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Abstract— Nowadays, robots are mechanically able to per-
form highly demanding tasks, where AI-based planning meth-
ods are used to schedule a sequence of actions that result in
the desired effect. However, it is not always possible to know
the exact outcome of an action in advance, as failure situations
may occur at any time. To enhance failure tolerance, we propose
to predict the effects of robot actions by augmenting collected
experience with semantic knowledge and leveraging realistic
physics simulations. That is, we consider semantic similarity of
actions in order to predict outcome probabilities for previously
unknown tasks. Furthermore, physical simulation is used to
gather simulated experience that makes the approach robust
even in extreme cases. We show how this concept is used to
predict action success probabilities and how this information
can be exploited throughout future planning trials. The concept
is evaluated in a series of real world experiments conducted with
the humanoid robot Rollin’ Justin.

I. INTRODUCTION

Big advances in mechanics and control led us to robots

that are able to demonstrate impressive manipulation skills.

Yet, the only service robots sharing space with humans are

vacuum cleaners and lawn mowers with limited manipulation

capabilities. One reason for this discrepancy is the lack of

robust decision making capabilities, including the ability to

handle failures and unforeseen effects. In scientific laborato-

ries and demonstration areas this is often masked by tuning

the environment according to the needs of the robots. In this

environments, the action results are uniquely defined, making

them behave like deterministic environments.

Deterministic environments allow to use the popular ap-

proach of integrated task and motion planning for planning

and decision making [1], also referred to as hybrid reasoning.

The core idea of hybrid reasoning is to generate a symbolic

plan from symbolic action representations and translate it

into a sequence of robot motions with matching geometrical

effects. This approach is restricted to known environments

and requires explicit symbolic representations of actions in

form of deterministic state transitions. However, real world

environments are not always deterministic, instead they are

nearly always probabilistic.

In pop cultural context, robots are often displayed as

embodied calculating machines. They are able to calculate

success probabilities for long action sequences accounting

for many external parameters such as C3PO in Star Wars V

stating that ”the possibility of successfully navigating an

asteroid field is approximately 3,720 to 1”[2]. However,

achieving even profound probabilistic effect estimation for
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Fig. 1: Odds that Rollin’ Justin is able to drop the ball into

the container with the left or right hand.

robots, that utilize hybrid reasoning, requires all possible

effects of actions and their respective probabilities to be

specified explicitly.

Because of the high complexity of possible real world

interactions, effect probabilities must not be hard coded,

but have to be learned over time as visualized in Fig. 1.

Moreover, once a robot learned for example that placing a

glass on the edge of a table can lead to this glass falling down

with a certain probability, it should be able to generalize

this knowledge to other glasses. Existing work tackling the

issue of learning probabilistic action representations from

experience [3], [4], [5] is mostly concerned with extracting

meaningful action effect representations from the data. We,

on the other hand, assume that the possible effects of an

action are accessible and aim at generalizing knowledge

about their probabilities.

Our contributions in this paper include (i) a probabilistic

extension to the concept of action templates [6] toward prob-

abilistic action templates, (ii) a framework to derive effect

probabilities from little experience and physical simulation

that generalizes to abstract object classes, (iii) the adaptation

of a probabilistic symbolic planner to optimize a sequence

of real world robot actions w. r. t. success probabilities.

II. RELATED WORK

This chapter gives an overview of work in related fields

of this paper.

A. Probabilistic Action Representations

Failure tolerant planning can be achieved through explicit

modeling of potential failure situations. The main idea of

this paper is to explore failure probabilities over time rather

than hard-coding them. This idea is inspired by the work of

[7], where a symbolic manipulation representation is derived

from sensorimotor data. In particular, the robot extends its



action representation with newly observed effects. Probabilis-

tic action representations can also be applied to fault tolerant

planning, as it was showcased by [8]. The authors propose to

represent possible failure situations as secondary effects of

actions. As a result, the utilized planner is able to optimize

the sequence of actions w. r. t. failure probabilities.

B. Hybrid Reasoning

In the early years of robotics, planning mostly considered

symbolic deterministic domains. Algorithms such as the

famous STRIPS solver [9] worked on a purely symbolic

description of states and actions. Shakey [10], an example for

an early robot using STRIPS, was even equipped with basic

error recovery strategies. However, the real world is much

more complex than symbolic representations can capture.

Especially for generating feasible and collision-free robot

motion paths, geometric considerations play an important

role. That is why hybrid reasoning (or integrated task and

motion planning) was firstly proposed as an interaction

between symbolic and geometric planning by [11]. Their

algorithm couples geometric configurations to symbolic rep-

resentations in accessibility lists. Once a solution is found

in the symbolic space, according trajectories are created

by the motion planner. In case of errors, backtracking is

employed to select different geometric configurations from

the accessibility list that allow for collision-free paths.

This approach was further investigated for example by [12]

who advocate for a strongly hierarchical planning algorithm

treating geometric planning as the lowest hierarchical step.

Furthermore, [13] show the integration of symbolic plan-

ning and motion planning on a real robotic platform. They

highlight the need for geometric backtracking which allows

to reconsider geometric choices in previous actions if they

negatively impact a following action. Especially relevant for

this work is the concept of action templates (ATs) that has

been introduced by [14], [6]. ATs encode actions in a hybrid

robot-agnostic way. The symbolic information is encoded in

Planning Domain Definition Language (PDDL) [15] in the

symbolic header of the AT, complemented by robot-agnostic

geometric information in the geometric body. This design

allows to use ATs in hybrid reasoning settings across multiple

platforms. Since ATs are restricted to PDDL, they do not

support probabilistic action effects.

C. Prospection and Mental Imagery

The role of mental imagery for humans has been in-

vestigated in the domain of neurosciences. [16] gives an

overview of some related work and draws attention to the

importance of mental imagery for tasks like perception or

motor control. It has been argued that simulation could

play a similarly important role in robotics for predicting

action effects [17], [18]. The work by [19] is well known

for this research direction. The authors focus on qualitative

reasoning through “envisioning”, which describes the process

of inferring effects based on simulation-based projections.

This enables the agent to predict probabilistic effects related

to task parameterization.

D. Semantic State Inference

The symbolic planning process underlying the hybrid

reasoning approach depends on a symbolic description of the

world. Usually the symbolic world state is hard-coded for a

scenario and updated only based on the described effects of

actions executed by the robot. Keeping the world state up-to-

date is especially challenging when effects of actions cannot

be predicted exactly. This is the case when dealing with

probabilistic action effects or in case of possible failures. [20]

present a framework for synchronizing a physical simulation

of the world with the real world state and extracting semantic

representations from it. We use this framework for retrieving

the semantic world state from simulations we run.

III. REPRESENTATION OF PROBABILISTIC ACTION

TEMPLATES

The skills evaluated in this paper have been programmed

by experts. They are represented in a manner similar to

what has been described as Action Templates (ATs) in [14].

As presented in Sec. II-B, ATs dissociate symbolic and

geometric information of an action into the symbolic header

and the geometric body.

The main difference of Probabilistic Action Templates

(PATs) is that their symbolic header can contain prob-

abilistic effects. These are stated in Probabilistic PDDL

(PPDDL) [21]. Essentially they are a list of tuples containing

each a probability and an associated effect. The symbolic

definition for an example PAT is provided in listing 1.

1 : a c t i o n o b j e c t . d r o p o v e r :
2 : p a r a m e t e r s ( ? o − o b j e c t
3 ?m − m a n i p u l a t o r
4 ? c − c o n t a i n e r )
5 : p r e c o n d i t i o n ( and ( bound ? o ?m) )
6 : e f f e c t ( p r o b a b i l i s t i c
7 0 . 7 ( and ( i n ? o ? c )
8 ( n o t ( bound ? o ?m) ) )
9 0 . 3 ( and ( on f l o o r ? o )

10 ( n o t ( bound ? o ?m) ) ) )

Listing 1: Examplary semantic header of a ”drop over” PAT.

New effects are added to the PAT during the whole

lifetime of the system. Thus, the list of possible effects might

grow beyond large numbers, slowing down the process of

planning. This is prevented by storing the full experience of

action executions in a database while the PAT maintains only

a reduced list of effects. As in [3], effects with a probability

below a predefined threshold psig are subsumed as “noise”

in the PAT. They happen so rarely that they need not be

considered for planning. Ignoring them keeps the PATs from

aggregating unnecessary information over time.

We do, however, restrict the use of PPDDL to a subset of

what PPDDL allows. Our approach focuses on actions that

do not have universal or existential effects. In other words, it

has to be specified which objects are affected by an action.

IV. PREDICTING EFFECT PROBABILITIES

The aim of this work is to predict effect probabilities as

an agent is given a certain task and improving the predic-

tion over time as the agent repeatedly encounters similar



scenarios. This is achieved in three consecutive steps. We

begin by describing a naive baseline approach for estimating

effect probabilities (see Sec. IV-A). On top of this it is

desired to speed up the estimation process for new objects

and new scenarios using generalized experience (see Sec. IV-

B). Finally, we propose to employ a physical simulation to

refine predicted effect probabilities by generating additional

artificial experience (see Sec. IV-C). The process is visual-

ized in Fig. 2.

A. Baseline Approach

The baseline approach for predicting the effect probabil-

ities of an action is based on counting the times an effect

e occurred (#e) after execution of the action and its total

execution count (#tot). The probability p̂a,e of encountering

effect e after execution of a is:

p̂a,e =
#e

#tot
(1)

A drawback of this approach clearly lies within its impreci-

sion in case of few experience. Furthermore, the baseline

approach does not allow to generalize from experience

gained in similar scenarios.

B. Updating Effect Probabilities Online

In order to enable the robot to estimate effect probabilities

from few examples, we exploit similarity of actions to speed-

up effect probability estimation in a new situation. Similarity

follows directly from the PATs. As its name suggests, a PAT

is a template for actions from which concrete action instances

can be derived by assigning a value to each of its parameters.

Thus, an action is a combination of low level robot functions

(such as motions) generated from a PAT by assigning objects

to all parameters.

Listing 1 shows a PAT with three parameters ?o, ?m, and

?c and the range of possible objects that they can be assigned

to. ?o depicts the most general case as it can be assigned any

object. ?m and ?c are more restrictive since they only accept

objects of type manipulator respectively container.

For the baseline approach presented above, each action

instance created from the PAT is interpreted as a sepa-

rate action. Thus, even though the action drop over(ball,

right arm, bucket1) might have been executed many times,

the algorithm is unable to generalize its knowledge to a

new action drop over(ball, left arm, bucket2). However, it

would be ill-advised to consider all actions instantiated from

a common PAT as similar since some parameters can take

on a wide variety of values. In listing 1, for example, ?o

can be assigned any object of the most generic type object.

Yet, it is not helpful to generalize from dropping paper into

a basket to dropping pills into a small box.

Given a hierarchical object database as described in [6],

we consider two actions to be similar if (i) they are generated

from the same PAT and (ii) for each parameter the assigned

objects for both actions share the same parent.

As an example, we assume two actions are generated

from PAT drop over by assigning ?o = ball 1 and ?o =

football. Furthermore, we assume for simplicity that the

assignments for ?m and ?c are the same in both actions

and that ball 1 and football derive from the class ball

which derives from object. This results in two similar

actions. However, assigning ?o = bottle, which derives from

container, deriving from object, is not considered a similar

action, since bottle and ball 1 do not directly derive from the

same class.

The definition of similarity is used to collect a set of

all experience gained with similar actions. The following

algorithm models a prior estimate of effect probabilities for

the given action based on this set. The set of experience

gained with all actions similar to the prototypical action a is

referred to as Sa.

We model the prior probability of an effect e of action a as

a linear model that represents the predicted effect probability

p̃a,e as the sum of the mean probability µe,Sa
of e in the set

Sa and an additional factor for the impact ias,e,S of each

assignment as = {Vi = oi} of object oi to parameter Vi in

a:

p̃a,e = min

(

1,max

(

0, µe,Sa
+
∑

as∈a

ias,e,Sa

))

(2)

The impact of an assignment in Sa is measured as the

difference between the average probability of e in all actions

that contain the parameter assignment as called µe,Sa,as and

the mean effect probability µe,Sa
:

ias,e,Sa
= µe,Sa

− µe,Sa,as (3)

The prior is used to generate a proper beta distribution

B (α, β) in order to describe the probability that p̃a,e adopts

a certain value. This is necessary as the goal is to generate a

posterior distribution over pa,e based on the prior and the ex-

perience gained by executing a. The likelihood L (Da|pa,e)
of our experience (or data) Da given a certain value for pa,e
follows a binomial distribution for which the conjugate prior

is a beta distribution. This is formalized as

ppost (pa,e) ∝ L (Da|pa,e) · pprio (pa,e) (4)

The prior beta distribution is specified by finding values

for α and β that satisfy two conditions: Firstly, the expec-

tation of the prior beta distribution has to be equal to p̃a,e
from (2). This imposes the restriction

E[B(α, β)] =
α

α+ β
= p̃a,e (5)

Secondly, the sum of α and β must be α+β = 8. Intuitively

this sum is interpreted as how much we trust our prior. The

higher the value, the more we trust our prior to be true. The

value of 8 empirically proved to generate good results and

means that we put the same trust in the prior and the data

after 8 executions of a. Given α and β from the prior and

the counts #e and #tot (compare Sec. IV-A) from the data,

the posterior distribution is

ppost (pa,e) ∼ B (α+#e, β + (#tot−#e)) (6)

This distribution over the possible values of pa,e is now

exploited to predict the effect probability of e for action a.
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Fig. 2: Flowchart depicting the process of computing the

posterior effect probability

For planning, we use the maximum likelihood estimate for

pa,e which is analogue to (5)

pa,e,MLE = E [ppost (pa,e)] =
α+#e

α+ β +#tot
(7)

Compared to the baseline approach, this prediction of the

effect probability already performs well in the case of no or

few experience with executing an action. Since the prior acts

as “anchor” for the effect probability, it prevents the value

from jumping, which is the case in the baseline approach.

On the other hand, the anchor may also slow down adaption

to extreme values, such as actions that are never (or always)

successful. To improve the approach further in this regard,

the next section integrates physical simulation as additional

source of information.

C. Refining Predictions with Physical Simulation

Our approach to predict effect probabilities allows to

generalize experience to new scenarios. This is done by

employing experience collected in scenarios containing the

same type of objects. However, not all objects behave the

same just because they derive from a common class. An

example is given w. r. t. listing 1:

The base assumption is that we are able to generalize

experience collected when dropping balls over containers to

other balls and other containers. However, in some scenarios

this might not be the case, e. g. a football will never end

up in a glass after dropping it over the latter. And since

the probability for this effect is an extreme value (0 in this

case), the prior generated according to (2) will always drag

the posterior towards the mean.

This problem is avoided by employing physical simulation

in terms of simulating an action and inferring the effect

probabilities from simulation. As we believe that probabilis-

tic effects in manipulation tasks are induced by epistemic

uncertainty, we introduce small errors at each step of the

action in simulation. The scaling of the errors must be

adapted to reproduce the probabilities that are already known

from experience, e. g. using an evolutionary algorithm as

in [20].

We only trust the simulation if it predicts extreme values,

i. e. values that are closer to 0 or 1 than a predefined threshold

te, Formally a probability p is considered to be extreme if

either p ≤ te or p ≥ (1 − te). In these cases the prior is

created according to (5) based on the estimated probability

of the simulation instead of the one from (2). The number

of trials in the simulation depends on the selected threshold.

We use a threshold of te = 0.04 and 25 trials in simulation.

Fig. 3: The containers used in the experiment. From left to

right: cylinder, bread box, bowl, glass.

TABLE I: Success rates for all parameter combinations given

in percentage and absolute numbers

manipulator
total

left arm right arm

container

glass
5/25 10/25 15/50

20.0 % 40.0 % 30.0 %

bread box
11/25 24/25 35/50

44.0 % 96.0 % 70.0 %

cylinder
10/25 22/25 32/50

40.0 % 88.0 % 64.0 %

bowl
15/25 16/25 31/50

60.0 % 64.0 % 62.0 %

total
41/100 72/100 113/200
41.0 % 72.0 % 56.5 %

This means that the prior from experience is replaced with

the prior from simulation if at most 1 simulated execution

disagrees with all other executions.

V. EXPERIMENTS

We evaluate our concept by conducting an experiment with

the humanoid robot “Rollin’ Justin” [22].

A. Experiment Setup

The overall task for Justin is to pick-up a tennis ball and

drop it over one of four different containers. The ball and

one of the containers are placed on a table in front of Justin

as shown in Fig. 1.

The four containers are of different shape (see Fig. 3),

resulting in different probabilities for the tennis ball to end up

inside them after dropping it. The ball is placed on a stand to

simplify grasping for the robot. Detection and localization of

the ball stand and table are carried out with APRIL tags [23],

the position of the container with respect to the table is

fixed. We carry out 25 trials with each manipulator-container

combination, resulting in a total of 200 trials.

A defect in the left manipulator, a DLR Hand II [24],

is simulated by decreasing its joint stiffness, resulting in

frequent failures as the ball is not reliably grasped. The trials

are manually labeled as either “successful” if the ball ended

up in the container or “failed” otherwise. Thus, “failed”

collects all failure states such as on(ball, table), on(ball,

floor) etc. For methods to circumvent manual labeling see

[20].

B. Results

The results for each combination of parameters are dis-

played in Table I. The 95% Clopper-Pearson confidence

intervals [25] for the probabilities after 25 trials are not

displayed in the table but are each below ±3%. Overall

56.5% of the trials were successful but one can observe a big
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Fig. 4: Evolution of the estimated probability (a) in the baseline algorithm and (b) in our algorithm. Dotted lines represent

ground truth values.

variation over objects as well as over manipulators. Overall

the expected difference between right arm and left arm is

well visible, since we deliberately simulated a failure in the

left hand. We can also observe that the glass was the most

difficult to drop the ball into while on average the bread box

was the easiest container.

VI. EVALUATION

The experiments provide the means to compare the per-

formance of our algorithm to the baseline algorithm. In the

following we define an error function, give details about the

evaluation, and show the results.

A. Quality Measure

Assessing the quality of the predicted probabilities, re-

quires a quality measure in terms of an error function.

The error function is supposed to measure the difference

between predicted effect probabilities and the ground truth.

The ground truth gP for manipulator-container combination

P is defined as the success probability measured after 25

executions of the action.

Ground truth values are shown in Table I. The compared

algorithms predict a new probability each time the action is

executed. This results in a series of l = 25 predicted proba-

bilities P̂P = [p̂1, . . . p̂l] for each parameter combination P .

We define the error function as the mean squared error:

E
(

P̂P

)

=
1

l

l
∑

i=1

(p̂i − gP)
2

(8)

B. Evaluation Results

We evaluate our algorithm in terms of a leave-one-out

crossvalidation. For each parameterization we assume that

the remaining experience records are known and only the

one investigated is new. We compute the prior according to

(2) and iterate through the data collected in the experiment.

The posterior is updated accordingly each time the parame-

terization of interest is encountered. The result is shown in

Fig. 4b.

Fig. 4a shows the results of the baseline algorithm. After

the first time an parameterization has been observed, the

predicted success probability is either 0 or 1. While some

parameterizations such as (right arm, bread box) are rather

constant, others such as (right arm, glass) vary significantly.

The summed error of the baseline approach for all parame-

terizations according to (8) is 0.219.

The summed error for our algorithm in the experiment is

0.06 amounting to an error reduction of 72.6% compared

to the baseline. The improvement is prominent for the

parameter combinations (right arm, bowl) and (right arm,

glass). One dominant difference between Fig. 4a and Fig. 4b

is their range on the x-axis. The predictions from the baseline

approach start only after the parameterization has been

observed at least once. In contrast, our approach generates

probability estimates right away, even without any experience

of the investigated parameterization.

A challenge for our algorithm becomes visible in parame-

terization (right arm, bread box). The success probability for

this parameterization is quite extreme with a value of 96%,

and cannot be explained very well by the linear model. It

seems that there is an interaction effect in the data which

the algorithm cannot reproduce. Thus, it underestimates the

probability.

C. Impact of Physical Simulation

The use of simulation is demonstrated in the same scenario

but with a different container. This time the robot tries to drop

the tennis ball over a shot glass. The shot glass is too small

for the ball even to fit in, thus, this action never succeeds.

Since the robot never dropped any object over a shot

glass, the prior it uses without simulation is simply the

mean success probability of the manipulator it is using. As

shown in Fig. 6, our approach without physics simulation

starts with the mean value of the manipulator used and takes

long to converge even approximately to the true probability

of 0. By using the physical simulation, however, a perfect

approximation is generated for the constructed scenario.



Fig. 5: Evaluation of the planner: The upper row depicts execution of the originally constructed plan, failing to reach the

goal. The lower row shows the a more reliable plan generated by the probabilistic planner.
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probabilities.

D. Planning with Estimated Probabilities

The effect probabilities are subsequently used to generate

reliable plans. Therefore we adapt the fast downward planner

(FD) [26] to cope with our PPDDL action descriptions. In

a first step the probabilistic actions are determinized, i. e. a

virtual action is created for each effect of the probabilistic

action [27]. Afterwards the FD planner is used to find

solutions to the deterministic problem. As soon as one

solution is found, others are searched by iteratively deleting

each of the actions in the solution one at a time from the

set of available actions. By replanning, all possible solutions

are found except those which are a mere permutation of any

previously found one.

Next, the solutions are collapsed, i. e. solutions that are

equal but contain different determinizations of an action are

unified. Finally the success probability of a plan is computed

by multiplying the effect probabilities of the relevant effects

along the action chain.

We show how Justin can make use of the planner as it is

confronted with the task to drop the ball over the cylinder

where the ball is only reachable with the left hand. A new

action push ball right moves the ball stand to a position from

where it can be grasped with the right hand in 70% of cases.

The probability for dropping the ball into the cylinder is

47% for the left hand and 80% for the right hand according

to Fig. 4b.

From this, the planner generates two possible action se-

quences: (i) grasp the ball with the left hand and drop it

in the cylinder with a success probability of 0.47 and (ii)

push the ball with the left hand, grasp it with the right hand

and drop it in the cylinder, yielding a success probability of

0.7 · 0.8 = 0.56. Fig. 5 shows how the robot is enabled to

exploit the experience records to successfully drop the ball

into the container with the second strategy (bottom), whereas

it is likely to fail with the first sequence (top).

VII. CONCLUSION AND OUTLOOK

In this paper we proposed an approach for probabilistic

effect prediction through semantic knowledge and physical

simulation. The proposed algorithm outperforms a typical

baseline approach as it exploits semantic similarity in a real

world experiment. The definition of similarity is important to

our approach. We used an hierarchical ontology and defined

objects as similar if they derived from a common parent.

Actions are considered similar if they are instantiated from

a common PAT and use similar objects in their parameters.

Our approach treats similarity of objects as a binary label

based on the hierarchical ontology. The hierarchy consists

of object classes that proved to be meaningful throughout

different scenarios we were working on. However, this is not

always the case. Objects of the same class can potentially be

very dissimilar and objects across classes may, nevertheless,

be very similar. Thus, future work will focus on how to

compute similarity relevant for the task at hand based on

geometric features or more general ontologies to improve

effect prediction toward failure tolerant robot planning.
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“Learning probabilistic action models from interpretation transitions,”
in Proc. 31st Int. Conf. Logic Programming (ICLP), Cork, Ireland,
Aug. 2015, pp. 1–14.

[6] D. S. Leidner, Cognitive Reasoning for Compliant Robot Manipula-

tion, 1st ed., ser. Springer Tracts in Advanced Robotics. Cham:
Springer International Publishing, 2019, vol. 127.

[7] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From Skills to
Symbols: Learning Symbolic Representations for Abstract High-Level
Planning,” J. Artif. Intell. Res., vol. 61, pp. 215–289, 2018. doi: 10.
1613/JAIR.5575

[8] R. M. Jensen, M. M. Veloso, and R. E. Bryant, “Fault Tolerant
Planning: Toward Probabilistic Uncertainty Models in Symbolic Non-
Deterministic Planning,” in Proc. 14th Int. Conf. Automated Planning

and Scheduling (ICAPS), Whistler, Canada, 2004, pp. 335–344.

[9] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, no. 3-4, pp. 189–208, Dec. 1971. doi: 10.1016/0004-3702(71)
90010-5

[10] N. J. Nilsson, “Shakey the Robot,” SRI International, Menlo Park, CA,
Technical Note 323, Apr. 1984.

[11] F. Gravot, S. Cambon, and R. Alami, “aSyMov: A Planner That
Deals with Intricate Symbolic and Geometric Problems,” in Robotics

Research. The Eleventh International Symposium, B. Siciliano,
O. Khatib, P. Dario, and R. Chatila, Eds., vol. 15. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 100–110. doi: 10.1007/
11008941 11

[12] L. P. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion
planning in the now,” in Proc. 2011 IEEE Int. Conf. Robotics and

Automation (ICRA), Shanghai, China, May 2011, pp. 1470–1477. doi:
10.1109/ICRA.2011.5980391

[13] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand,
and F. Schmidt, “Combining task and path planning for a humanoid
twoarm robotic system,” ICAPS Workshop Comb. Task Motion Plan.

Real-World Appl., pp. 13–20, 2012.

[14] D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they
are: Solving manipulation tasks by using functional object classes,” in
Proc. 2012 IEEE-RAS Int. Conf. Humanoid Robots, Nov. 2012, pp.
429–435. doi: 10.1109/HUMANOIDS.2012.6651555

[15] M. Ghallab, A. Howe, D. Christianson, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL - The Planning Domain
Definition Language,” Fourth Int Artif. Intell. Plan. Syst. AIPS98 Plan.

Comm., vol. 78, no. 4, pp. 1–27, Aug. 1998.
[16] S. M. Kosslyn, G. Ganis, and W. L. Thompson, “Neural foundations of

imagery,” Nat. Rev. Neurosci., vol. 2, no. 9, pp. 635–642, Sep. 2001.
doi: 10.1038/35090055

[17] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as
an engine of physical scene understanding,” Proc. Natl. Acad. Sci., vol.
110, no. 45, pp. 18 327–18 332, 2013. doi: 10.1073/PNAS.1306572110

[18] K. K. Szpunar, R. N. Spreng, and D. L. Schacter, “A taxonomy
of prospection: Introducing an organizational framework for future-
oriented cognition,” Proc. Natl. Acad. Sci., vol. 111, no. 52, pp.
18 414–18 421, Dec. 2014. doi: 10.1073/PNAS.1417144111

[19] L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot
manipulation actions using simulation-based projections,” Artificial In-

telligence, vol. 247, pp. 352–380, Jun. 2017. doi: 10.1016/J.ARTINT.
2014.12.004

[20] A. S. Bauer, P. Schmaus, A. Albu-Schäffer, and D. Leidner, “Inferring
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