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Abstract— We propose a novel method to tackle the visual-
inertial localization problem for constrained camera move-
ments. We use residuals from the different modalities to jointly
optimize a global cost function. The residuals emerge from
IMU measurements, stereoscopic feature points, and constraints
on possible solutions in SE(3). In settings where dynamic
disturbances are frequent, the residuals reduce the complexity
of the problem and make localization feasible. We verify the
advantages of our method in a suitable medical use case and
produce a dataset capturing a minimally invasive surgery in
the abdomen. Our novel clinical dataset MITI is comparable
to state-of-the-art evaluation datasets, contains calibration and
synchronization and is available at [1].

I. INTRODUCTION
Many researchers have studied simultaneous localization

and mapping (SLAM) in the computer vision, and robotics
community [2], inspiring many innovative products. Applica-
tions such as virtual reality, augmented reality [3], unmanned
vehicles, and autonomous robots [4] rely heavily on stable
pose estimates based on SLAM systems.

Challenging situations include a dynamic environment
which prevents the SLAM algorithms from being applicable
in many use-cases. The works of [5–7] show that it is
possible to add residuals specially designed for a use-case
and jointly optimize a cost function. Motion priors, repro-
jection from a calibrated multi-camera setup, or additional
measurements reduce the degrees of freedom on the solution
space.

MIS has proven to have many medical advantages for
the patient. Stable virtual/ augmented reality and assisting
roboter arms could lead to enhanced hand-eye coordination
in MIS and subsequently to a whole new way of conducting
surgeries. Furthermore, SLAM is a game-changer for appli-
cations such as mapping detected metastasizing carcinoma
for cancer staging, safety routines (e.g., collision avoidance),
autonomous systems, image-guided surgery, input generation
for artificial intelligence, and anatomic scene graphs. The
huge disadvantages (magnetic distortion, line-of-sight, room
consumption) disqualify available tracking equipment for
most interventions. Data from this domain was acquired,
and implementation shows the applicability of the proposed
constrained visual-inertial SLAM method in this challenging
dynamic surrounding.
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The paper is structured as follows: Section IV presents
the visual-inertial odometry algorithm with movement con-
straints. Section V discusses our novel dataset [1] and
provides useful information for users. In Section VI we
will discuss the implementation of the proposed algorithm,
discuss properties of the calibrated data from our dataset,
and evaluate the performance by experiments.

II. PROBLEM STATEMENT AND CONTRIBUTION

a) Constrained Visual-Inertial Localization: [3], and
further developments have become popular state-of-the-art
methods [8]. These algorithms focus on feature point match-
ing based on binary descriptors, even for small viewpoint
changes, where descriptor matching is made real-time ap-
plicable by speeding up the process with priorly trained or
online learned [9] bag-of-words vocabularies [10, 11].

However, we focus on domains where feature point de-
scriptor matching and tracking perform worse due to chal-
lenging image properties [12]. Sparse or semi-dense optical
flow [5, 13, 14] are alternatives that perform well forhigh
video framerate and can speed up trajectory generation for
the tracking part of the SLAM system.

Additional information from inertial measurement units
(IMU) [15–17] improves visual odometry methods in dif-
ficult situations, where tracking is lost, and does not need an
external measurement equipment, i.e., avoiding line-of-sight
problems.

In contrast to all previously mentioned strategies, we
additionally exploit naturally given motion constraints [19],
which is also famous in the medical domain as remote center-
of-motion (RCM) [20][21], reducing the solution space to
tackle the more challenging image domains, which contain
large movements in the image, occlusions, fog, deformable
surfaces or difficult illuminations conditions [21].

Subsequently, we outline our approach in more detail: We
formulate residuals for IMU, stereo camera, and movement
constraints and show that the solution space reduces by
pivoting the camera around a point from 6 to 4 degrees
of freedom. Afterward, we propose to use optical flow in
combination with gyroscope readings as an odometry alter-
native to descriptor-based feature tracking for dynamic image
data and high video frequency. Finally, for the refinement
of this odometry, we formulate the global cost function
and optimization strategies. Our method’s main advantage
and contribution is the ability to relocalize the camera in
unseen environments by minimizing the global cost function,
which incorporates all residual terms emerging from sensors
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and constraints. The gravity and magnetic field provide the
necessary absolute references. In addition, the Lucas-Kanade
tracking of the stereo reconstructed locally rigid parts in the
environment provides information about the distance from
the pivot point.

b) Dataset: Publicly available datasets play a vital role
in the evolution of new algorithms, and technologies [22–
25]. Researchers focusing on the minimally invasive appli-
cation have already created endoscopic datasets [21, 25, 27],
which are suitable for investigating computer tomography
registration, tissue deformation/ reconstruction [28–30], and
instrument segmentation. Since they are not complete or are
not capturing a handheld intervention, those are unsuitable
for testing SLAM applications. In this paper, we introduce a
novel dataset suitable for testing SLAM in the MIS domain.
To the best of our knowledge, our dataset is the first publicly
available surgical dataset comparable to [22–24]. Our MITI
Dataset [1], available under the Creative Commons Attri-
bution license (CC-BY 4.0), provides all necessary data by
a complete recording of a handheld surgical intervention at
Research Hospital Rechts der Isar of TUM. It contains mul-
timodal sensor information from IMU, stereoscopic video,
and infrared (IR) tracking as ground truth for evaluation.
Furthermore, calibration for the stereoscope, accelerometer,
magnetometer, the rigid transformations in the sensor setup,
and time-offsets are available. We wisely chose a suitable
intervention, namely diagnostic laparoscopy, that contains
very few cutting and tissue deformation and shows a full scan
of the abdomen with a handheld camera such that it is ideal
for testing SLAM algorithms. It incorporates 667 seconds
with images (1080p60 RGB) for each camera, readings of
two IMU sensors at 220Hz, and IR transformations to two
different targets at 20Hz.

Intending to promote the progress of visual-inertial al-
gorithms designed for MIS application, we hope that our
clinical training dataset helps and enables researchers to
enhance algorithms.

III. NOTATION

The following notions are adapted from [31–33] using the
rotation groups SO(3) and the rigid motion group SE(3),
which fulfill the properties of a Lie group. We use the
notation exp : m→M to denote the mapping from tangent
space, i.e. Lie algebra m to Lie group M. The Lie algebra
so(3)= skew(3) of SO(3) has d=3 degrees of freedom and
se(3), tangent space of SE(3), has d=6 degrees of freedom.
They are isometric isomorph to Rd, and we use the function
Exp as the composition of the hat operator and the matrix
exponential exp. The function can explicitly be given in
closed form by the Rodriguez formula. The inverse mapping
is denoted by Log, which is the mapping from the Lie-Group
to Rd. We further use the 	 :M×M→ Rd as

T1 	T2 := Log
(
T−1

1 T2

)
, (1)

which computes the difference between two transformation
matrices mapped to the tangent spaces’ isomorph space Rd.

IV. VISUAL-INERTIAL SENSOR FUSION

Our method splits into two parts: Firstly, estimating the
pose starting from previous keyframes by movement con-
straints, gyroscope readings, and Lucas-Kanade tracks of
stereoscopic matches. Secondly, the algorithm conducts a
windowed optimization over gathered keyframes, changing
their location by jointly minimizing the residuals from all
modalities, eliminating any drift that might accumulate.

A. Residuals

This subsection describes the residuals gathered from
different modalities. The residuals are functions of the lo-
calization pose C

TT ∈ SE(3) with the property that they are
zero at the actual position and orientation.

a) Motion Constraints: The transformation C
TT ∈

SE(3) transforms a vector in homogeneous coordinates from
T to C by multiplication from the right. Since the motion
of C is constrained to move around pivot point T but can
also move forward and backward in the x-direction, we can
reduce the 6 degrees of freedom to 4 degrees of freedom

C

TT =

[
C
TR

C
Tt

0T 1

]
=

[
I C

Tt
0T 1

] [
C
TR 0
0T 1

]
, (2)

with C
Tt = txex. This means a point in T is first rotated

in the pivot point and then translated along the x-axis. The
corresponding residual that enforces the result to have only
4 degrees of freedom is

rpivot = tyey + tzez. (3)

This adds a penalty to the minimization problem if the
solution is not in the reduced space.

b) Accelerometer: The accelerometer readings con-
strain the current camera pose by one corresponding bearing
vector in world coordinates. We assume constant velocity as
also proposed by [34]. Rotating the gravity Tg bearing vector
from T to C and comparing it with the measurement Cg gives
the residual

ra = Cg − C

TR
Tg. (4)

c) Magnetometer: The magnetometer provides similar
to the accelerometer a correspondence in world coordinates

rm = Cm− C

TR
Tm, (5)

with the magnetic field Tm in T and measurement Cm in C.
d) Global Mappoints: The distance between a map-

point Tx in global coordinates and a matched 2D position
u in image plane of current camera coordinates is

r2D = Π( C

TT
Tx)− u (6)

with Π(·) being the projection into distorted image plane
and u:=ud the distorted image coordinates. In (6), the map
points Tx are connected rigidly to the world coordinate
system T at initialization by using the current camera pose
estimate. We need to rewrite (6), attaching the mappoints to
the camera coordinate system. Otherwise, since we optimize
only the poses C

TT, the minimization of other residuals leads
to the increase of (6). For this sake, we store the landmark



positions relative to the camera coordinate system C, in
which the stereo matcher initialized them. This adds another
computation step and one more parameter T

CTt′ at detection
time t′ to the residual in (6), namely

Tx = T

CTt′
Cxt′ . (7)

Thus we have

r2D = Π( C

TT
T

CTt′
Cxt′)− u, (8)

which connects the observation frame with the initialization
frame of a landmark.

e) Gyroscope: The gyroscope measurements in tangent
space of ωt′ ∈ R3 ≡ so(3) are integrated by gyroscope
sample time ∆t and the non-abelsh product

C∆Rt1,t2 :=
∏

t′∈{t1,...,t2−∆t}

Exp( Cωt′∆t). (9)

This gives the update rule
T

CRt2 = T

CRt1
C∆Rt1,t2 (10)

and the residual term

rg = T

CRt2 	 T

CRt1
C∆Rt1,t2 . (11)

which constraints consecutive transformations to have a
certain deviation in orientation, namely the integrated mea-
surements of the angular velocity.

B. Visual-Inertial Odometry Tracking

This subsection describes our approach for the odometry
tracking thread. It updates from the pose of the previous
keyframe, generating good initializations for the optimization
using gyroscope data and Lucas Kanade tracks of stereo
correspondences. Algorithm 1 sketches the procedure, and in
the following, we will explain line by line the computation
steps the algorithm conducts.

After entering the loop, it first updates the pose based
on the gyroscope measurements in Line 2. Although (11)
usually only provides information about the orientation, a
position update is possible due to the camera movement
having only 4 degrees of freedom

C

TTt2 =

[
I C

Ttt1

0T 1

][
C∆RT

t1,t2
C
TRt1 0

0T 1

]
(12)

with C
Ttt = tx,tex. The new pose is on a sphere with radius

tx,t, around the trocar entry point, leaving only the radius
unknown but estimating all other degrees of freedom.

During the first iteration, the Lines 3 to 4 have no effect.
The first frame is a keyframe, and the algorithm computes
stereo correspondences by descriptor matching using ORB
descriptors [35] in Line 6. ORB descriptors are faster to
compute and compare than SIFT or SURF, whose benefits,
e.g., scale and rotation invariance, are less essential for
stereo-matching. For faster matching, it uses the projections
provided by the camera calibration parameters as initial-
ization for finding matches in the second image [8]. The
epipolar error threshold [36] is adjusted to filter outliers

C0xTE C1x > dth, (13)

with epipolar matrix E = t̂R and ·̂ : R3 → skew(3), defining
the transformation between left C0 and right C1 lens. The
matched points initialize new landmarks in Line 7.

Afterwards, in Line 3 for every incoming frame it updates
the landmark projections u ∈ R2 in the 2D image plane,
producing residuals of the form (6). For that, it uses the
variational Lucas-Kanade-Method [37] taking two consecu-
tive frames for every camera. This variational method per-
forms well (small baseline, photometric consistency) if video
frequency is high. For large displacements, the drift becomes
large, and for fast movements, we lose track. Nevertheless,
optical flow is suitable for local tracking.

With initialization computed in Line 2 it determines the
camera pose C

TTt based on the 3D-2D-correspondences in
Line 4 by a perspective-n-point algorithm [38] inside a
random sample consensus (RANSAC) [39] scheme with
refinement provided by OpenGV [40]. A sanity check on
the rotation part using the IMU measurements and on the
translation part using the constraints ensures locally rigid
features.

Algorithm 1 Visual-Inertial Odometry with Optimization

Input: Initialization C
TTt0 , Images {I0,ti , I1,ti}i∈I ;

IMU Data { C∆Rti,ti+1
, Cati ,

Cmti}i∈I
Output: { C

TTti}i∈I
1: while True do
2: Update C

TTti−1
based on C∆Rti−1

and movement
constraints

3: Lukas-Kanade tracking of landmarks
4: Update C

TTti based on 2D-landmark projections
5: if Decision for keyframe then
6: Stereo matching
7: Landmark insertion
8: end if
9: i = i+ 1

10: end while

C. Optimization

The optimization presented in this subsection jointly min-
imizes all previously formulated residuals over a window of
keyframes. As shown later the camera can globally relocalize
itself by solving the proposed optimization problem solely
by small tracks of locally rigid feature points and IMU
measurements. In order to use all the information from sensor
readings and images we build a cost function by summing
up the normalized, weighted and robustified residuals that
have been collected, i.e. (3, 4, 5, 8, 11) which are available
at each timestep. We denote them as residuals rk, k ∈ K,
where k indicates time and residual type.

The overall optimization problem is

arg min
C
TTn:m

∑
k

ρk (‖αkrk ( C

TTn:m)‖) :=
∑
k

fk( C

TTn:m),

(14)
optimizing over the window of keyframe localizations
C
TTn:m := ( C

TTtn , ...,
C
TTtm). In above formulation, αk stands



for the scaling factor, and ρ for the robustification function.
Each residual gets an individual scaling factor αk. The
evaluation part of this paper gives a more detailed overview
of the chosen weight factors, optimization window size, and
trigger of the optimization problem.

For robustification of residuals that are prone to outliers,
we choose the Huber loss

ρk(x) =

{
1
2x

2 for |x| ≤ δ,
δ(|x| − 1

2δ), otherwise.
(15)

The function input x in our application is the normalized and
weighted residual ‖αkrk‖. For residuals with a dense error
distribution and no outliers, ρk is simply the identity.

Each of the residuals rk ( C
TTn:m) depends only on a

maximum of two parameters C
TT ∈ SE(3), and further,

many parameters do not have a residual in common. The
residual terms give the optimization problem the typical
graph structure of SLAM problems. This sparse dependence
on parameters makes the Hesse-matrix sparse, and the opti-
mization problem suitable for a sparse Schur solver [41].

V. DATASET
In this section, we introduce our dataset and calibration

procedures. In Fig. 1 we show the sensor setup during the
data acquisition process. The sensor data consists firstly of
a stereoscopic video (Tipcam1, Karl Storz) from the view
inside the abdomen. Secondly, two 9DOF IMU (Metamo-
tionR, Metawear) sensor boards attached to the laparoscope
handle sending: angular velocity, acceleration, and magnetic
field strength. Thirdly, an IR tracking camera (Polaris Vega,
NDI) detects two targets, each consisting of 3-4 reflecting
passive spheres. The anticipated precision of the IR tracking
is 0.25mm [42], making it suitable as ground truth to eval-
uate the SLAM algorithm’s performance. We calibrated the
camera and the IMU, determining sensor-specific parameters
and calculated time offsets using the state-of-the-art methods
defined in subsequent subsections. Parameters can be found
in the path calibration/*.csv of the dataset [1].

A. Camera Calibration

The pinhole projection [43] Π0 : R3 → R2 x 7→ uu from
a point x ∈ R3 in coordinate system of left C0 or right C1
lens to the undistorted image point uu in the image plane
is parameterized by focal lengths fx, fy and optical center
cx, cy both measured in pixel.

Radial image distortion is compensated by a low order
polynomial model d : R2 → R2, uu 7→ ud. Additionally,

(a) (b)

Fig. 1: Data Acquisition (a) IMU sensorboards and
IR passive targets attached to stereoscopic laparocopic
camera (b) IR sensor and 3D monitor in the operating
room

(a) (b)

Fig. 2: Calibrated IMU measurements, i.e., red in front,
blue behind sphere (a) Ca− Cg in 9.81m

s2 and unit sphere
(b) Cm in µT and sphere with radius 48.6

Fig. 3: Time-calibrated angular velocity part ‖ Cω
(k)
ti ‖

the extrinsic parameters are calibrated, which determine the
rigid body transformation C0

C1T ∈ SE(3). The function Π(·)
in residual (6) is a composition of rotation and translation
from C to C0 or C1 and projection to distorted 2D image
coordinates by composition of Π0 and d. (??).

B. IMU Calibration

Using a standard approach [34, 44], the accelerometer
measurements ã(t) are modeled as

ã(t) = (a(t)− g(t))d−1
a + na(t) + ba (16)

with acceleration a(t) ∈ R3, gravity g(t) ∈ R3, errors ba ∈
R3, da ∈ R and na(t) ∼ N (0, σ2

aI). Calibration assumes
constant velocity and gravity norm g = ‖g(t)‖ = 9.81m

s2 .
Furthermore, we model the error of magnetometer readings
m̃(t) [34, 44] by

m̃(t) = m(t)d−1
m + nm(t) + bm, (17)

with magnetic field strength m(t) ∈ R3, errors bm ∈
R3, dm ∈ R and nm(t) ∼ N (0, σ2

mI). The corrected
measurements lie on a sphere with radius equal to the
strength of the earths magnetic field m = ‖m‖ = 48.6µT in
Munich, Germany. This information is used in the calibration
procedure. Fig. 2 shows calibrated sensor readings.

C. Time Offset Calibration

The sensor data has been synchronized during the ac-
quisition process by configuring a network time protocol
server/client at the data receiving devices. For synchroniza-
tion of the video the displayed timestamp has been captured
at the start and end of the intervention. The sensor interfaces
for IR/IMU are ethernet/bluetooth respectively, which causes
a remaining timeoffset in the collected data. This offset is
minimized by evaluating the tangent Cξti ∈ R6 ∼= se(3)
for each sensor at coordinate system C at time ti We then
calibrated the timeoffset dt by comparing the velocities
acquired from different sensors

j, k ∈ {”Visual Odometry”, ”IR”, ”IMU0”, ”IMU1”}.



(a)

(b) (c)

Fig. 4: Debug environment (a) Stereo view with ORB-
descriptor-based stereomatches in green, Lucas-Kanade-
tracks in teal, (b) and (c) Camera poses connected to
lines, that should go through pivot point and 3D map
points of left and right diaphragm, (b) Camera-only
based tracking, (c) Incorporating IMU sensordata and
movement constraint
The sum of differences at different timeoffsets is

min
dt

∑
i

∥∥∥ Cξ
(j)
ti+dt −

Cξ
(k)
ti

∥∥∥ . (18)

For that, we determine the camera-based angular velocity
using the visual odometry algorithm based on Lucas Kanade
feature tracks without IMU and IR. The computed time-
offsets are 100ms/166ms for the IR/IMU readings. Time
synchronization is vital for short-term odometry, unlike win-
dowed optimization, where keyframes are more distant.

VI. EVALUATION AND EXPERIMENTS

We conduct experiments on an implementation of the
approach described in Section IV. In Subsection VI-C we
examine the influence of weight distribution on residuals, and
in Subsection VI-B we discuss the advantages of utilizing
robust loss functions. Subsection VI-A and VI-D are devoted
to the evaluation of our method with our MITI dataset. In
doing that, we measure the deviation of the algorithms output
to ground-truth poses obtained by IR tracking.

We used several libraries: OpenCV for keypoint detec-
tion, feature tracking, and reprojection; OpenGV [40] for
triangulation, RANSAC, and nonlinear refinement; as well
as Ceres [45] and Sophus [46] for solving the optimization
problem. For the experiment, we took the image sequence
starting from timestamp 637273ms, which contains a fast
movement from left to right with dynamic occlusions and
enables us to demonstrate the algorithm’s performance in a
scenario where standard SLAM approaches lose tracking and
can not relocalize in the unseen environment.

A. Evaluation of Visual Odometry Tracking

In Fig. 4 one can inspect the debug view of the output
and Fig. 4b and Fig. 4c show huge deviations for different
settings in the algorithm. The isolated bundle of lines
in Fig. 4b shows: without movement constraints and IMU
measurements, the optimization is unable to converge to

(a)

(b)

Fig. 5: Algorithm 1 without optimization (a) V1 relies on
IMU data and can reduce rotational error in the long
run, whereas V2 based on vision suffers from drift, (b)
error of V1 is unacceptable when movements do not stay
on the sphere, error of pure visual odometry V2 also
suffers from drift
the correct poses since it loses tracking of 2D features in
between keyframes. We computed the Log distance between
IR tracked and constrained visual-inertial odometry (VO)
estimated camera poses

ξ = [ω,υ]T = C

TT
(IR) 	 C

TT
(VO) ∈ R6 (19)

for variants of the computation steps in Algorithm 1, that
are listed in Table I. V1 integrates IMU sensor-readings
in Line 2 into pose estimates as given in (12). Therefore,
it cannot detect changes in the x-translation component,
resulting in a large translational error as soon as the camera
moves inside. V2 only uses the camera-based pose estimation
of Lines 3 and 4 but without taking the initialization provided
by the IMU in Line 2. The result of this variant can addi-
tionally be inspected in the debug view of Fig. 4b. V3 uses
both camera-based and IMU-based tracking, which already
leads to a significant decrease in both error residuals. Finally,

TABLE I: Settings of Alg. 1 for results shown in Fig. 5
Variant Pivot point online Line2 Line 3 and 4 Optimization
V1 × X × ×
V2 × × X ×
V3 × X X ×
V4 X X X ×

in V4, instead of considering the pivot point given by the
priorly computed position from IR tracking, we initialize and
iteratively refine the pose purely based on visual odometry.
The result is an essential step for the goal an eternal inside-
out tracking.

B. Error Analysis and Choice of Robustification Functions

The residuals themselves are composed of errors in sensor
readings and the deviation of the current pose estimate.
Aiming to minimize only the part indicating a pose deviation,
we examine errors of sensor readings and their propagation



TABLE II: Statistic of Residuals
Eq. Expectation E[r] Variance Var[r] Unit

r2D (6) 1.6263 9.3767 Pixel
rg (9) 0.0003 0.0051 rad
rpivot (3) 0.0511 0.4374 cm
ra (4) 0.0235 0.0405 9.81m

s2

rm (5) -0.2730 4.2801 µT

to the residual term to decide whether to use a Huber
loss. The Huber loss for the reprojection residual (8) is
justified, since we identified an outlier characteristic in
the three error sources: A drift error in the Lucas-Kanade
tracked 2D locations Cu , that can be modeled as a random
walk, after n tracking steps, contributes with a Gaussian
probability distribution of ε ∼ N (0, nσ2I) linearly to the
residual. The second error source is a badly reconstructed
landmark position Cxt′ , which occurs although the epipolar
error threshold reduces the probability of outliers. The third
error arises from a failing filtering of dynamic feature points.
For residuals that penalize solutions not going through the
trocar entry point (3) the use of the Huber loss is not justified,
since there is no measurement error, and we aim to minimize
large residuals. The error of IMU measurements (4, 5, 9) is
approximately Gaussian, which leads us to not choosing the
Huber loss.

C. Weighting Residuals

In this subsection we discuss the factor αk that strongly
influences the optimization (14). Firstly, a task of the pa-
rameter is to adjust the residuals, making them independent
on their measurement unit. We ran Algorithm 1 and built a
statistic for every residual type, as shown in Tab II.

The expectation of the residuals is close to zero, which
simplifies the normalization r−E[rk]√

Var[rk]
. The scaling factor

splits into αk = 1
Nk

1√
Var[rk]

βk, with βk being an additional

term to adjust the importance between residuals, as discussed
in the next Subsection. Hereby, we additionally normalize by
the number of residuals of the same type Nk e.g., there exist
Nk = 1 gyroscope readings per keyframe, but in general
Nk > 1 reprojection residuals per keyframe.

D. Evaluation of Trade-off and Optimization

A trade-off between gyroscope and camera-based residuals
is adjusted by βk = γ for residual k belonging to gyroscope
measurements and βk = (1 − γ) for reprojection residuals,
with γ ∈ [0, 1]. We conduct experimental runs with optimiza-
tion being triggered every 10 keyframes and a window size of
10. Fig. 6a and 6b show the deviation of the SLAM algorithm
from the ground-truth IR tracked poses for different values
of γ. Since we want to jointly optimize over all residuals, the
cost emerging from different sensors should simultaneously
decrease. The cost function difference ∆f is

∆f = f( C

TT
(after)
n:m )− f( C

TT
(before)
n:m ), (20)

with evaluations before and after optimization. Negative
values indicate that this k-th part of the cost function was
minimized. In Fig. 6c we show the average cost difference for
different residual types in one optimization step for different

(a)

(b)

(c)

Fig. 6: Errors and cost reduction of V3 with optimization
for different values of tradeoff value γ
values of γ. It exhibits a simultaneous cost decrease for
values close to γ = 0, 4.

On the other hand, we observe by inspecting the error
trajectories in Fig. 6a and 6b that for values close to 0.5 the
optimization successfully incorporates the advantages of both
sensors: The rotational error is low at the beginning, which
is typical for camera-based tracking, but also stays down,
which is possible due to utilizing the information of IMU
sensors. The distribution of weights shows great potential in
influencing the overall outcome of the algorithm. An optimal
adjustment however, is a dynamic weight distribution, de-
pending on the current conditions that influence the reliability
of the sensor data.

VII. DISCUSSION

Movement constraints and additional sensor information
are necessary to provide stable pose estimates in dynamic en-
vironments. Absolute references are provided by the earth’s
gravity and magnetic field, whereas gyroscope and Lucas-
Kanade tracks provide the odometry. For a more robust setup,
however, descriptor matching of rigid features can improve
the results of long-term SLAM.

VIII. CONCLUSIONS

This work shows that visual-inertial algorithms can be
applied to dynamically challenging fields such as minimally
invasive surgery. This sets a new paradigm in the applicabil-
ity of SLAM. The gain of reliability is due to the fact that
we use inherent motion constraints. Our results show for the
use-case of minimally invasive surgery, that self localization
is indeed feasible and hope that researchers can profit from
our publicly available dataset.
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