sphere, precision sphere, precision grasp, and
pinch grasp. All grasps are in the object’s center of reference.

Furthermore, we assume that the hand joint configuration
q leaves a small gap between the fingers and the object as
the gripper executes a close-hand primitive before attempting
to actually lift the object. This assumption is reasonable to
limit the impact of sensing uncertainties in the real world
as we avoid the need to generate precise configurations that
actually touch the surface of the object.

IV. METHOD

Our model for generating 6D multi-finger grasps inspired
from [7] is visualized in Fig. 3. It consists of 6 different sub-
modules: Shape Completion, Image Encoding, Multi-Label
Grasp type Classification, Grasp Generation, Discriminator
and Finger Refinement. All these modules are novel for
robotic grasping except “shape completion”, which was used
in [24] to shape complete voxelized input point-clouds using
a deep network, and “image encoding”, which is a pre-trained
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Fig. 3: The architecture of Multi-FinGAN.

ResNet-50 [25]. In the following subsections we will present
each of the novel modules and their function. Finally, we
will present the loss functions used to train the complete
generative grasp planning architecture end-to-end.

A. Multi-Label Grasp Type Classification

The task of the Multi-Label Grasp Type Classification
network is to classify which of the seven predefined grasp
classes are feasible for a given object. For this purpose, the
classification network is fed with the image representation
of an object E(I), where E(·) is a ResNet-50 encoding, and
produces as output a grasp type c.

As objects can often be associated with multiple correct
grasp categories, we frame the problem as a multi-label
classification task. As such, we use a Sigmoid activation
function at the output and the binary cross-entropy loss
Lclass to train the network. To later choose one grasp among
all the possible ones, we threshold the output to 0.5 and
randomly choose one grasp type c that is classified as valid
for that object.

B. Grasp Generation

The grasp type c estimated by the classification network
is associated with a coarse hand configuration qc , i.e., the
average joint angles. The task of the Grasp Generation is to
generate a first refinement of the hand configuration qr =
qc + ∆q along with a 6D hand pose p = {t, r} where t is
a translation and r is a normalized axis-angle rotation.

Given the object mesh, we estimate the center of it t0 and
have the network refine this translation as t∗ = t0 + ∆t.
Similarly, we represent the refinement of the hand’s rotation
as r∗ = r0 +∆r. At training time the input rotation r0 is set
to a rotation of a ground-truth grasp with added zero-mean
Gaussian noise while at test-time we sample uniform rota-
tions and feed these to the network. The center of the object
mesh t0 is known when training and during the simulation
experiments, while during the physical experiments we use
the center of the shape completed object.

All in all, the network is represented as a fully-connected
residual network which takes as input the initial hand
configuration, the object center, a noisy rotation, and the

image encoding {qc, t0, r0,E(I)} and produces individual
refinements {∆q,∆t,∆r}.

C. Finger Refinement Layer

The Finger Refinement Layer is responsible to further
refine the hand representation qr. To this end, we propose a
novel fully-differentiable and parameter-free layer based on
the forward kinematics equation of the Barrett hand. This
layer takes as input the pose of the gripper p and the coarse
gripper representation qr and produces an optimized gripper
configuration q∗ = qr + ∆q∗ that is close to the surface of
the object but not in collision with it.

We optimize each finger independently with respect to the
estimated object mesh. We denote ∆qj

∗ as the optimized po-
sition of joint j. This is calculated by rotating the articulated
finger within its predefined physical limit θj until the distance
δθj between the finger vertices V θji and the object vertices
Ok implies a contact between finger and object. Hand-Object
contact is parameterized by a threshold hyperparameter td,
following

∆q∗j = arg min
θj

{δθj + ε− qr,j} ∀θj s.t. δθj < td ,

δθj = min
i

(min
k

(‖V θji , Ok‖)) .
(1)

Note that we could have simply set q∗ = arg minθ δθ
for each joint as was proposed in [7] for a human hand
model. However this would break backward differentiability,
and instead, we explicitly calculate ∆q∗ and add it to qr.

The Barrett hand consists of three fingers made of two
links (a proximal and a distal one). As such, (1) is solved
for j = 1, . . . , 6, where we first rotate the proximal joints
until contact and then proceed with the distal joints. To
avoid interpenetration between the object and the gripper,
we add an offset ε which we heuristically set to 0.5 cm in
our experiments.

D. Discriminator network

Since the network does not have any supervision except for
the classification task, we need to enforce that the generated
grasps are realistic. To this end, we add a Wasserstein dis-
criminator D [26] and train it with the gradient penalty [27].



More specifically, the objective to minimize using the grasp
generation module G is

Ldisc =E [D(G(E(I),qc, t0, r0)]− E
[
D(q̂, t̂, r̂)

]
,

Lgp =E
[(
‖∇q̃,T̃,̃rD(q̃, t̃, r̃)‖2 − 1

)2]
,

(2)

where q̂, t̂, and r̂ are samples from the ground-truth data
and q̃, t̃, and r̃ are linear interpolations between predictions
and those ground-truth samples.

E. Complementary loss functions

While the discriminator loss Ldisc helps in producing
realistic looking grasps, it alone is not sufficient to guide
the learning problem enough. Therefore, we propose a set of
complementary losses.

To ensure that the generated grasps are close to the object,
we add a contact loss

Lcont =
1

|Vcont|
∑

v∈Vcont

min
k
‖v,Ok‖2 , (3)

where Ok are the object vertices and Vcont are vertices on the
hand that are often in contact with the object in our ground-
truth grasps. We calculate Vcont as the vertices that are closer
than 5 mm to the object in at least 8% of the ground-truth
grasps. These are mainly located on the finger tips and the
palm of the hand.

For a grasp to be successful, the gripper should be rotated
towards the object of interest. To promote such behaviour, we
add a loss function that penalizes the gripper if its approach
direction â is pointing away from the vector ô connecting
the hand to the object’s center:

Lorient = 1− â>ô . (4)

Finally, for a grasp to be successful it cannot interpenetrate
the object. To encourage such behaviour, we add a loss that
penalizes the distance between vertices Vi that are inside the
object and the closest object vertex

Lint =
1

|Vi|
∑
v∈Vi

Av min
k
‖v, Ok‖2 , (5)

where Av is the average area of the incident faces of
the vertex that is inside the object. Since uniform mesh
tessellation cannot usually be assumed in robotics, e.g.,
Fig. 4b, we add the term Av to be robust to non-uniform
tessellation.

Finally, the total loss is a linear combination of all the
separate loss functions Ltot = wclassLclass + wdiscLdisc +
wgpLgp + wcontLcont + wintLint + worientLorient, where
each individual loss contribution is given a corresponding
weight. The model is trained end-to-end.

F. Implementation details

The network was implemented in PyTorch 1.5.1. We use
a pre-trained ResNet-50 [25] as the image encoder. The
model was trained on 30 objects from the YCB object set
and for each of them we synthetically rendered 100 novel

(a) (b)

Fig. 4: Example of three synthetic RGB images used for
training (a), and a grasp generated by our method (b).

viewpoints, some examples are shown in Fig. 4a. The images
are resized to 256x256. We trained our networks with a
learning rate of 1 · 10−4 and a batch size of 100. The
weights of the loss functions were experimentally set to
wclass = 1, wdisc = 1, wgp = 10, wcont = 100, wint = 100,
worient = 1. The generator is trained once every 5 forward
passes to improve the relative quality of the discriminator.
We trained the networks for 800 epochs where we linearly
reduced the learning rate for the last 400 epochs.

V. EXPERIMENTS AND RESULTS

The three main questions we wanted to answer in the
experiments were:

1) Is Multi-FinGAN able to generate high quality grasps?
2) What are the contributions of the proposed loss func-

tions?
3) Is our generative grasp sampler, which is purely trained

on synthetic data, able to transfer to real objects?
In order to provide justified answers to these questions, we

conducted three separate experiments. In the first experiment
(Section V-B) we evaluate grasp quality and hand-object
interpenetration in simulation. In the second experiment
(Section V-C) we do an ablation study over the proposed
loss functions and in (Section V-D) we finally evaluate grasp
success rate on real hardware.

A. Dataset

To train our model, we manually generate a dataset of
grasps on the YCB objects [28] using a Barrett hand in
GraspIt! [29]. As previously mentioned, the hand can only
attain 7 of the 33 grasp types listed in [23] and we therefore
categorize each grasp according to these. As a final step, we
generate additional grasps around the symmetry axes of the
objects. In total, this amounts to over 4000 labeled grasps.

B. Grasping in Simulation

In the simulated grasping experiment, we evaluate how
good our method is at producing high quality grasps that are
not interpenetrating the object. We test our model on two
different datasets: 33 objects from the YCB object set [28]
and 49 objects from the recent EGAD! dataset [30]. The
YCB object set contains both object models we trained on,
and models that were held out during training; the EGAD!
dataset contains completely novel objects.

We benchmark against the simulated annealing planner in
GraspIt! [31] that ran for 75000 steps to generate 360 grasp
candidates on average. To evaluate the quality of a grasp, we
used the ε-quality metric which represents the radius of the



TABLE I: Simulation experiment results. ↑: higher the better;
↓: lower the better.

GraspIt! Multi-FinGAN

YCB EGAD! YCB EGAD!

ε-quality ↑ 0.75 0.75 0.85 0.86
Interpenetration (cm3) ↓ 2.63 1.03 6.88 1.01
Grasp Sampling (sec.) ↓ 32.79 29.88 1.33 1.28
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Fig. 5: Histograms showing all results obtained on both
datasets by our approach and the baseline in terms of ε-
quality and interpenetration (best viewed in color).

largest 6D ball centered at the origin that can be enclosed by
the convex hull of the wrench space [32]. With our method,
we render 5 different viewpoints for each object and 110
grasps per viewpoint. Out of this pool of grasps, we report the
average performance on the 10 top-scoring grasps according
to the ε-metric. We also average the performance of the 10
top-scoring grasps found with the baseline method. In total
this amounts to 790 grasps per method.

Table I and Fig. 5 show the simulation results and Fig. 4b
an example grasp using our method. To analyze the statis-
tical differences between the methods we used a one sided
Wilcoxon signed-rank test. Based on these results we can
draw several interesting conclusions. Multi-FinGAN is able
to achieve statistically better results (α = 0.001) in terms
of quality. The histogram in Fig. 5 is also confirming this
result, showing that our data-driven grasp planning method is
more consistent than the baseline at generating high quality
grasps. However, in terms of interpenetration, GraspIt! shows
a statistically significant improvement over our method (α =
0.001). This result is most likely due to our method reaching
a higher interpenetration on the YCB objects because of the
presence of large objects which were not in the training-set.
EGAD!, on the other hand, contains objects scaled to the size
of the hand and our method achieves a low interpenetration
on those. One thing to note, though, is that when looking at
the interpenetration histogram in Fig. 5, the two methods
do not perform radically differently. Finally, our method
generates, on average, a grasp in around a second compared
to the 30 seconds required by GraspIt!, which makes Multi-
FinGAN 30 times faster than the baseline; a difference which
is once again statistically significant (α = 0.001).

C. Ablation study

To further evaluate the impact the proposed loss functions
have on performance, we conducted an ablation study where

TABLE II: Ablation study on EGAD!

Loss removed none Lint Lcont Lorient Ldisc

ε-quality ↑ 0.86 0.77 0.83 0.85 0.74
Interpenetr. (cm3) ↓ 1.01 56.24 3.63 2.99 27.50

Fig. 6: The objects used in the physical experiments.

we trained models with one of the following losses removed:
the interpenetration loss Lint, the contact loss Lcont, the
orientation loss Lorient, and the discriminator loss Ldisc. We
train each of these models as was described in Section V-A
keeping the same weights and evaluated them on the EGAD!
dataset by sampling 110 grasps from 5 different viewpoints
and calculating the ε-quality and the intersection for the top
10 grasps.

The results are presented in Table II. As expected, a
network trained with no interpenetration loss Lint often
intersects the object as this results in more contacts but the
final ε-quality 0.77 is still not higher than 0.86 achieved with
the model trained with all the losses.

Another interesting observation is that the model with
no contact loss Lcont still achieves a high ε-quality. Our
hypothesis was that grasps generated with this model would
not interpenetrate the object at all as the model would have
learned to translate the gripper far from the object which
would also have resulted in low quality. However, this was
not the case and one possible explanation why is that the
orientation and discriminator losses forces the grasps to be
realistic and oriented towards the object.

A model trained without the orientation loss Lorient barely
impacts the quality of the grasps but does increase the
interpenetration compared to the full model. However, this
loss speeds up learning in the early stages of training as
it acts as an inductive bias forcing the hand to be oriented
towards the object.

The network with no discriminator loss Ldisc produces
the lowest quality grasps. At the same time, it also produces
gripper joint-configurations that are physically infeasible.

Overall, all of the models produce grasps with lower ε-
quality and higher interpenetration compared to a model
trained with all the losses. However, the grasp quality does
not heavily deteriorate. This is probably due to the inherent
power of the finger refinement layer which will always refine
the gripper’s fingers close to the object if that is possible.
Nevertheless, the ablation study shows that all the losses
have different purposes and leaving one out affects the final
performance of the model. Therefore, we use the model with



Fig. 7: Example grasps proposed by Multi-FinGAN on real objects. The upper row shows the unsegmented input image
and the bottom rows shows some grasps on the shape-completed object. The grasp shown in the red box failed as it was in
collision with the object.

TABLE III: Real hardware experiment results

GraspIt! Multi-FinGAN

Grasp Success Rate (%) ↑ 40 60
Shape Completion Time (sec.) ↓ 7.7 7.4
Grasp Evaluation Time (sec.) ↓ 34.4 1.7

all losses in our following Sim-to-Real experiment.

D. Sim-to-Real Grasp Transfer

To understand if grasps generated with our generative
grasp sampler trained on synthetic data, transfer well to
real objects, we conducted an experiment on a real Franka
Emika Panda equipped with a Barrett hand. The goal was
to grasp the objects shown in Fig. 6 which were chosen as
they represent a high variability in both size and shape.

To capture the RGB-D image we used an Intel RealSense
D435 camera looking at the scene from the side at a 45
degree viewpoint. For the extrinsic calibration of the camera
we used an Aruco marker [33]. To provide our network with
an RGB image of only the object, we segment it from the
scene by subtracting the background and the table. To create
a mesh of the segmented object, which is needed in both
our method and the baseline, we used the shape-completion
method detailed in [24]. For both methods we generated 20
grasps per object. We then calculated the intersection and
quality metric of each grasp. The first physically reachable
grasp with lowest intersection and highest quality metric
was executed on the real robot. To evaluate if a grasp was
successful, the robot had to grasp the object and, without
dropping it, move to the start position and rotate the hand
±90° around the last joint. If the object was dropped during
the manipulation, the grasp was considered unsuccessful.

The result of this experiment is shown in Table III. Based
on these numbers we can see that our method reaches a
grasp success rate of 60% compared to the baseline 40%,
while being over 20 times faster.

An example of the input image fed to the network and a
generated grasp is shown in Fig. 1. Although this image is
not qualitatively as good as the training data visualized in
Fig. 4a the method was still able to generate high quality
grasps on such objects showing stable sim-to-real transfer.
Additional grasps generated using our method are visualized
in Fig. 7.

Based on the experiments, Multi-FinGAN never produced
grasps that were too far from the object to be able to grasp

it. The main reason for grasp failure was that grasp ranking
based on the ε-quality metric favored grasps that established
many contact points with the object and, as shown in the
leftmost image in Fig. 7, such grasps may not translate to
good real-world grasps. Another reason for grasp failure was
object scale: on big objects the generated grasps were always
in collision with the object, as shown in the rightmost image
in Fig. 7. Despite these limitations, the results still indicate
stable sim-to-real grasp transfer.

VI. CONCLUSIONS AND FUTURE WORK

We presented Multi-FinGAN, a generative grasp sampling
method that produces multi-fingered 6D grasps directly from
an RGB-D image. The key insight was to reduce the search
space by using a coarse-to-fine grasp generation method
where we first generated coarse grasps based on a grasp
taxonomy which subsequently were refined using a fully
differentiable forward kinematics layer. We compared our
model to the well known simulated annealing planner in
GraspIt! both in simulation and on a real robot. The results
showed that our model trained on synthetic data was signif-
icantly better than the baseline in generating higher quality
grasps in simulation, and on real hardware it achieved a
higher grasp success rate. At the same time it was also 20–30
times faster than the baseline.

Despite the good results, there is still room for improve-
ments. Although the classification into grasp types reduced
the search space and eased the learning of the model it
requires a large dataset of labeled grasps which is time-
consuming to gather. A more elegant solution is to not
classify grasps according to a taxonomy but instead regress
directly to joint angles allowing to train the model on other
datasets such as the Columbia grasp database [34]. Another
limitation is the computational time to evaluate the grasps
which accounts for more than half the time needed to
generate grasps. This time could be reduced by training a
critic to evaluate multi-finger grasps but that is still an open
problem.

In conclusion the work presented here shows that gen-
erating 6D coarse-to-fine multi-fingered grasps is both fast
and leads to good grasps. This, in turn, opens the door
to use dexterous hands for feedback-based grasping, task
informative grasping and grasping in clutter.
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