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Abstract— In this paper, we present a highly efficient Di-
vergent Component of Motion (DCM) reference trajectory
generator capable of adapting online to large perturbations
acting on the center-of-mass (push recovery) and on the swing
foot (stumble recovery). For push recovery, we propose an
analytic solution for a footstep adjustment strategy based on
the DCM dynamics. The proposed algorithm considers double
support phases explicitly and is active throughout the motion,
i.e., during both single and double support phases. For stumble
recovery, we introduce a continuous DCM trajectory adaptation
based on the instantaneous tracking error of the swing foot. Our
method is highly efficient, computing a push recovery solution
within 10 microseconds on the robot hardware. Furthermore,
it achieves robust locomotion for large external perturbations,
which we demonstrate in simulations and experiments with the
humanoid robot TORO.

I. INTRODUCTION

Humanoid robots are expected to be able to interact
safely with humans, and work alongside them in cluttered
environments [1]. Despite extensive research in the last
decades, robust humanoid locomotion remains a challenging
problem due to its hybrid dynamics and the constraints
on the direction and magnitude of the contact forces. Of
particular interest is the ability to maintain balance following
strong disturbances, acting either on the center-of-mass (push
recovery), or on the swing foot (stumble recovery).

One of the most popular models for humanoid locomotion
is the Linear Inverted Pendulum (LIP) [2]. More recently, the
Divergent Component of Motion (DCM) [3] was introduced
with the goal of simplifying the trajectory generation and
control by focusing on the unstable component of the CoM
dynamics. Given a sequence of preplanned footsteps, an effi-
cient algorithm for generating reference trajectories using the
three-dimensional DCM [4] was introduced in our previous
work [5]. A DCM tracking controller [4] was implemented
in a passivity-based whole-body torque controller to achieve
dynamic walking on compliant and uneven terrain [6].

To improve robustness in the presence of large pertur-
bations, researchers have looked at nature for inspiration.
An experimental study on human balancing [7] mentioned
three basic strategies for balancing (ankle, hip, and stepping
strategies), and has shown that, contrary to traditional views,
humans prefer the stepping over the hip strategy for stabi-
lizing after large perturbations. In robotics, several frame-
works have been proposed to achieve robust locomotion
and disturbance rejection. A model predictive control (MPC)
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scheme was introduced by Herdt et. al [8] to compute step
locations in reaction to disturbances, using the zero moment
point (ZMP) dynamics while minimizing the CoM jerk.
Aftab et al. [9] proposed an MPC framework combining the
three strategies for stabilizing a LIP model with a flywheel
in simulations, while Shafiee-Ashiani et al. [10] combined
ankle, hip, and stepping strategies in an MPC framework
using the DCM instead of the whole CoM dynamics. Urata
et al. [11] selected optimal ZMP-CoM pairs through preview
control for online footstep adjustment in response to pushes
or sudden changes in direction or speed. Another approach
has been to formulate and solve online footstep optimization
problems, based either on the LIP model [12], or on an
analytic solution of the DCM for general ZMP trajectories
[13]. Griffin et al. [14] proposed a quadratic optimization
problem combining a proportional feedback controller with
a controller that adjusts multiple footsteps, using a recursive
algorithm based on DCM dynamics with constant ZMP.

A footstep adaptation algorithm based on DCM dynamics
and using an exponential interpolation of the ZMP trajectory
was proposed in [15], but the step adaptation was active only
during the single support phase. Jeong et al. [16] presented
a robust walking controller based on the DCM dynamics
using an online optimization solver to combine the ankle, hip,
and stepping strategies. Yet, an important missing aspect of
their method is the absence of double support phases. In our
previous work [5], we presented a push recovery algorithm
using a conservative estimate of the DCM error at the end
of the single or double support phase.

The main contributions of this work are: (i) We propose
a highly efficient push recovery algorithm based on the
DCM dynamics with an analytic solution for combining the
ankle and stepping strategies. Unlike existing works, our
algorithm considers double support phases explicitly, and is
continuously active during both single and double support
phases. (ii) We introduce a stumble recovery algorithm as
a continuous DCM reference trajectory adaptation based on
the instantaneous tracking error of the swing foot.

The paper is organized as follows: Section II reviews the
main results regarding DCM from our previous work [4],
[5], [17], and introduces the notation that is used throughout
the paper. Section III gives an overview of the reference
trajectory generator, with Section IV detailing the push
recovery algorithm, and Section V presenting the stumble
recovery approach. Section VI describes the performed sim-
ulations and experiments that demonstrate the robustness of
the overall approach. Section VII presents the conclusions
and gives an outline for future work.



II. FUNDAMENTALS (PREVIOUS WORK)

The three-dimensional Divergent Component of Motion
(DCM) ξ was defined in [4] as ξ := x + b ẋ, a linear
combination of the CoM position x and velocity ẋ, with
the time constant b :=

√
∆z
g , where ∆z represents the

average CoM height above the ground surface, and g denotes
the gravitational constant. A closely related concept, the
Virtual Repellent Point (VRP) v, was introduced in [4] as
v := x− b2 ẍ, a linear combination of the CoM position x
and acceleration ẍ. The VRP encodes the effects of the total
force (gravity and all external forces) acting on the CoM.
The relation between DCM and VRP is found to be

ξ̇ =
1

b
(ξ − v). (1)

A. DCM reference trajectory generation

In this section, we revisit the main results from [5]. For
a sequence of n footsteps given as foot centers (pi)

n
i=1,

the DCM reference trajectory is generated by alternating
single and double support phases with duration TSS and
TDS , respectively. In this work, the term step is used to
describe a single support phase and the subsequent double
support phase. In the following, we write the VRP and DCM
reference trajectories for an arbitrary step with index i, using
t to denote the local time within each phase. First, a VRP
waypoint vi is placed over the foot center at a height equal
to ∆z

vi = pi + (0 0 ∆z)T . (2)

During the single support phase, the reference VRP is
constant

vi,SS(t) = vi. (3)

The DCM reference trajectory is obtained by solving (1) with
ξi,SS(TSS) = ξi,DS,0 as boundary condition:

ξi,SS(t) = (1− γSS(t))vi + γSS(t) ξi,DS,0, (4)

where γSS(t) = e
t−TSS

b , and ξi,DS,0 denotes the DCM start
point of the double support phase. The DCM start point of
the single support phase ξi,SS,0 := ξi,SS(0) can be written
as

ξi,SS,0 = (1− γSS,0)vi + γSS,0 ξi,DS,0, (5)

where γSS,0 := γSS(0).
For the double support phase, the reference VRP trajectory

is designed as a linear interpolation between the current VRP
vi and the VRP corresponding to the next step, vi+1:

vi,DS(t) =

(
1− t

TDS

)
vi +

t

TDS
vi+1. (6)

A closed-form solution for the DCM reference trajectory is
obtained by replacing (6) in (1) and solving the resulting
differential equation. As a boundary condition, we choose
ξi,DS(TDS) = ξi+1,SS,0, where ξi+1,SS,0 denotes the DCM
start point of the following single support phase, and is
computed by evaluating (5) for the step with index i+1. This
approach guarantees the continuity of the complete DCM
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Fig. 1: Overview of the reference trajectory generator. The
main contributions of this work are highlighted in blue.

trajectory (for more details, see [5]). The DCM reference
trajectory for the double support phase is

ξi,DS(t) = αDS(t)vi + βDS(t)vi+1 + γDS(t) ξi+1,SS,0,
(7)

where αDS(t) = 1 − t
TDS
− b

TDS
(1 − e

t−TDS
b ), βDS(t) =

t
TDS
−e

t−TDS
b + b

TDS
(1−e

t−TDS
b ), and γDS(t) = e

t−TDS
b . An

important property of this formulation is that the coefficients
αDS(t), βDS(t), and γDS(t) are convex coefficients [17],
i.e., are nonnegative and sum to 1:

αDS(t) + βDS(t) + γDS(t) = 1. (8)

The DCM start point for the double support phase
ξi,DS,0 := ξi,DS(0) can be written as:

ξi,DS,0 = αDS,0 vi + βDS,0 vi+1 + γDS,0 ξi+1,SS,0, (9)

where αDS,0 := αDS(0), βDS,0 := βDS(0), and γDS,0 :=
γDS(0). Note that all equations in this section show linear
relations between the VRP and DCM, which allows us to
rewrite them later using displacements.

B. DCM tracking controller

To track the DCM reference trajectory, the following
tracking control law was proposed in [4]:

v = vref + (I + bKξ)(ξ − ξref), (10)

where Kξ is a positive diagonal matrix, ξ denotes the
measured DCM, ξref the reference DCM position, while
vref = ξref − b ξ̇ref denotes the reference VRP.

III. OVERVIEW

An overview of the proposed reference trajectory generator
is shown in Figure 1. Based on a sequence of planned
footsteps (pi,plan)ni=1 provided by an external step planner,
the planned VRP and DCM trajectories, vplan and ξplan,
are generated using the approach presented in Section II-A.
In our previous work [6], these trajectories were given as
reference trajectories directly to the whole-body controller.
In this work, we propose an online trajectory adaptation
to account for large perturbations acting on the center-of-
mass (push recovery, see Section IV) and on the swing foot
(stumble recovery, see Section V). The result of the push
recovery is an adjusted sequence of footsteps (pi,push)ni=1,
used for computing the swing foot reference trajectory rref
and the corresponding VRP and DCM trajectories, vpush and



Fig. 2: Push recovery example while walking (single/double
support time: 0.6/0.2 s). The impact occurs at t = 0.27 s
during the single support phase. The DCM error ξ̃ is split
into two parts, ξ̃ankle and ξ̃step, with the latter being used by
the stepping strategy to compute the footstep adjustment ∆p.

ξpush. Next, the DCM trajectory is adjusted based on the
swing foot tracking error (the difference between the actual
swing foot position r and the reference rref) to create the
reference VRP and DCM trajectories, vref and ξref. These
are finally tracked by the DCM controller (10), which is
embedded in the whole-body torque controller [6].

IV. PUSH RECOVERY

Typically, robust push recovery is achieved by combining
three strategies: ankle, stepping, and hip strategies. In our
framework, the ankle strategy is implemented by the whole-
body controller [6], while a hip strategy using angular mo-
mentum is part of our current research efforts. The proposed
stepping strategy is implemented as an adjustment of the
planned trajectories, both for the DCM and the feet. In
general, it is preferable to follow the planned foot and DCM
trajectories, and activate the stepping strategy only when the
ankle strategy can no longer correct the DCM error.

A. Stepping strategy

In this work, we propose an analytical solution based on
the DCM dynamics for implementing the stepping strategy.
Let ξ̃ denote the difference between the measured DCM and
the planned trajectory ξ̃(t) := ξ(t)−ξplan(t). The DCM error
ξ̃ can be split into two parts, ξ̃ankle and ξ̃step:

ξ̃ankle(t) + ξ̃step(t) = ξ̃(t), (11)

where ξ̃ankle represents the DCM error that can be corrected
by the ankle strategy, and ξ̃step represents the remaining
DCM error, used by the stepping strategy to compute the
next footstep adjustment ∆p (see Fig. 2). One goal of
the push recovery algorithm is to follow the planned foot
trajectory as close as possible, i.e. to minimize ‖∆p‖. In our
framework, the relation between ξ̃step and ∆p is linear with
a scalar factor (see Section IV-C), therefore, this goal can be

achieved by minimizing ‖ξ̃step‖. Note that this linear relation
is not based on heuristics, but is a direct result of the DCM
dynamics (1) and the designed VRP reference trajectories (3)
and (6).

The main idea of the proposed method is ilustrated geo-
metrically in Figure 2. First, we compute the set of DCM
errors Ξ̃ankle(t) that the ankle strategy can correct during the
current step without the need for footstep adjustment (the
details of the computation are given in Section IV-B). Let
Ξankle(t) be the set of DCM positions for which a recovery
is possible using only the ankle strategy

Ξankle = {ξplan} ⊕ Ξ̃ankle = {ξplan + ξ̃ankle | ξ̃ankle ∈ Ξ̃ankle}.
(12)

Projecting ξ onto Ξankle yields ξankle that minimizes the norm
‖ξ − ξankle‖, which, as shown in Figure 2, is the same as
minimizing ‖ξ̃step‖. Note that if ξ is contained by the set
Ξankle (or, equivalently, ξ̃ is contained by Ξ̃ankle), then the
stepping strategy is inactive, as ξankle = ξ and ξ̃step = 0.

B. Set of DCM errors correctable by ankle strategy alone

The ankle strategy corresponds to a modulation of the
commanded VRP v according to (10) in the xy-plane,
within the boundaries of the current support area. Let Ṽ
denote the set of VRP adjustments ṽ = v − vplan that
remain within the foot boundaries, expressed in foot co-
ordinates. For example, based on our choice of placing
the VRP over the foot center, and given a rectangular
foot shape1 of length 2l and width 2w, Ṽ can be written
as Ṽ =

{
ṽ = (x y 0)T | −l 6 x 6 l,−w 6 y 6 w

}
. Let

Ṽankle(t) denote the set of VRP adjustments that the ankle
strategy can use during the current phase. In this section, we
use Ṽ and the equations derived in Section II-A to compute
Ṽankle and Ξ̃ankle for single and double support phases.

1) Single support phase: The set of VRP adjustments that
the ankle strategy can use during the single support phase is

Ṽankle = Ri ⊗ Ṽ := {Riṽ | ṽ ∈ Ṽ }, (13)

where Ri denotes the rotation matrix corresponding to
the yaw angle of the support foot. The corresponding
set of possible commanded VRPs can be written as
Vankle = {vi} ⊕ Ṽankle.

To compute Ξ̃ankle(t), we start by replacing (9) in (4)
and expressing the result in terms of displacements (i.e.,
differences between measured and planned quantities):

ξ̃i,SS(t) = (1− γSS(t) + γSS(t)αDS,0) ṽi

+ γSS(t)βDS,0 ṽi+1 + γSS(t) γDS,0 ξ̃i+1,SS,0. (14)

Now, Ξ̃ankle(t) is obtained by evaluating (14) for all
ṽi ∈ Ṽankle, and taking ṽi+1 = 0 (such that no ankle strategy
is required during the next step) and ξ̃i+1,SS,0 = 0 (the DCM
error is completely corrected at the end of the current step):

Ξ̃ankle(t) = (1− γSS(t) + γSS(t)αDS,0) Ṽankle. (15)

1Other convex shapes of the foot can also be modeled using linear
inequalities (H-representation).



Fig. 3: Time evolution of Vankle(t) and Ξankle(t) during single support (left), double support (middle), and the following
single support phase (right). The single and double support durations are TSS = 0.6 s and TDS = 0.2 s, respectively.

Computing Ξ̃ankle using the two conditions (ṽi+1 = 0 and
ξ̃i+1,SS,0 = 0) can also be interpreted as follows: if no
further perturbations occur, any DCM error ξ̃ankle ∈ Ξ̃ankle
can be corrected by the ankle strategy alone until the end of
the current step, using only VRP adjustments from Ṽankle.

2) Double support phase: First, we introduce the sets
Ṽi = Ri ⊗ Ṽ , and Ṽi+1 = Ri+1 ⊗ Ṽ , with Ri and
Ri+1 denoting the yaw rotation matrices of the respective
feet; the corresponding VRP sets are Vi = {vi} ⊕ Ṽi and
Vi+1 = {vi+1} ⊕ Ṽi+1 .

One approach for computing the set Vankle of possible
commanded VRPs would be to use the total support area,
i.e. the convex hull of the set Vi ∪ Vi+1. In this case, the
ankle strategy could correct large disturbances that occur on
the axis connecting vi and vi+1. However, it is important
to remember that during walking, the double support phase
can be better described as a weight transfer phase, i.e.
the weight of the robot is transfered from one leg to the
other. Modulating the commanded VRP within the total
support area would interfere with the planned weight transfer,
potentially leading to large discontinuities in the commanded
leg forces at the start of the following single support phase.
Based on these considerations, the set Vankle is designed
similarly to the VRP reference trajectory (6), as a linear
interpolation between Vi and Vi+1:

Vankle(t) =

(
1− t

TDS

)
Vi ⊕

t

TDS
Vi+1. (16)

Note that the similarity between (16) and (6) allows us to
compute the set Ξ̃ankle(t) starting from equation (7). The
corresponding set of VRP adjustments can be written as

Ṽankle = Vankle	{vi,DS} := {vankle−vi,DS | vankle ∈ Vankle}.
(17)

To compute Ξ̃ankle(t), we start by writing equations (5) and
(9) for the single and double support phases of the i+1 step:

ξi+1,SS,0 = (1− γSS,0)vi+1 + γSS,0 ξi+1,DS,0

ξi+1,DS,0 = αDS,0 vi+1 + βDS,0 vi+2 + γDS,0 ξi+2,SS,0.
(18)

Combining (7) and (18), expressing the result in terms of
displacements, and using the equality (8) yields

ξ̃i,DS(t) = αDS(t) ṽi

+ (1− αDS(t)− γDS(t) γSS,0(1− αDS,0)) ṽi+1

+ γDS(t)βDS,0 ṽi+2 + γDS(t) γDS,0 ξ̃i+2,SS,0. (19)

Finally, Ξ̃ankle(t) is obtained by evaluating (19) for all
ṽi ∈ Ṽi, and all ṽi+1 ∈ Ṽi+1, while taking ṽi+2 = 0 and
ξ̃i+2,SS,0 = 0 (with the same interpretation as in the case of
the single support phase):

Ξ̃ankle(t) = αDS(t) Ṽi

⊕ (1− αDS(t)− γDS(t) γSS,0(1− αDS,0)) Ṽi+1. (20)

Figure 3 shows the time evolution of Vankle(t) and Ξankle(t)
for an example trajectory during three consecutive phases.

It can be verified that Ξ̃ankle is the same at the end of the
double support phase and the start of the following single
support phase. Evaluating (20) for t = TDS yields

Ξ̃ankle(TDS) = (1− γSS,0 + γSS,0 αDS,0) Ṽi+1, (21)

where we used the identities αDS(TDS) = 0 and
γDS(TDS) = 1. As Ṽi+1 is the same as Ṽankle during the
following single support phase, the result in (21) is identical
to the one obtained by evaluating (15) for t = 0. On the
other hand, Ξ̃ankle is discontinuous at the end of the single
support phase and the start of the following double support
phase (see Fig. 3, left and middle images). However, this
discontinuity in the time evolution of Ξ̃ankle coincides with
the discontinuous change of the adjustable footstep from
pi+1 during single support, to pi+2 during double support.

C. Footstep adjustment

The stepping strategy computes a footstep adjustment
∆p(t) based on the DCM error component ξ̃step(t) that
cannot be corrected by the ankle strategy alone. As a direct
consequence of the DCM dynamics (1) and the designed
VRP trajectories (3) and (6), the relation between the two



quantities is linear with a scalar factor and can be expressed
as

∆p(t) =
1

fstep(t)
ξ̃step(t), (22)

where fstep(t) can be computed from the DCM trajectory
equations (4) and (7).

1) Single support phase: During the single support phase,
the footstep to be adjusted by the stepping strategy is pi+1.
Due to the linearity of the relations presented so far, and
the fact that only scalars were used as factors, fstep can be
obtained from the partial derivative

∂ξi,SS(t)

∂pi+1
=
∂ξi,SS(t)

∂vi+1

∂vi+1

∂pi+1
= fstep(t)I. (23)

From (2), we obtain ∂vi+1

∂pi+1
= I . Replacing (4), (9), and (18)

in (23), yields fstep(t) for the single support phase

fstep(t) = γSS(t)(1− αDS,0)(1− γSS,0 γDS,0). (24)

It can be easily verified that 0 < fstep(t) < 1,∀t ∈ [0, TSS ],
using the convex properties of the coefficients αDS , γDS ,
and γSS [17].

2) Double support phase: During the double support
phase, the adjustable footstep is pi+2, which means that fstep
can be obtained from the partial derivative

∂ξi,DS(t)

∂pi+2
=
∂ξi,DS(t)

∂vi+2

∂vi+2

∂pi+2
= fstep(t)I. (25)

Replacing (7), (18), and the equations for single and double
support phases of the i+2 step in (25), and using ∂vi+2

∂pi+2
= I ,

obtained from (2), yields fstep(t) for the double support phase

fstep(t) = γDS(t)γSS,0(1− αDS,0)(1− γSS,0 γDS,0). (26)

Again, it can be verified that 0 < fstep(t) < 1,∀t ∈ [0, TDS ].
Similar to the DCM error set Ξ̃ankle from the previous

section, the scalar factor fstep(t) is continuous during the
transition from double to single support, and discontinuous
during the transition from single to double support. This can
be verified by evaluating (24) and (26) at the boundaries of
the local time interval. The discontinuity of fstep(t) coincides
with the discontinuous change of the adjustable footstep.

V. STUMBLE RECOVERY

Using the same notation as in Section III, during the
single support phase of the i-th step, the swing foot moves
towards the footstep location pi+1,push, computed by the push
recovery algorithm (see Section IV). According to (2), this
is the same as the xy-plane projection of the corresponding
VRP vi+1,push. Let p̃i+1 denote the touchdown position error
p̃i+1 := pi+1 − pi+1,push, where pi+1 represents the actual
touchdown location of the swing foot. The touchdown error
may be caused by tracking errors due to model inaccuracies,
by external forces acting on the swing foot, or by interaction
with the ground during the touchdown approach such as
when walking on compliant or uneven terrain. This error
requires an adjustment of the corresponding VRP reference,
otherwise the generated DCM reference trajectory during the
next step may become unfeasible. A straightforward solution

would be to adjust the VRP at the end of the single support
phase

vi+1,ref = vi+1,push + (p̃i+1,x p̃i+1,y 0)T . (27)

However, this solution leads to a discontinuity in the DCM
reference trajectory ξref, which translates into discontinuous
commanded forces via the DCM tracking controller.

In view of these considerations, we propose a contin-
uous DCM reference trajectory adaptation based on the
instantaneous swing foot tracking error. Let rref denote the
reference Cartesian position of the foot during the swing
phase, r the actual position, and r̃ the current tracking error
r̃(t) := r(t)−rref(t). Using r̃, the proposed continuous VRP
adjustment is

vi+1,ref(t) = vi+1,push +
t

TSS
(r̃x(t) r̃y(t) 0)T . (28)

Intuitively, the factor t
TSS

can be interpreted as the prob-
ability of the touchdown error being equal to the current
tracking error. This probability is small at the start of the
trajectory as it can be assumed that the tracking controller
reduces the error during the swing phase. However, shortly
before touchdown, the probability is high that the error
remains largely uncorrected. Note that evaluating (28) for
t = TSS produces the same result as (27), i.e. the final VRP
adjustment is the same in both cases.

VI. SIMULATIONS AND EXPERIMENTS

To demonstrate the robustness of the proposed meth-
ods, we have tested various scenarios in simulation us-
ing OpenHRP [18] and in experiments with TORO [19],
a 27-DoFs humanoid robot developed by DLR (German
Aerospace Center). Videos of the experiments and additional
simulation results can be found in the multimedia attachment.
The whole-body controller and the trajectory generator are
implemented in Matlab/Simulink, and are executed in real-
time at a rate of 1 kHz. The reference trajectory generation is
computed within 45 µs, of which the push recovery algorithm
requires 10 µs to compute a solution.

To activate the stepping strategy, a virtual foot shape of 10
cm length and 6 cm width (see Section IV-B) was used in all
experiments. For comparison, TORO’s foot size is 19 cm x
9.5 cm. This means that the stepping strategy actives early,
and the DCM error component ξ̃step is corrected by both
the ankle and stepping strategy. To account for kinematic
limitations of the robot, the maximum step size including
the adjustment is limited to ±20 cm on the x-axis and ±15
cm on the y-axis, expressed in foot coordinates. Additionally,
to avoid collisions of the feet, the minimum distance between
the feet on the y-axis is set to 18 cm.

The first scenario (Fig. 4) is an experiment with the real
robot showing two large pushes along the x-axis; the push
magnitudes are estimated from the changes in measured
linear momentum. Both pushes are strong enough to tem-
porarily stop the robot’s forward motion. Note that after
the second push, at the double support phase starting at
11.1 s, the remaining DCM error can be corrected by the



Fig. 4: Push recovery experiment during forward walking
(step length: 15 cm, single/double support time: 0.7/0.2 s).
Double support phases are shown in gray.

ankle strategy alone, without the need for further footstep
adjustments.

A comparison with respect to the maximum recoverable
pushes of the ankle strategy alone and the proposed combi-
nation of the ankle and stepping strategies was performed in
simulation (Fig. 5). Each push occurs at t = 0.05 s during
the single support phase on the right stance foot, and has a
duration of 0.1 s. Note that for forward pushes (0◦ direction)
the increase in the maximum push magnitude is limited
due to the kinematic limitations of the robot. In contrast,
for backward pushes (180◦ direction), the stepping strategy
doubles the maximum recoverable push magnitude from 18
Ns to 36 Ns, as the robot can take several steps backwards
in response to the large push. The asymmetry between the
maximum recoverable left (90◦) and right (270◦) pushes is
explained by the fact that the pushes occur during the right
stance phase; the left foot can be freely adjusted to the left,
but its motion is limited to the right in order to avoid possible
collisions with the right foot.

Finally, the DCM reference trajectory adaptation is ex-
perimentally demonstrated with the real robot (Fig. 6).
The perturbations magnitudes are estimated based on the
impedance forces computed by the passivity-based whole-
body controller. Both disturbances act on the left foot during
its swing phase, with the second disturbance leading to a
touchdown error of 10 cm on the x-axis. Without the DCM
reference trajectory adaptation, this large foot placement
error would cause the reference VRP waypoint to be outside
the actual support area during the following single support
phase, leading to an unfeasible trajectory and subsequently to
the robot falling. As shown in Figure 6, the DCM trajectory
adaptation allows the robot to maintain its balance and
continue walking.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a highly efficient reference
trajectory generator capable of adapting online to large
perturbations acting on the CoM and the feet. Our existing

Fig. 5: Comparison of the maximum recoverable pushes
while walking in simulation (step length: 15 cm, sin-
gle/double support time: 0.5/0.1 s).

Fig. 6: DCM reference trajectory adaptation in experiment
with real robot (step length: 15 cm, single/double support
time: 0.7/0.2 s). Double support phases are shown in gray.

framework was extended with a footstep adjustment strategy
for push recovery, which is active during both single and
double support phases. An analytic solution was proposed
for combining the ankle and the stepping strategies, including
explicit double support phases. Additionally, we introduced
a DCM trajectory adaptation based on foot tracking errors,
making our framework capable of handling large swing foot
disturbances. The robustness of the proposed method was
validated with simulations and experiments on the real robot.

In our future research, we plan to extend the push recovery
algorithm with step time adjustments, and expand its capabil-
ities with a hip strategy by integrating an angular momentum
task.
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