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An Efficient Planning and Control Framework for Pruning Fruit Trees

Alexander You!, Fouad Sukkar?, Robert Fitch?, Manoj Karkee?, Joseph R. Davidson'

Abstract—Dormant pruning is a major cost component of
fresh market tree fruit production, nearly equal in scale to
harvesting the fruit. However, relatively little focus has been
given to the problem of pruning trees autonomously. In this
paper, we introduce a robotic system consisting of an industrial
manipulator, an eye-in-hand RGB-D camera configuration, and
a custom pneumatic cutter. The system is capable of planning
and executing a sequence of cuts while making minimal
assumptions about the environment. We leverage a novel plan-
ning framework designed for high-throughput operation which
builds upon previous work to reduce motion planning time and
sequence cut points intelligently. In end-to-end experiments with
a set of ten different branch configurations, the system achieved
a high success rate in plan execution and a 1.5x speedup in
throughput versus a baseline planner, representing a significant
step towards the goal of practical implementation of robotic
pruning.

I. INTRODUCTION

Robots show great promise for transforming agriculture
given the demands of feeding the increasing world population
and mounting pressure on the supply of agricultural labor [1].
In the context of fresh market fruit production, research effort
has focused largely on automating harvesting tasks such
as fruit picking and sorting [2]. In comparison, relatively
few results have been demonstrated for the task of fruit
tree pruning, where diseased or unproductive branches are
removed to optimize growth and fruiting sites. Selective
pruning is a critical yet costly process; [3] showed that
pruning contributes to over 20% of variable costs for Gala
apple orchards in Washington. Pruning also is physically de-
manding and exposes workers to hazards such as falls, cuts,
and repetitive strain injuries [4]. Non-selective mechanized
pruning methods exist, but have been shown to induce lower-
quality yields for certain classes of fruit trees [5].

Although selective pruning is a prime target for automation
by robots, only a few complete end-to-end automated pruning
systems for specialty crops have been demonstrated [6],
including a grapevine pruner by Vision Robotics (first shown
in 2014) [7] and a grapevine pruner by Botterill et al. [8].
A robotic pruning system must be able to perceive the 3D
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Fig. 1.  Our autonomous pruning system with (inset) a custom cutter
mechanism.

pose of the branch to be cut, as well as move a cutting
implement precisely to a cut point while avoiding obstacles
such as other branches or structures. A fully autonomous
system must also be able to choose cut points automatically,
but here we consider the case where cut points are manually
labelled in a 2D image of the area to be pruned. The main
challenge that stands in the way of practical implementation
of such systems is to perform these tasks with sufficient
throughput to be economically viable.

This paper introduces a general algorithmic framework for
pruning. Given human input from a standard visual feed, we
present an end-to-end system that is capable of executing
multiple cuts efficiently, with minimal assumptions about
the environment. To achieve a low average cut cycle time,
it is necessary to consider the speed of motion planning,
executing the plans, and of cutting the branch. Moreover, the
choice of the sequence of cuts to be made can be a dominant
factor in minimizing manipulator travel time between cuts.
Our system uses a manipulator arm with a low-cost RGB-D
camera and custom high-speed pneumatic shears, shown in
Fig. 1, as the cutting implement. As a successful cut requires
accurate estimates of the 3D branch poses, we utilize a novel
closed-loop visual feedback system tailored for navigating
branches to accurately position the manipulator. We adapt
existing work to plan the manipulator trajectory and integrate
it into an optimization process that uses physically-realistic
time cost estimates to determine the cut sequence.

Our main contribution lies in an end-to-end demonstration
of pruning with a high throughput rate. We compare our
system to a baseline planner that uses Euclidean distance
between cut points in determining the cut sequence, rep-
resentative of state-of-the-art systems. We report average



Fig. 2. Sweet cherry trees being grown in an upright fruiting offshoot
(UFO) architecture.

planning throughput from ten experiments that is higher than
the baseline (1.5x speedup) with a high (92%) success rate.
One technical contribution is the adaptation of an existing
fast motion planning framework to pruning, requiring the
definition of several critical algorithmic components specific
to this application, and its use in providing accurate esti-
mates in optimizing the cut sequence. We also contribute a
demonstration of a novel perception pipeline for registering
cut points. Our results indicate that this system, given modest
further development and tuning, could feasibly approach
performance levels that would be acceptable in practice.

II. RELATED WORK

A majority of the effort in automating dormant pruning has
focused on perception problems such as tree modelling and
branch detection [6]. Modern orchards, such as the upright
fruiting offshoot (UFO) sweet cherry system shown in Fig. 2,
are more amenable to automation due to their relatively
simple and uniform layouts. However, it is still necessary
to reason about branch structure and make online decisions
in order to avoid damaging the crop.

The closest work to ours is that of Botterill et al. [8], who
introduced a complete grapevine-pruning system that uses
Bidirectional RRT (BiRRT) for motion planning with open-
loop control, and Euclidean distance between cut points for
optimizing the cut sequence. In comparison, we leverage the
Fast Reliable and Efficient Database Search Motion Plan-
ner (FREDS-MP) framework [9] to compute efficient plans,
increase success rates, and provide more accurate estimates
when sequencing cut points. Our system also incorporates
sensor feedback to improve cutting accuracy.

Automated pruning is related to robotic harvesting [10],
[11], [12], [13], [14]. However, the set of feasible poses for
successful pruning is smaller than that of picking a fruit
due to the importance of approaching the branch with a
certain cutter orientation. Pruning arguably requires greater
precision due to the consequences of making an incorrect
cut. Furthermore, visual servoing techniques in harvesting
tend to focus on discrete fruit [15], whereas pruning involves
tracking visually indistinct cut points on a branch.

III. SYSTEM OVERVIEW

Our robot system, shown in Fig. 3, consists of a Universal
Robots (Odense, Denmark) URSe equipped with a cutter

-pneumatic
actuator

Fig. 3.  Our pruning robot setup, consisting of a URSe arm, an Intel
RealSense D435 RGB-D camera, and custom pneumatically-actuated shears.

and an eye-in-hand Intel (Santa Clara, CA) RealSense D435
camera mounted beside the cutter. The URS5e is a six degree-
of-freedom (DOF) industrial manipulator with a ROS control
interface [16]. The cutter is a pneumatically-actuated four-
bar linkage with custom-ground blades developed in-house
at Oregon State University; initial tests of the cutter showed
that it was able to consistently cut branches up to 10mm in
diameter near the pivot point of the blades.

Figure 4 shows a flowchart illustrating the process of
selecting branches and moving the cutter to the desired
cut points on the tree. There are three main phases: pre-
execution, in which a human operator manually selects the
points on the tree to be cut via a human-robot collaborative
interface; planning, in which the planner determines the
cut point order and plans paths between goal poses; and
execution, where the manipulator positions the end effector
and cuts the branch. A major component of the execution
system is a visual feedback loop which runs in parallel with
the servoing to update the goal position.

IV. PERCEPTION

This section describes the perception pipeline of the
system. In particular, we provide implementation details on
image coregistration and depth refinement for robust cut
point tracking.

A. Environment Representation

The tree to be pruned and surrounding trellis structure,
Weny, are modelled using an OctoMap [17], [18], i.e. a 3D
occupancy grid, constructed from point cloud data from
the camera (illustrated in Fig. 5). We currently consider
data from a single point cloud. In general, the framework
is agnostic to obstacle representation and any convenient
representation can be used.

B. Cut Point Generation

Cut point selection is currently performed by a human
operator by clicking on a 2D image from the camera. In
order to obtain a 3D global estimate of the clicked point,
we assume the existence of a plane & which represents an
estimate of our orchard system.

Suppose each cut point is indexed by an identifier i. Let
F,} € SE(3) represent the base camera pose with correspond-
ing principal point ¢; € R?; let Im; be the selected pixel and
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Fig. 4. A flowchart of the cutting process from start to finish. Steps fall into three main phases: pre-execution, planning, and execution.

Fig. 5. An image from the simulation showing the OctoMap representation
of the tree system. The target branch is shown as a brown line, and the
red box represents the potential collision area with the cutter and the
environment on the approach.

Im; be the 3D location of the pixel in the camera’s image
plane, computed using the camera’s intrinsic parameters.
For two distinct 3D points p; and p, let (p;,p2) represent
the line drawn between p; and p;. The line 1; = (¢;,Im;
represents all possible locations of Im; in 3D; we set the
initial cut point estimate g; = # N 1; .

To estimate branch orientation, we utilize simple color-
based image segmentation to classify image pixels as branch
or non-branch. For some exogenous parameter 0, we com-
pute the set of all branch pixels within a &-pixel radius
around /m;. We perform a singular value decomposition on
this set and utilize the first right-singular vector to define
a second pixel location Im; representing the branch linear
approximation with respect to Im;. Finally, we use the corre-

—_—

sponding image plane point Im; to obtain g = 2N (ci,fﬂli),
yielding a linear branch estimate b; = (g;,g;).

C. Image Coregistration

The estimated position g; is updated to approach the true
position g* as the cutter moves closer to the branch. To do
s0, we use the image coregistration method shown in Fig. 6.
This method takes advantage of the fact that g; and g} should
both lie on 1; (shown in the figure as a solid blue line).

From a new camera view, consider the projection I;
into the image, shown in Fig. 6 as a dotted blue line. We
examine branch pixels which intersect with this projection
and consi_d>er where the corresponding image plane lines
intersect 1;. The goal estimate g; is updated to match the
line intersection closest to g;.

For example, in Fig. 6, the two pixel candidates (marked
with red and green circles) intersect with 1; at the green and
red stars. The green star is chosen as the new goal estimate
due to being more consistent with the original estimate.

D. Depth Refinement

While image coregistration can be effective in updating
the goal estimate, it is sensitive to calibration errors. To
overcome this limitation we utilize the camera’s depth data.
Let p; represent the estimate of the goal in iteration j € N; for
Jj =0, we use the coregistration process previously described
to update g; and set po = g;. Then for j > 0, we run the
image coregistration process to obtain a candidate pixel Im’j
and transform P;_; into the current camera frame to obtain
an estimate of the goal’s depth ﬁ; j—1- This is used to obtain
a new camera-frame estimate of the goal f)j/.

To incorporate the depth data, let P’j denote the set of 3D
camera-frame points. For some exogenous value €, let P,

/ / 1 o
{p' eP;||p'—b;
points, we use linear regression to predict a depth value 7
from the corresponding pixel coordinates (Inyy,Imy;):

g
< ¢&}. If P, ; has a sufficient number of
/

7= OH—ﬁxIm;—FBylm; (1)
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An illustration of the image coregistration process. Having selected the pixel corresponding to Im; as the desired cut point, in the new camera

frame we utilize a branch mask along with the ground truth ray (shown in blue) between ¢; and Im; to refine the initial estimate g; to g;".

By plugging Im;- into this model, we obtain a correspond-
ing depth estimate 2’; with /m’, and 2, we can compute the
camera-frame goal estimate f)’j, which is then transformed
into the new global cut point estimate p;.

V. TASK AND MOTION PLANNING

This section describes the planning components of the
system. To position the cutter accurately, the system initially
moves the cutter to an intermediate approach pose and then
follows a linear approach path. Motion planning is imple-
mented using FREDS-MP, which precomputes a database of
optimistic trajectories offline and then queries this database
online to initialize a set of trajectory optimization algorithms.
We also utilize the trajectory costs stored in the database to
optimize the cut sequence.

A. Preliminaries

The robot operates in a 3D Euclidean workspace W = R3.
The system can command the robot’s end effector to achieve
any arbitrary 6D pose T € SE(3) given that a valid collision-
free inverse kinematic (IK) solution 6 € Q(T') exists. The ob-
stacle region O is the union of O, the model of the robot
and its attachments, and W,,,, the model of environmental
obstacles such as the tree and trellis structure.

Let 6 € C denote a configuration in the configuration
space, i.e. the set of all possible configurations of the robot.
We denote A(6) C W as the space occupied by the robot
model at configuration 6. The obstacle region is defined as
Cops ={6 € C|A(6)NO # 0}, from which we obtain the
free space region Cypee = C \ Cops-

Given two poses Ty and T,,;, we can represent a
trajectory with N steps for a K-DOF arm as the following
N x K-dimensional vector:

n(TstartaTend):{617627---76N}; (2)
Given some distance function d, we define the trajectory cost

as follows:

N—1

(7 (Tyar, Tena)) = Y, d(6;,6i+1), 3)
i=1

B. Database Generation

Although the set of all possible cut poses in SE(3) is
infinite, in many applications the robot will operate in a
limited sub-volume of the workspace. The offline database
generation works by discretizing this sub-volume into a
grid of poses 7,7 fine representing the approximate poses to
which we expect to plan. For the pruning application, our
discretization strategy is to assume that the cut points lie in
some vertical 2D plane and generate a set of uniform 6D
poses normal to this plane, as shown in Fig. 7.

Each pose ¢ € f,ffiine may have many IK solutions Q(t).
Our goal is to assign a single optimal configuration 6* €
Q(t) to each t, considering factors such as the configuration’s
manipulability and the ease of moving between neighboring
poses. By preassigning a single configuration to each pose,
we facilitate fast online planning and task sequencing while
maintaining high trajectory efficiency and reliability.

To choose 6%, we run an optimization routine which
treats fofﬂme as an undirected graph G, with each node
v € G corresponding to a pose t € f,fine. The routine then
iteratively assigns a single /K solution to each node and
attempts to minimize the sum of all edge costs in the graph.
The edge cost between nodes u,v € G is defined as:

euj _ elawerj 1

gurer; _glover; 2|
“)

Intuitively, this cost encourages IK solutions for a given
graph to be close to each other in C-space. It also penalizes
configurations near the joint limits in order to prevent joint
limit and manipulability failures during the approach phase.

After determining the optimal graph, the optimizer com-
putes optimistic trajectories between every pair of nodes and
their corresponding costs; here, the distance function d is
L, distance. These costs are optimistic since they assume
a W, = 0 prior (though one could substitute a bounded
volume), but they do take into account the non-linearity of
the robot arm. Further details can be found in [9].

1 K
c(v,u) =16, — 6, + X ,; tanh(2

C. Approach Pose Selection

Our goal in picking an approach pose is to move the
cutter to a pose such that the cutter is pointed towards the



Fig. 7. Discretization strategy used for database generation.

branch and the branch is roughly orthogonal to the plane
containing the cutter. Recall that in Sec. IV-B, we generated
linear branch approximations b; for each goal.

To generate the candidate approach poses, we assume the
pitch of the approach pose is 0, i.e. the approach path is
parallel to the global xy frame. We then choose the roll
and yaw of the approach pose such that the cutter plane is
orthogonal to b;. If such an approach is not possible, either
due to collisions or lack of IK solutions, we vary the yaw
within some threshold until a viable approach pose is found
or the goal is deemed unreachable and discarded.

To check for collisions along the approach, we create a
bounding box as shown in Figure 5 which represents the
likely path of the cutter during the approach, slightly inflated
to account for deviations in the path; we then check if the box
collides with W,,,. The assumption we make is that because
the arm is moving on a short linear path, the arm is unlikely
to perform any large movements which will collide with the
environment or itself, and as such we only need to check for
environment-cutter collisions.

D. Cut Point Sequencing

Given a set of desired approach poses f,ine, in order
to use the offline database, we first associate each pose
t € foptine With an offline pose as follows. For some k € Z*,
let ©;; denote the configurations of the k-closest poses in
foffiine to t. We then compute the IK set Q(r) and find
the pair (6", 6, ;,.) € Q(t) X @, which minimizes the
pairwise L, distance, with v;"" denoting the database node
corresponding to 6% /..,

Then for every pair of input poses #;,¢; € foniine, to compute
a trajectory from f; to t; we retrieve the corresponding
trajectory ﬂ(vf{f‘"’,v}’}’") = {0y,...,0y} and simply append
6" and 0,’;”" to the start and end to obtain the trajec-
tory n(vg”'”,v{;”'”) ={gm™", 91,...,9N,0,’J’_”"}. The correspond-
ing path cost f (n(v;?i",v;?i”)) is computed by retrieving the
offline path cost f(x(v™,v/""")) and adding on ||6;"" — 6|
and ||9,’]f‘i" — 6Oy||, i.e. the Ly offsets between the online and
offline trajectory endpoints.

This process provides us with edge costs which we can
use to generate a weighted adjacency matrix for each pose
in Zyuine. We can then utilize a travelling salesman prob-
lem (TSP) solver to determine the optimal pose sequence.
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Fig. 8. The test setup used for experimental evaluation. Possible cut points
are enumerated.

E. Moving to the Approach Pose

Moving between different approach poses may require
complex joint movements to ensure a collision-free path. We
take advantage of the optimistic adapted trajectories com-
puted in Sec. V-D by choosing the trajectory corresponding
to the desired start and end poses and using a series of
trajectory optimizers [19], [20] which adapt the trajectory
to W, yielding a time-continuous safe trajectory. If these
optimizers fail, we fall back to the Batch Informed Trees
(BIT*) algorithm [21] to generate a plan from scratch.

F. Approaching the Cut Point

Once the cutter has reached the offset pose, the approach
routine moves the cutter linearly towards the goal. We
compute the desired linear and angular velocities v and ®
using a proportional controller and then map them to joint
velocities with the Jacobian J and the following equation:

o=J" m LIt =JT Iy (5)

During this process, we use the eye-in-hand camera con-
figuration to update the cut point location as described in
Secs. IV-C and IV-D. We also detect if the configuration
approaches a joint limit or falls below a given manipulability
threshold, in which case we terminate the approach; if the
robot does not encounter a servoing failure, it executes the
cut once at the goal. Once complete, we reverse the approach
trajectory to return the cutter to the approach pose.

VI. EXPERIMENTS
A. Experimental Setup

Our experiments use the test setup shown in Fig. 8.,
designed to resemble a UFO sweet cherry training system
(shown earlier in Fig. 2) with horizontal branches emerging
from vertical leaders on the tree. For this orchard system,
one desirable pruning strategy is simply to cut the branches
extending from the leaders. Similarly, our setup consists
of four vertical leaders, each of which has holes at three
different vertical offsets to hold the branches used for testing.

We evaluate the performance of an end-to-end pruning
system in terms of accuracy, speed and reliability. For
comparison we use a ‘“naive planner” that sequences cut
points based on Euclidean distance in the workspace and



H 1 2 3 4 5 6 7 8 9 10 ‘ Avg H
Success rate Ou_rs 83% 100% 100% 83%  100%  89% 8% 100% 75% 100% | 92%
Naive | 83% 100% 100%  33% 100%  33% 50% 86% 75%  100% | 76%
Sequencing time (s) qus 0.33 0.23 0.24 0.30 0.22 0.24 0.27 0.21 0.25 0.23 0.25
Naive | 0.00  0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00
Planning time (s) Ours | 0.50  0.23 0.29 0.40 0.28 0.29 0.38 0.38 034 031 0.34
Naive | 0.57 0.41 0.48 1.81 0.46 3.54 2.84 0.47 0.68 0.47 1.17
Trajectory time (s) Ou_rs 7.63 4.10 3.89 5.73 4.29 5.52 5.46 5.68 440 448 5.12
Naive | 3.34  2.88 2.93 16.12 246 2395 15.74 2.87 4.51 3.02 7.78
Throughput (s) Ours | 846  4.57 4.42 6.43 4.79 6.05 6.11 6.26 5.00 5.01 5.71
Naive | 3.91 3.29 3.41 1794 292 2749 18.59 3.35 520 349 8.96

TABLE 1

RESULTS FROM TEN EXPERIMENTS. ALL TIMES ARE NORMALISED BY NUMBER OF EXECUTION SUCCESSES WITHIN EACH EXPERIMENT.

plans trajectories as our method does, but with no prior
trajectory information. Goal configurations for each approach
pose are determined greedily at plan time by choosing the
closest IK solution to the current robot configuration.

Each experiment involves 6-10 randomly selected cut
points chosen from the 18 possible locations shown earlier
in Fig. 8. We randomly configured the branches between
experiments to obtain a variety of poses for the planners.

The planning and perception processes ran on a laptop
with a six-core Intel 17 2.20 GHz processor. The URS5e robot
was limited to 250 mm/s end-effector velocity for safety. The
minimum voxel size for the OctoMap was 2 cm, and the
approach yaw was allowed to vary +45 degrees.

B. Evaluation Criteria

There are three stages during which failures can occur:
planning to the approach pose; executing the approach path
(e.g., if the robot encounters a servoing error); and cutting
the branch (e.g., if the mouth of the cutter does not align
properly with the branch). An execution success is when no
failures occur during the first and second stages, whereas
a cut success is when no failures occur at any stage.
Sequencing, planning, and trajectory times are total times
for each experiment normalised by the number of execution
successes. Approach path failures only consider executions
that were able to plan to the approach pose in the first stage.

C. Results and Discussion

Table I shows results averaged within each of the ten
experiments as well as total throughput. Our system executed
more cuts than the naive planner (92% versus 76% success).
Although sequencing times were higher, planning and trajec-
tory times were significantly lower, and approach path fail-
ures were lower (1.7% versus 20.2% failures). Independent
of planning, the average time of a successful servoing phase,
including cutting and rewinding the approach, was about 13
s, and the overall cut success rate was 75%.

The results indicate that the system is computationally
efficient enough to carry out pruning in real time. They also
indicate that the system is able to prune with high accuracy
while avoiding damaging collisions with the environment.
Our system achieved a 1.5x speedup in planning throughput
with fewer approach path failures than the naive method.

A particularly notable feature shown in Table I is the
variation in trajectory times. Though the naive method was
faster in certain experiments, its myopic behavior sometimes

caused it to do significantly worse when it fell back to the
more costly sampling-based planner. By utilizing stored non-
myopic plans, our method performs more consistently.

The sequencing time component of our planner was higher
since IK solutions are computed during sequencing as op-
posed to during planning, but this could easily be paral-
lelized. Furthermore, while our system experienced fewer
failures, we believe that the success rate could be further
increased through minor improvements such as increasing
the size of the trajectory database.

The quality of the depth estimates from the RealSense
camera limited the performance of the visual servoing. We
found the global estimates of cut points to be unreliable,
motivating the need for the planar estimate & mentioned in
Sec. IV. In some cases it was difficult to distinguish branch
segments from the background in the camera data, leading
to visual servoing failures. Despite this, our 75% cutting
success rate demonstrates the robustness of the system.

Our experiments provide useful insights towards further
development of the system. Planning time is already in the
range of hundreds of milliseconds and any improvement here
would not contribute greatly to overall system performance.
There is, however, an opportunity to reduce execution time.
Because our robot safety settings were very conservative,
there is significant room to speed up the arm movements.
Accurate sequencing is effective, but is limited by the
kinematics of the 6-DOF manipulator. [9] demonstrated em-
pirically that the greater agility of a 7-DOF arm is beneficial
in improving travel time within a sequence of goal poses.
Further, placing the robot on a gantry would expand the
workspace and possibly reduce the need for large changes
in joint angles. Improved sensing would help mitigate issues
with the visual servoing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described an algorithmic framework
and system design for robotic pruning which allows for
flexible environment representation and collision modelling.
We validated the system in end-to-end experiments and
report promising results in terms of speed and accuracy.

Guided by lessons learned from these experiments, imme-
diate avenues for future work include exploring the perfor-
mance of 7-DOF manipulators and of a manipulator mounted
on a gantry. We also plan to integrate a high-resolution stereo
camera that can scan the entire tree, investigate autonomous
branch selection, and evaluate the system in the field.
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