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Abstract— Human-robot shared control, which integrates
the advantages of both humans and robots, is an effective
approach to facilitate efficient surgical operation. Learning
from demonstration (LfD) techniques can be used to automate
some of the surgical subtasks for the construction of the shared
control framework. However, a sufficient amount of data is
required for the robot to learn the manoeuvres. Using a surgical
simulator to collect data is a less resource-demanding approach.
With sim-to-real adaptation, the manoeuvres learned from a
simulator can be transferred to a physical robot. To this end, we
propose a sim-to-real adaptation method to construct a human-
robot shared control framework for robotic surgery.

In this paper, a desired trajectory is generated from a
simulator using LfD method, while dynamic motion primitive
(DMP) based method is used to transfer the desired trajectory
from the simulator to the physical robotic platform. Moreover,
a role adaptation mechanism is developed such that the robot
can adjust its role according to the surgical operation contexts
predicted by a neural network model. The effectiveness of the
proposed framework is validated on the da Vinci Research
Kit (dVRK). Results of the user studies indicated that with
the adaptive human-robot shared control framework, the path
length of the remote controller, the total clutching number
and the task completion time can be reduced significantly. The
proposed method outperformed the traditional manual control
via teleoperation.

I. INTRODUCTION

Surgical robots have been widely adopted in clinical
practice, as they can provide improved precision, easing the
surgical operations and leading to better clinical outcomes
[1], [2]. Most of the existing robotic platforms for surgery
are developed based on teleoperation [3]-[5]. However, the
current trend for the development of surgical robots is to-
wards a higher level of autonomy, with Artificial Intelligence
(AD) incorporated into robotic systems [6], [7]. For safety
consideration, a practical approach is to share autonomy be-
tween human operators and robots [8]. The human operator
has better cognitive abilities while the robot can ensure a
higher level of precision for manipulation and execute some
repetitive motions to reduce the operator’s burden. Therefore,
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the human operator and the robot can be complementary to
each other, which can lead to enhanced efficiency during
surgical operations and bring more clinical outcomes [9],
[10].

Learning from demonstration (LfD) is the paradigm where
robots obtain new skills by imitating demonstrations pro-
vided by humans [11]-[13]. To automate some of the surgical
sub-tasks for human-robot shared control, LfD approaches
can be used. Continuous Hidden Markov Model (CHMM)
has been used for the construction of a cooperative control
framework for haptic guidance in robotic surgery [14]. To
realize autonomous tissue manipulation, LfD has been used
to initialize the dynamics of the tissue and ensure better
controller performance [15]. An iterative technique has been
explored to learn a desired trajectory for a suture knot tying
task [16]. A trajectory transfer algorithm through non-rigid
registration has been developed to extract trajectories from
demonstration data and adapt them to new environments
for suturing tasks [17]. However, the methods mentioned
above require demonstration data obtained from the physical
robotic systems for model training.

Instead of using a physical robotic system, the use of
a surgical simulator is more efficient and cost-effective in
collecting data for LfD. For example, it avoids the tear and
wear issues of the surgical tools. However, due to the domain
gap between the simulation and the physical environment,
the model obtained from a simulator for human-robot shared
control cannot be applied to a physical robotic system
directly. Therefore, it is significant to investigate sim-to-
real adaptation for the construction of a human-robot shared
control framework.

Dynamic Motion Primitives (DMPs) can model a complex
dynamic system via a set of nonlinear differential equations.
DMP has been used for robot to learn desired motions
faithfully from a demonstration [18]. Moreover, it can be
used to generalise the learned trajectory towards a new
goal. Therefore, we incorporate DMP with trajectory spatial
transformation and hand-eye coordination to realize the sim-
to-real transfer of the human-robot shared control framework.
To ensure that the relative roles of the human operator and the
surgical robot can be adjustable, a role adaptation mechanism
should be developed and integrated into the shared control
framework. To this end, machine learning based context-
awareness will be investigated in this paper, which can
support the implementation of the role adaptation mechanism
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[19], [20]. With accurate recognition of the contexts, the
whole surgical procedure can be segmented into different
sub-tasks automatically, while adaptive human-robot shared
control can be achieved based on the characteristics of the
specific surgical sub-tasks.

The main contribution of this paper is to develop a context-
aware sim-to-real adaptation method for the construction of
a human-robot shared control framework, which can be used
to enhance the efficiency of surgical operation.

II. METHODOLOGY
A. Overview

The framework of the proposed method is illustrated in
Fig. [I] To develop the human-robot shared control frame-
work, the first step is to construct a database, which can
be used for LfD and model training for context-awareness.
In the second step, spatial and temporal registration is
applied to the recorded trajectories, while Gaussian Process
Regression (GPR) is performed on the registered data to
generate the desired trajectory for task execution. Following
that, the desired trajectory obtained via GPR is transferred
to a physical robot based on DMP with the support of
trajectory spatial transformation and hand-eye coordination
in the third step. The desired trajectory can be adapted to
different initial configurations and goals using DMP, while
the vision-based scene recognition method can be used to
identify the goal positions for trajectory adaptation. Finally,
to construct the shared control framework for task execution,
the surgical robot control commands are determined by
a convex combination of the commands generated by the
intelligent robot and the human control commands generated
via the remote controllers. The control commands generated
by the intelligent surgical robot are determined based on the
desired trajectory obtained via GPR and DMP.

B. Database Construction

A simulator targeted for surgical robotic applications has
been developed [21], and was used for human demonstration
data collection. Two Geomagic Touch motion capture devices
were used as remote controllers for teleoperating the simu-
lated surgical robot, as shown in Fig. 2] (a). Eight participants
were recruited in the data collection process after sufficient
training, while 36 trials were collected in total.

During data collection, participants were required to per-
form the peg transfer task by placing the peg onto the
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The framework of the proposed context-aware sim-to-real adaptation method in this paper.

three targeted positions in red subsequently (see Fig. ]2
(b)). The initial positions of the grippers were fixed to
ensure the comparisons between different trials were fair.
The kinematic data was recorded, including the 6 Degrees-of-
Freedom (DoFs) pose sequences of the left and right surgical
tool end-effector. The procedures for the peg transfer task are
as follows:

e Control the right surgical tool to grasp the peg from
Position 1, transfer it to the left surgical tool and place
it on Position 2.

« Control the left surgical tool to pick up the peg from
Position 2 and place it on Position 3.

o Control the right surgical tool to pick up the peg from
Position 3, then locate the peg on Position 1.

C. Spatial and Temporal Registration

Among the recorded trajectories, the start-point, the end-
point of the peg in 3-dimensional (3D) space, as well as the
completion time of all the trials are different. Thus, spatial
and temporal registration for these trajectories is necessary.
The Iterative Closest Point (ICP) algorithm and Dynamic
Time Warping (DTW) algorithm are applied to implement
the spatial registration and temporal registration respectively.

1) Spatial Registration: The ICP is normally used to
perform geometric registration, especially the alignment of
two point-clouds [22]. We use ICP for spatial registration of
the recorded trajectories in this paper. The initial alignment
of two trajectories is implemented by subtracting the centroid
of each trajectory respectively. Then the rotation is deter-
mined by singular value decomposition. Once the optimal
rotation is determined, the translation could be determined
as well. The calculation process will repeat iteratively until
the convergency rule is satisfied, which presents the correct
alignment of those trajectories.

2) Temporal Registration: The DTW algorithm is a tech-
nique for registering two signal sequences, especially those
whose lengths are different from each other [23]. It calcu-
lates the Euclidean distance between sampled points from
two sequences as the index of similarity while shortening
or extending the sequences in the meantime. With DTW,
optimal matching between two sequences can be found.

D. Gaussian Process Regression

GPR is a probabilistic supervised machine learning
method that has been proved to be data-efficient and effective
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Overview of the simulator and physical platform for evaluation in this paper. (a) The experimental setup of the simulator and the two Geomagic

Touch motion capture devices used for teleoperation. (b) The layout of the simulator for peg transfer task and the sketch for the illustration of the

experimental protocol. (c) The physical platform used for user studies.

for regression [12]. GPR can make predictions of desired
trajectories given a set of training data and new inputs.
Therefore, after spatial and temporal registration, the GPR
is employed to generate the desired trajectory based on the
registered trajectories.

The prior distribution is assumed to be of Gaussian distri-
bution:

f(x) ~ GP(m(x), k(z,z")) (1)

where m(x) = E[f(x)] is a mean function and k(x,2’) =
E[(f(z) —m(x)) (f (2) = m(z"))] is a covariance func-
tion. The squared exponential kernel is used for the co-
variance function. Suppose that x represents the observed
data points, while =* represents the new inputs. The joint
distribution of the training outputs f and the predicted
outputs f* can be constructed. The predictive distribution
can be generated based on conditioning the joint Gaussian
prior distribution on the observations [24]. Therefore, the
predictive equation for GPR can be derived by:

frla foat ~ N (f*27) @)

where the expected values are the means f_ * while variances
of the predictions can be obtained from the diagonal of
the covariance matrix X*. The theory for GPR and the
calculation are detailed in [24].

For the 3D trajectories, multiple GPRs are applied inde-
pendently. To this end, the desired trajectory of the surgical
robot end-effector in 3D space can be generated for au-
tonomous control [12] in some of the surgical sub-tasks,
which is essential for the shared control framework. Fig.
[] shows the desired trajectory generated based on LfD in
the simulation environment after trajectory registration and
regression.

E. Trajectory Adaptation

To implement the proposed framework on a physical
robotic platform via sim-to-real transfer, trajectory adaptation
is an essential step. Since the peg transfer task is goal-driven,
the current position of the surgical tool and the target position
shall be identified. In this way, the desired trajectory can be
adapted to enable the transfer of the peg from the current
position to the targets.

:\

Fig. 3. Visualization of the desired trajectory generated based on LfD.
The red curve represents the trajectory of the right hand operation while the
blue curve represents the trajectory of left hand operation.

DMP is an effective approach to generalize movements
from demonstration. To this end, DMP is used to enable the
robot to perform trajectory adaptation after specifying a new
starting point and the targeted position for the peg transfer
task.

Let X denote the position, X + denote the velocity and X t
denote the acceleration. X presents the initial position while
g represents the goal position. A DMP can be formulated by

@).

71Xt = o (Bz(g - Xi) - ')’Xt) + diag (g — Xo) F(s¢)
3)
where «, 3, denote scale factors, diag (g — Xo) is a di-
agonal matrix with its elements equal to the coordinates
of g — Xo. v is a scalar temporal scaling term, which
traditionally is set equal to the duration of the motion. F(s)
is a nonlinear function which determines the motion pattern
and enables the generation of arbitrary complex movements.
Variable s; is a monotonically decreasing phase variable
(asymptotically decays from 1 to 0), whose dynamics can
be known as a first order canonical system and can be given
by vs¢ = —ayS¢, where o, denotes a scaling factor.
DMP is motivated by the dynamics of a damped spring
attached to a goal position with friction. To formulate the
DMP in the form of spring-damper system, (3) can also be



Fig. 4. Feature extraction and hand-eye coordination. (a) Features extrac-
tion based on ORB and clustering based on GMM. (b) Features mapping
onto a referenced chessboard. (c) The experimental scene where the surgical
tools were approaching the critical areas for operation. (d) An example
showing that the surgical tool reaches the target for local operation.

expressed as:
. . 1 .
Xt = Kp (g — Xt)_KvXt“!_; dlag (g — Xo) F (St) (4)

where K, = %ozzﬁz and K, = «, are the stiffness
matrix and damping term of DMP in 3D space respectively.
K,(g—X¢) — K, X, represents linear spring damper part
while F (s;) represents the nonlinear part, which can be
calculated as follows.

S wili(se)se
i Wilse)

with w; represents the weights of the N Gaussian kernel
functions W;(s;) :

F(s;) = (5)

Wi(st) = exp |—h; (s; — Ci>2] (6)
where h; = —%, o; is the bandwidth of the 7;;, Gaussian
kernels, while c¢; represents the kernels’ centers distributed
to the interval [0, 1].

FE. Surgical Scene Monitoring

To enable the transfer of the learned manoeuvres from
a simulator to a physical robotic system, trajectory spatial
transformation is required, while the start point and the goal
point for the desired trajectory should be identified. Hence,
a cognitive system should be developed to obtain the rele-
vant information based on the real-time visual information
acquired by the stereo laparoscopic system.

The Oriented FAST and rotated BRIEF (ORB) algorithm
provided by OpenCV is adopted for feature extraction in
this paper [25]. The positions of the feature points can be
extracted from the images captured by the endoscope (see
the blue dots in Fig. E| (a)). Gaussian Mixture Model (GMM)
is utilized to cluster the scattered points and register them

with the chessboard coordinate, as shown in Fig. E| (b). The
clustering centres represent critical areas for placing the peg.

Fig. [ (c) shows an example of an experimental scene
where the surgical tools were approaching the critical areas.
Hand-eye coordination can be used to register the kinematic
data of the surgical robot with stereo images obtained by the
vision system. The extrinsic parameters of the camera with
respect to the object can be obtained through the chessboard
calibration. The goal position obtained from the image frame
p; can be converted to the world coordinate. Therefore, the
start point X and goal position g can be obtained, while
the trajectory adaptation based on DMP can be achieved.
Fig. @] (d) demonstrates an example when the surgical tool
reaches the goal for local operation. The red circle indicates
the position of the end-effector of the surgical tool.

G. Context-Awareness for Role Adaptation

In this paper, context-awareness of the surgical scene is
developed based on a convolutional neural network (CNN)
to allow the relative roles of the robot and the human operator
to be adjusted during the surgical operation. It can be
used to determine the switching conditions among different
operation phases, which depends on the characteristics of the
corresponding recognized contexts. Suppose that F'(.) is the
neural network used for context-awareness, the probability of
the output of F'(.) is P(c = ¢*)(¢* = 0,1, 2). The surgical
scene can be classified to three contexts, including “move
to next target” (¢ = 0), “bimanual operation” (¢ = 1) and
“local operation” (¢ = 2). The constructed database was
manually annotated with the context labels defined at the
frame level for model training. 70% of data was used for
training while 30% of data was used for testing.

During the image preprocessing procedure, the RGB im-
ages were converted to grayscale images and were resized to
150 x 150. The network consists of 6 convolutional layers
and 2 fully-connect layers. The categorical cross-entropy was
used as our objective cost function for training the network,
while Adam optimizer was used with a learning rate of
0.0001 [26]. An early stopping strategy was implemented
for model training.

Fig. [5] (a) shows the architecture of the CNN model for
context-awareness. The overall results for the model accuracy
during the training and testing process for scenes recognition
are shown in Fig. 5] (b). After training 20 epochs, the testing
accuracy for scene recognition can reach 0.977. For online
deployment, transfer learning can be used to fine-tune the
learned model obtained in the simulator and applied to the
physical robotic system after calibration [27]. More details
will be illustrated in Section

H. Model Execution

After model training of F(.), the human-robot shared
control framework can then be implemented by a weighted
summation of the commands generated by both the human
operator and the intelligent surgical robot enabled by LfD.

Suppose that AP} is the position increment value for the
surgical robot control; AP; is the remote controller’s end-
effector position increment determined by the LfD model;
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The model construction, the overall accuracy and the experimental results for context-awareness. (a) The neural network architecture for context-

awareness. (b) and (c) show the model training and testing accuracy for context-awareness when using the simulation data and experimental data respectively.
(d) Examples of three operation scenes with different contexts for the peg transfer task in simulation and physical environment respectively.

AP} represents the control command generated by human
operators via remote controllers. Let 7 denote the motion
scaling factor [28], [29]. a€[0,1] is a weight parameter
regulated by the real-time context-awareness of the surgical
operation scenes. The position control can be determined by
(]Z]), while the orientation of the surgical robot’s end-effectors
is set to be the same as the remote controllers’ end-effectors
to ensure intuitive control [4], [30].

AP? = 7[aAP! + (1 — a)AP] (7)

For applications on physical robotic platforms, to achieve
a smooth transition between different contexts, the surgical
operation status is expressed in the form of probability. At
time step ¢, c(t) = argmax{P(c = c*)(c* = 0,1,2)},
when P(c ¢(t)) is significantly greater than P(c
e(t — 1))(e(t)#c(t — 1)), we assume that the operation scene
is switched to another. That is to say, when P(c = c(t)) is
sufficiently leading, the estimation of ¢(¢) has been stable and
can be well trusted. Otherwise, the operation may be at the
transition process between different contexts. Let A denote

the threshold value, AP, = P(c = ¢(t)) — P(c = c(t — 1)).
Hence, o can be determined by (]E[)
Plc=c(t—1)) if AP, < A, c(t) = lor
1—=Ple=c(t—-1)) if AP. <\ c(t)=0
“T1 1 if AP, >\, c(t) = lor
0 if AP, >\ c(t)=0

®)
where A\ = 0.5 is used in this paper. A € (0,1) can be tuned
when it is applied to different surgical tasks.

The role adaptation mechanism can enable the seamless
switching among three control modes, i.e. manual control,
autonomous control and adaptive shared control. If the oper-
ation scene is recognized as “bimanual operation” (c(t) = 1)
or “local operation” (c(t) = 2), « is set to be 1. This means
that the manual control is required for fine motion generation,
since the inaccuracy caused by the machine learning model
should be avoided. If the context is recognized as “moving
to the next target” (c(t) = 0), « is set to be 0. This means
that during relocation of the surgical tools, we assume that
the operation does not need human engagement, since the
required precision degree for the control in this context is not
high. In this case, the autonomous control mode for some of
the surgical sub-tasks can be achieved. If the operation is at
the transition process between different contexts, the adaptive
shared control mode will be implemented with a€(0, 1).

III. USER STUDIES

A. Experimental Setup

In order to verify the effectiveness of the proposed frame-
work on a physical robot, user studies were conducted on
the da Vinci Research Kit (dVRK) [31] based on the peg
transfer task, as shown in Fig. [2] (¢). During the user studies,
the participants used two Geomagic Touch motion capture
devices to control the da Vinci Robot. The experiments on
the dVRK used a peg board with the same dimension as
the one in the simulator, while the experimental protocols
remained the same.

Eight subjects were invited to join the user studies. Six
of the subjects have teleoperation experience. All of them



had a practice session to get familiar with the experimental
protocols before conducting the experiments for three to five
trials. The kinematics data of the surgical robot was recorded
during the user studies, and can be used to compute the
evaluation metrics.

B. Online Deployment of the Proposed Framework

During the transfer learning process, the parameters of the
first two convolutional layers were fixed. This means that we
don’t need to train a completely new model from scratch. We
assume that the feature extraction mode can be similar. The
fixed layers and the trainable layers are illustrated in Fig. [5]
(a). The model training accuracy for transfer learning is
plotted in Fig. [5(c), where the testing accuracy is 0.932 when
using transfer learning. Fig. [5] (d) shows the examples of
three operation scenes for the peg transfer task, which were
collected from the simulator and the dVRK for the evaluation
of the accuracy of context-awareness in both simulator and
physical system.

For deployment on a physical robotic system, DMP was
used for sim-to-real trajectory adaptation. Following that,
with real-time accurate predictions of the contexts for surgi-
cal operation scenes, the online automatic switching between
different operation phases with different levels of human
engagement during the shared control process can therefore
be achieved. To this end, the adaptive human-robot shared
control framework can be constructed for user studies.

C. Results Analysis for dVRK Based User Studies

The path length of the remote controller (M (m)), task
completion time (7°(s)), the average velocity of the surgical
robot (A(mm/s)) and the total clutching number (C) are
used as the evaluation metrics. Normality tests (Shapiro-
Wilk test) were conducted to identify whether the evaluation
metrics have non-parametric nature or not, where 0.05 is
set as the significance level. Since A(mm/s) and C satisfy
the normal distribution assumption, T-tests were conducted
to determine if there is a significant difference between the
means of the manual control results and the shared control
results. Wilcoxon signed-rank tests were conducted for non-
parametric statistical comparison between M (m) and T(s).
A p-value<0.05 is considered significant.

The comparative results for the human-robot shared con-
trol and the manual control via teleoperation based on the
dVRK system are shown in Fig. [f] With the human-robot
shared control, the path length of the remote controller and
the total clutching number can be reduced significantly by
about 50%. The average task completion time is reduced
from 45.7s to 39.3s. The differences between the path length
of the remote controller, the total clutching number and
the task completion time are significant (p < 0.05). The
average velocity of the surgical robot is higher (human-robot
shared control vs. manual control via teleoperation), but the
difference is not significant.

IV. CONCLUSIONS

In this paper, surgical robots can learn to perform the
surgical operation with human in a shared control manner.
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Fig. 6. The box plot results for the user studies based on the dVRK

platform. Comparisons in terms of (a) path length of the remote controller,
(b) task completion time, (c) average velocity of surgical robot, (d) total
clutching number.

The desired trajectory was learned via GPR after spatial and
temporal registration of the demonstration data. DMP was
used for sim-to-real trajectory adaptation. With this approach,
most of the training processes can be conducted based on
the simulator and then the desired trajectory obtained via
GPR can be transferred to a physical robotic system to
support the robot to generate commands automatically during
task execution. For online deployment, context-awareness is
used to realize role adaptation between human and robot,
which leads to adaptive human-robot shared control. Human
operator commands are generated via remote controllers,
while robot commands are determined by the desired tra-
jectory obtained via LfD with sim-to-real adaptation. By
incorporating the context information, the weight parameter
can be adjusted to combine human operator commands and
robot commands in an optimized manner. The knowledge
extracted from the simulator for context-awareness can be
transferred to physical system after fine-tuning the neural
network model. The human-robot shared control framework
was evaluated on the dVRK with user studies. The exper-
imental results demonstrated that the performances of the
subjects using shared control mode outperformed those using
traditional manual control mode.

Future work will include applying this technique to more
complex surgical operations, such as suturing and knot tying.
The generalizability of the proposed framework will be
further verified in scenarios with consideration of obstacles
avoidance. In the meantime, haptic guidance will be incor-
porated into the control framework. More advanced machine
learning methods can be explored for LfD and sim-to-real
adaptation.
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