
End-to-end Learning of Multi-sensor 3D Tracking by Detection

Davi Frossard Raquel Urtasun
Uber Advanced Technologies Group

University of Toronto
{frossard, urtasun}@uber.com

Abstract— In this paper we propose a novel approach to
tracking by detection that can exploit both cameras as well as
LIDAR data to produce very accurate 3D trajectories. Towards
this goal, we formulate the problem as a linear program that
can be solved exactly, and learn convolutional networks for
detection as well as matching in an end-to-end manner. We
evaluate our model in the challenging KITTI dataset and show
very competitive results.

I. INTRODUCTION

One of the fundamental tasks in perception systems for
autonomous driving is to be able to track traffic participants.
This task, commonly referred to as Multi-target tracking,
consists on identifying how many objects there are in each
frame, as well as link their trajectories over time. Despite
many decades of research, tracking is still an open problem.
Challenges include dealing with object truncation, high speed
targets, lighting conditions, sensor motion and complex
interactions between targets, which leads to occlusion and
path crossing.

Most modern computer vision approaches to multi-target
tracking are based on tracking by detection [1], where first
a set of possible objects are identified via object detectors.
These detections are then further associated over time in a
second step by solving a discrete problem. Both tracking and
detection are typically formulated in 2D, and a variety of
cues based on appearance and motion are exploited.

In robotics, tracking by filtering methods are more prevalent,
where the input is filtered in search of moving objects and their
state is predicted over time [2]. LIDAR based approaches
are the most common option for 3D tracking, since this
sensor provides an accurate spatial representation of the world
allowing for precise positioning of the objects of interest.
However, matching is more difficult as LIDAR does not
capture appearance well when compared to the richness of
images.

In this paper, we propose an approach that can take
advantage of both LIDAR and camera data. Towards this goal,
we formulate the problem as inference in a deep structured
model, where the potentials are computed using convolutional
neural nets. Notably, our matching cost of associating two
detections exploits both appearance and motion via a siamese
network that processes images and motion representations
via convolutional layers. Inference in our model can be
done exactly and efficiently by a set of feedforward passes
followed by solving a linear program. Importantly, our model
is formulated such that it can be trained end-to-end to solve

both the detection and tracking problems. We refer the reader
to Figure 1 for an overview our approach.

II. RELATED WORK

Recent works in multiple object tracking are usually done
in two fronts: Filtering based and batch based methods.
Filtering based methods rely on the Markov assumption
to estimate the posterior distribution of the trajectories.
Bayesian or Monte Carlo filtering methods such as Gaussian
Processes [3], Particle Filters and Kalman Filters [2] are
commonly employed. One advantage of filtering approaches
is their efficiency, which allows for real-time applications.
However, they suffer from the propagation of early errors,
which are hard to mitigate. To tackle this shortcoming, batch
methods utilize object hypotheses from a detector (tracking
by detection) over entire sequences to estimate trajectories,
which allows for global optimization and usage of higher
level cues. Estimating trajectories becomes a data association
problem, i.e., deciding from the set of detections which should
be linked to form correct trajectories. The association can be
estimated with Markov Chain Monte Carlo (MCMC) [4], [5],
linear programming [6], [7] or with a flow graph [8].

Online methods have also been proposed in order to tackle
the performance issue with batch methods [1], [9]. Milan et
al. [10] use Recurrent Neural Networks (RNN) to encode the
state-space and solve the association problem.

Our work also expands on previous research on pixel
matching, which has tipically been used for stereo estimation
and includes methods such as random forest classifiers [11],
Markov random fields (MRF) [12] and, more classically,
slanted plane models [13]. In our research, we focus on a
deep learning approach to the matching problem by exploiting
convolutional siamese networks [14], [15]. Previous methods,
however, focused on matching pairs of small image patches.
In [16] deep learning is exploited for tracking. However, this
approach is only similar to our method at a very high level:
using deep learning in a tracking by detection framework.
Our appearance matching is based on a fully convolutional
network with no requirements for optical flow and learning is
done strictly via backpropagation. Furthermore, we reason in
3D and the spatial branch of our matching networks corrects
for things such as ego-motion and car resemblance. In contrast
[16] uses optical flow and is piecewise trained using Gradient
Boosting.

Tracking methods usually employ hand-crafted feature
extractors with distance functions such as Chi-Square or

ar
X

iv
:1

80
6.

11
53

4v
1

 [
cs

.C
V

]
 2

9
Ju

n
20

18

Fig. 1: In this work, we formulate tracking as a system containing multiple neural networks that are interwoven together
in a single architecture. Note that the system takes as external input a time series of RGB Frames (camera images) and
LIDAR pointclouds. From these inputs, the system produces discrete trajectories of the targets. In particular, we propose an
architecture that is end to end trainable while still maintaining explainability, we achieve this by formulating the system in a
structured manner.

Bhattacharyya to tackle the matching problem [8], [9], [17],
[18]. In contrast, we propose to learn both the feature
representations as well as the similarity with a siamese
network. Furthermore, our network takes advantage of both
appearance and 3D spatial cues during matching. This is
possible since we employ a 3D object detector which gives
us 3D bounding boxes.

Motion models have been widely used especially in filtering
based methods. [19] uses a Markov random field to model
motion interactions and [20] uses the distance between
histograms of oriented optical flow (HOOF). For the scope
of tracking vehicles, we have the advantage of not having to
deal with severe deformations (motion-wise, vehicles can be
seen as a single rigid body) or highly unpredictable behaviors
(cars often simply maintain its lane, keep going forward,
make controlled curves, etc), which suggests that spatial cues
should be useful.

Sensory fusion approaches have been widely used in
computer vision. LIDAR and camera are popular sensor sets
employed in detection and tracking [21], [22], [23]. Other
papers also exploit radar [24].

In concurrent work [25] also proposes an end-to-end
learned method for tracking by detection. Ours, however,
exploits a structured hinge loss to backpropagate through
a linear program, which simplifies the problem and yields
better experimental results.

III. DEEP STRUCTURED TRACKING

In this work, we propose a novel approach to tracking by
detection, which exploits the power of structure prediction as
well as deep neural networks. Towards this goal, we formulate
the problem as inference in a deep structured model (DSM),
where the factors are computed using a set of feedforward
neural nets that exploit both camera and LIDAR data to
compute both detection and matching scores. Inference in the
model can be done exactly by a set of feedforward processes

followed by solving a linear program. Learning is done end-to-
end via minimization of a structured hinge loss, optimizing
simultaneously the detector and tracker. As shown in our
experiments, this is very beneficial compared to piece-wise
training.

A. Model Formulation

Given a set of candidate detections x = [x1, x2, ..., xk]
estimated over a sequence of frames of arbitrary length, our
goal is to estimate which detections are true positive as well
as link them over time to form trajectories. Note that this is
a difficult problem since the number of targets is unknown
and can vary over time (e.g., objects can appear any time
and disappear when they are no longer visible).

We parameterize the problem with four types of binary
variables. For each candidate detection xj a binary variable
ydetj encodes if the detection is a true positive. Further, let
ylinkj,k be a binary variable representing if the j-th and k-
th detections belong to the same object. Finally, for each
detection xj two additional binary variables ynewj and yendj

encode whether it is the beginning or the end of a trajectory,
respectively. This is necessary in order to represent the
fact that certain detections are more likely to result in
end of trajectory, for example if they are close to the
end of LIDAR range or if they are heavily occluded. For
notational convenience we collapse all variables into a vector
y = (ydet,ylink,ynew,yend), which comprises all candidate
detections, matches, entries and exits.

We then formulate the multi-target tracking problem as an
integer linear program

maximize
y

θW(x)y

subject to Ay = 0, y ∈ {0, 1}|y|

where θW(x) is a vector comprising the cost of each random
variable assignment, and Ay = 0 is a set of constraints
encoding valid trajectories, as not all assignments are possible.

We now describe the constraints and the cost function in more
details.

B. Conservation of Flow Constraints

We employ a set of linear constraints (two per detection)
encoding conservation of flow in order to generate non-
overlapping trajectories. This includes the fact that a detection
cannot be linked to a detection belonging to the same frame.
Furthermore, in order for a detection to be active, it has to
either be linked to another detection in the previous frame
or the trajectory should start at that point. Additionally, a
detection can only end if the detection is active and not
linked to another detection in the next frame. Thus, for each
detection, a constraint is defined in the form of

ynewj +
∑

k∈N−(j)

ylinkj,k = yendj +
∑

k∈N+(j)

ylinkj,k = ydetj ∀j

(1)

where N−(j) denotes the candidate detections that could be
matches for the j-th detection xj in the immediately preceding
frame, and N+(j) in the immediately following frame. Note
that one can collapse all these constraints in matrix form to
yield Ay = 0.

C. Deep Scoring and Matching

We refer the reader to Figure 2 for an illustration of the
neural networks we designed for both scoring and matching.
For each detection xj , a forward pass of a Detection Network
is computed to produce θdetW (xj), the cost of using or
discarding xj according to the assignment to ydetj . For each
pair of detections xj and xi from subsequent frames, a
forward pass of the Match Network is computed to produce
θlinkW (xi, xj), the cost of linking or not these two detections
according to the assignment to ylinki,j . Finally, each detection
might start a new trajectory or end an existing one, the costs
for this are computed via θnewW (x) and θendW (x), respectively,
and are associated with the assignments to ynew and yend.
We now discuss in more details the neural networks we
employed.

1) Detection θdetW (x): We exploit object proposals in order
to reduce the search space over all possible detections. In
particular, we employ the MV3D detector [22] to produce
oriented 3D object proposals from LIDAR and RGB data (i.e.,
regions in 3D where there is a high probability that a vehicle
is present). To make sure that the tracker produces accurate
trajectories, we need a classifier that decides whether or not
an object proposal is a true positive (i.e., actually represents
a vehicle). To that end, we employ a convolutional neural
network based on VGG16 [26] to predict whether or not there
is a vehicle in the detection bounding box. Towards this goal,
the 3D bounding boxes from MV3D are projected onto the
camera and the resulting patches are fed to the aforementioned
convolutional neural network to produce detection scores.

2) Link θlinkW (x): One of the fundamental tasks in tracking
is deciding whether or not two detections in subsequent frames
represent the same object. In this work, we use deep neural
networks that exploit both appearance and spatial information

t t+ 1

x1

x2
x3

θdetW (x1)

θdetW (x2)

θdetW (x3)

θlinkW (x1, x3)

θlinkW (x2, x3)

Matching
Network

Matching
Network

Scoring
Network

Scoring
Network

Scoring
Network

Fig. 2: Illustration of the forward passes over a set of
detections from two frames.

to represent how to match. Towards this goal, we design an
architecture where one branch processes the appearance of
each detection with a convolutional neural network, while two
others consist of feedforward networks dealing with spatial
information in 3D and 2D respectively. The activations of all
branches are then fed to a fully connected layer to produce
the matching score.

To extract appearance features, we employ a siamese
network based on VGG16 [26]. Note that in a siamese
setup, the two branches (each processing a detection) share
the same set of weights. This makes the architecture more
efficient in terms of memory and allows learning with fewer
examples. In particular, we resized each detection to be of
dimension 224 × 224. To produce a concise representation
of the activations without using fully connected layers, each
of the max-pool outputs is passed through a product layer
followed by a weighted sum, which produces a single scalar
for each max-pool layer, yielding an activation vector of
size 5. We use skip-pooling as matching should exploit both
low-level features (e.g., color) as well as semantically richer
features from higher layers.

To incorporate spatial information into the model, we
employ fully connected architectures that model both 2D
and 3D motion. In particular, we exploit 3D information in
the form of a 180× 200 occupancy grid in bird’s eye view
and 2D information from the occupancy region in the frontal
view camera, scaled down from the original resolution of
1242× 375 to 124× 37. In bird’s eye perspective, each 3D
detection is projected onto a ground plane, leaving only a
rotated rectangle that reflects its occupancy in the world. Note
that since the observer is a mobile platform (an autonomous
vehicle, in this case), the coordinate system between two
subsequent frames would be shifted because the observer
moved in the time elapsed. Since its speed in each axis is
known from the IMU data, one can calculate the displacement
of the observer between each observation and translate the
coordinates accordingly. This way, both grids are on the exact

Algorithm 1: Inference in the DSM for Tracking
Input : Input RGB+Lidar frames (x);

Learned weights w;
1 for each Temporal window (a, z) ∈ |x| do
2 detections ← Detector(x[a : z],wdet);
3 for each Pair of linkable detections xi, xj ∈

detections do
4 link_score[i,j] ← MatchingNet(xi, xj ,wlink);
5 end
6 LP ← BuildLP(detections, link_score, wnew, wend);
7 trajectories ← Optimize(LP);
8 end

same coordinate system . This approach is important to make
the system invariant to the speed of the ego-car. The frontal
view perspective encodes the rectangular area in the camera
occupied by the target. It is the equivalent of projecting the
3D bounding box onto camera coordinates.

We use fully connected layers to capture the spatial patterns,
since vehicles behave in different ways depending on where
they are with respect to the ego-car. For instance, a car in
front of the observer (in the same lane) is likely to move
forward, while cars on the left lane are likely to come towards
the ego-car. This information would be lost in a convolutional
architecture since it would be spatially invariant.

3) New θnewW (x) / End θendW (x): These costs are simply
learned scalars intended to shift the optimization towards
producing longer trajectories.

D. Inference

As described before, the multi-target tracking problem can
be formulated as a constrained integer programming problem.
While Integer programming is NP-Hard, the constraint matrix
exhibits the total unimodularity property [6], which allows
the problem to be relaxed to a Linear Program while still
guaranteeing optimal integer solutions. Thus, we perform
inference by solving

maximize
y

θW(x)y

subject to Ay = 0, y ∈ [0, 1]|y|
(2)

Note that other alternative formulations exist for the linear
program in the form of a min cost flow problem, which can
be solved via Bellmann-Ford [27] and Successive Shortest
Paths (SSP) [28]. These methods are guaranteed to give the
same solution as the linear program. In this work, we simply
solve the constrained linear program using an off the shelve
solver [29].

Prior to solving the linear program, the costs have to
be computed. This implies computing a feedforward pass
from the detection network for each detection to compute
θdetW (x), as well as a feedforward pass for every pair of
linkable detections to compute θlinkW (x). Note that θnewW (x)
and θendW (x) require no computations since they are simply
learned scalars.

Algorithm 2: End-to-End Learning
Input : Input RGB+LIDAR frames (x);

Ground truth trajectories ŷ;
1 w← initialize();
2 for each Temporal window (a, z) ∈ |x| do
3 detections ← Detector(x[a : z],wdet);
4 for each Pair of linkable detections xi, xj ∈

detections do
5 link_score[i,j] ← MatchingNet(xi, xj ,wlink);
6 end
7 LP ← BuildLossLP(detections, link_score, ŷ, wnew,

wend); (Equation 3)
8 y← Optimize(LP);
9 grads ← ComputeGradients(y, ŷ);

10 w← UpdateStep(w, grads);
11 end

Once the costs are computed, the linear program can then
be solved, yielding the global optimal solution for all frames.
We refer the reader to algorithm 1 for pseudocode of our
approach.

E. End-to-End Learning

One of the main contribution of this work is an algorithm
that allows us to train tracking by detection end-to-end. This
is far from trivial, as it implies backpropagating through a
linear program. We capitalize on the fact that inference can
be done exactly and utilize a structured hinge loss as our loss
function

L(x,y,W) =
∑
x∈X

[
max
y

(
∆(y, ŷ)+θW(x)(y− ŷ

)]
(3)

with ∆(y, ŷ) being the task loss representing the fact that
not all mistakes are equally bad. In particular, we use the
Hamming distance between the inferred variable values (y)
and the ground truth assignments (ŷ).

We utilize subgradient descent to train our model. Taking
the subgradients of Equation 3 with respect to θW(x) yields

∂L(x,y,W)

∂θW(x)
=

{
0 S ≤ 0

y∗ − ŷ otherwise
(4)

where S denotes the result of the summation over the batch
X in Equation 3. Furthermore, y∗ denotes the solution of
the loss augmented inference, which in this case becomes

maximize
y

θW(x)y + ∆(y, ŷ)

subject to Ay = 0, y ∈ [0, 1]|y|
(5)

As the loss decomposes this is again a LP that can be solved
exactly.

We refer the reader to algorithm 2 for a pseudocode of our
end-to-end training procedure.

Method MOTA MOTP MT ML IDS FRAG FP
End to end 70.66% 83.08% 72.17% 4.85% 54 239 1579
Piecewise 69.02% 82.90% 74.75% 3.20% 97 289 1836

TABLE I: Comparison of tracking results between end to end and piecewise learning approaches.

Method MOTA MOTP MT ML IDS FRAG
CEM [30] 51.94 % 77.11 % 20.00 % 31.54 % 125 396
RMOT [31] 52.42 % 75.18 % 21.69 % 31.85 % 50 376
TBD [32] 55.07 % 78.35 % 20.46 % 32.62 % 31 529
mbodSSP [1] 56.03 % 77.52 % 23.23 % 27.23 % 0 699
SCEA [33] 57.03 % 78.84 % 26.92 % 26.62 % 17 461
SSP [1] 57.85 % 77.64 % 29.38 % 24.31 % 7 704
ODAMOT [34] 59.23 % 75.45 % 27.08 % 15.54 % 389 1274
NOMT-HM [35] 61.17 % 78.65 % 33.85 % 28.00 % 28 241
LP-SSVM [36] 61.77 % 76.93 % 35.54 % 21.69 % 16 422
RMOT* [31] 65.83 % 75.42 % 40.15 % 9.69 % 209 727
NOMT [35] 66.60 % 78.17 % 41.08 % 25.23 % 13 150
DCO-X* [37] 68.11 % 78.85 % 37.54 % 14.15 % 318 959
mbodSSP* [1] 72.69 % 78.75 % 48.77 % 8.77 % 114 858
SSP* [1] 72.72 % 78.55 % 53.85 % 8.00 % 185 932
NOMT-HM* [35] 75.20 % 80.02 % 50.00 % 13.54 % 105 351
SCEA* [33] 75.58 % 79.39 % 53.08 % 11.54 % 104 448
MDP [38] 76.59 % 82.10 % 52.15 % 13.38 % 130 387
LP-SSVM* [36] 77.63 % 77.80 % 56.31 % 8.46 % 62 539
NOMT* [35] 78.15 % 79.46 % 57.23 % 13.23 % 31 207
MCMOT-CPD [39] 78.90 % 82.13 % 52.31 % 11.69 % 228 536
DSM (ours) 76.15 % 83.42 % 60.00 % 8.31 % 296 868

TABLE II: KITTI test set results.

IV. EXPERIMENTAL EVALUATION

In this section, we present the performance and training
details of our model. We maintain the same train/validation
split as MV3D [22] for consistent validation results since we
use this method as our detector.

A. Dataset

We use the challenging KITTI Benchmark [40] for
evaluation. This dataset consists of 40 sequences (20 for
training/validation, 20 for test) with vehicles annotated in 3D.
For the training set, there is a total of 8026 images and 30601
vehicles with various degrees of truncation and occlusion, the
effects of which are also discussed in this section.

Since each annotated 3D trajectory contains an unique
ID, it is possible to infer where trajectories begin, end and
how detections are linked to form them. This allows us to
determine the ground truth assignments of the binary random
variables.

B. Metrics

To evaluate our matching performance we use the network
accuracy when matching detections between consecutive
frames. For tracking, we use the common MT/ML [41]
metrics and CLEAR MOT [42] (from which we also derive
ID-Switches, Fragmentations and False Positives). We refer
the reader to the references for an in-depth explanation of the
metrics. For completeness, we also add a brief explanation.

The MOT metric accounts for tracker accuracy (MOTA)
and precision (MOTP). Accuracy measures errors in the tra-
jectory configuration: misses, false positives and mismatches.
It gives a measure of how well the tracker is able to detect
objects and keep consistent trajectories. Precision measures

the total error in estimated position between object-hypotheses
pairs. It evaluates the tracker’s ability to estimate precise
object positions.

ID-Switches (IDS) account for the number of times
a trajectory switches its ground-truth ID. Meanwhile, a
fragmentation (FRAG) happens when part of a trajectory
is not covered (usually due to missing detections). Lastly, a
false-positive (FP) is a detection that does not correspond
to any ground-truth bounding box. Note that in the KITTI
benchmark all these metrics are computed in 2D, which does
not fully evaluate our method since no evaluation is done
with respect to the 3D positioning of the trajectories.

MT/ML evaluate how well the tracker is able to follow
an object. A trajectory is considered mostly tracked (MT) if
more than 80% of its ground-truth length is covered by an
estimated trajectory. It is considered mostly lost (ML) when
it is covered for less than 20% of its length. These metrics
account for the percentage of trajectories that fall in each
category.

C. Training Parameters

We use Adam optimizer [43] with a learning rate of
10−5, β1 of 0.9 and β2 of 0.999. The CNNs are initialized
with the pre-trained VGG16 weights on ImageNet and the
fully connected layers (which includes the weights of the
binary random variables y) are initialized by sampling from a
truncated normal distribution (a normal distribution in which
values sampled more than 2 standard deviations from the
mean are dropped and re-picked) with 0 mean and 10−3

standard deviation.

(a) Occlusion. (b) Precision.

(c) Distance. (d) Bounding box size.

Fig. 3: Plot of detections and relative error histograms with respect to appearance conditions.

(a) Occlusion (b) Truncation (c) Lighting (d) Distance

Fig. 4: Failure modes of the matching.

D. Experiments

Comparison to Piecewise Training: First, we evaluate the
importance of training end-to-end. To that end, we compare
two instantiations of our model. The first one is trained end-to-
end while the second one is trained in a piecewise manner. As
shown in Table I end-to-end training outperforms piecewise
training in the metrics that we optimize for, i.e., precision
and accuracy, while showing a decrease in coverage. This is
explained by the fact that the network will perform better for
the task it is trained for. Furthermore, there is an inherent
trade-off between coverage and accuracy. The way our cost is
defined pulls the model towards producing shorter but accurate
trajectories (maximize MOTA and minimize ID-switches). We
note that this is better in the context of autonomous driving, as
merging different tracks on the same vehicle can produce very
inaccurate velocity estimates, resulting in possible collisions.

Comparison to State of the Art: In Table II we compare our
model to publicly available methods in the KITTI Tracking
Benchmark. The performance of out approach is competitive

with the state of the art, outperforming all other methods
in some of the metrics (best for MOTP and MT, second
best for ML). Furthermore, it is worth noting that tracking
performance is highly correlated with detection performance
in all tracking by detection approaches.

We also reiterate that our method performs tracking in 3D
(which is not the case in the other methods) and KITTI only
evaluates the metrics in 2D, which does not fully represent the
performance of the approach. We refer the reader to Figure 5
for an example of the trajectories produced by our tracker.

Matching Performance: To validate the efficacy of our
matching network, we compare it against common afinity
metrics used in the literature. In particular, we evaluate
methods that operate in image space by computing the
distance between the distribution of colors in two detections
according to the Bhattacharyya, Chi-Square and Correlation
matrix. We also evaluate spatial metrics that compute the
overlap, position distance, size similarity and orientation
similarity between two detections. The comparison results
are shown in Table III. Note that the binary thresholds for

Fig. 5: Visualization of a set of trajectories produced by the tracker over 15 frames. Trajectories are color coded, such that
having the same color means it’s the same object.

the affinity metrics are defined via cross validation using for
consistency the same train/validation split as the matching
network. The results show that our proposed approach
significantly outperforms all affinity metrics presented.

Error Analysis: To support our claim, we plot the error rate
of the matching network as a function of a series of operating
conditions in Figure 3, all of them with the y-axis scaled
logarithmically. For each bin in the histogram, we plot the
percentage of detections which fall in that category and how
many of them are mismatched.

In Figure 3a, it is observable how occlusions make the
task of matching increasingly harder up until 50%, when
it then settles. It is also worth noting that objects are often
occluded to some extent in the dataset, considering how close
to uniform the distribution is.

The effects of the detector’s precision are evaluated in
Figure 3b, where the performance is plotted against the
detection overlap percentage, defined as the intersection over
union between the detection and its ground-truth pair. Notice
that the relative error rate remains close to constant in this
range, which suggests that the matching network is robust to

the tightness of the bounding box.
Finally, the performance with respect to bounding box

dimension and object distance is analyzed. Figure 3c shows
the error rate against the object distance and suggests that
far away vehicles are harder to match since less information
is captured by the camera. The size histogram of Figure 3d
corroborates this, considering that the size of the bounding
box in 2D is directly correlated to its distance in 3D.

In Figure 4 failure modes of the matching network are
shown, in which there are cases where matching fails due to
a car being partially occluded 4a, truncated 4b, poorly lit 4c
or too far away 4d.

V. CONCLUSIONS

We have proposed a novel approach to tracking by
detection, which exploits the power of structure prediction
as well as deep neural networks. Towards this goal, we
formulate the problem as inference in a deep structured
model (DSM), where the factors are computed using a set
of feedforward neural nets that exploit both camera and
LIDAR data to compute both detection and matching scores.

Method Error
Cosine Similarity 29.66%
Color Correlation 16.31%
Bhattacharyya 11.93%
Chi Square 8.02%
Bounding Box Size 7.31%
Bounding Box Position 6.13%
Bounding Box Overlap 5.30%
Deep Matching (ours) 3.27%

TABLE III: Comparison to other matching methods.

Inference in the model can be done exactly by a set of
feedforward processes followed by solving a linear program.
Learning is done end-to-end via minimization of a structured
hinge loss, optimizing simultaneously the detector and tracker.
Experimental evaluation on the challenging KITTI dataset
show that our approach is very competitive outperforming
the state of the art in the MOTP and MT metrics In the
future, we plan to extend our approach to handle long-term
occlusions and missing detections.

REFERENCES

[1] P. Lenz, A. Geiger, and R. Urtasun, “FollowMe: Efficient online min-
cost flow tracking with bounded memory and computation,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4364–
4372, 2015.

[2] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” 2005.
[3] R. Urtasun, D. J. Fleet, and P. Fua, “3d people tracking with gaussian

process dynamical models,” IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 238–245, 2006.

[4] R. T. Collins and P. Carr, “Hybrid stochastic/deterministic optimization
for tracking sports players and pedestrians,” European Conference on
Computer Vision, pp. 298–313, 2014.

[5] W. Choi, C. Pantofaru, and S. Savarese, “A general framework for
tracking multiple people from a moving camera,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp.
1577–1591, 2013.

[6] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1806–1819,
2011.

[7] H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-commodity
network flow for tracking multiple people.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 8, pp. 1614–
1627, 2014.

[8] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8, 2008.

[9] B. Yang and R. Nevatia, “An online learned CRF model for multi-
target tracking,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2034–2041, 2012.

[10] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks,”
arXiv:1604.03635, 2016.

[11] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for
confidence measures in stereo vision,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 305–312, 2013.

[12] A. Spyropoulos, N. Komodakis, and P. Mordohai, “Learning to detect
ground control points for improving the accuracy of stereo matching,”
IEEE Conference on Computer Vision and Pattern Recognition, pp.
1621–1628, 2014.

[13] S. Birchfield and C. Tomasi, “Multiway cut for stereo and motion with
slanted surfaces.” IEEE International Conference on Computer Vision,
pp. 489–495, 1999.

[14] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1592–1599, 2015.

[15] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5695–5703, 2016.

[16] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by
tracking: Siamese cnn for robust target association,” IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 33–40,
2016.

[17] B. Benfold and I. Reid, “Stable multi-target tracking in real-time
surveillance video,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3457–3464, 2011.

[18] C. hao Kuo, C. Huang, and R. Nevatia, “Multi-target tracking by on-
line learned discriminative appearance models,” IEEE Conference on
Computer Vision and Pattern Recognition, pp. 685–692, 2010.

[19] Z. Khan, T. Balch, and F. Dellaert, “Efficient particle filter-based
tracking of multiple interacting targets using an MRF-based motion
model,” IEEE Conference on Intelligent Robots and Systems, pp. 254–
259, 2003.

[20] D. Riahi and G. Bilodeau, “Multiple object tracking based on
sparse generative appearance modeling,” IEEE Conference on Image
Processing, pp. 4017–4021, 2015.

[21] H. Weigel, P. Lindner, and G. Wanielik, “Vehicle tracking with lane
assignment by camera and lidar sensor fusion,” in IEEE Intelligent
Vehicles Symposium, June 2009, pp. 513–520.

[22] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” arXiv:1611.07759, 2016.

[23] F. Zhang, D. Clarke, and A. Knoll, “Vehicle detection based on lidar
and camera fusion,” in IEEE Conference on Intelligent Transportation
Systems, Oct 2014, pp. 1620–1625.

[24] R. O. Chavez-Garcia and O. Aycard, “Multiple sensor fusion and clas-
sification for moving object detection and tracking,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 2, pp. 525–534, Feb
2016.

[25] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network
flow for multi-object tracking,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2730–2739, 2017.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv:1409.1556, 2014.

[27] D. P. Bertsekas, R. G. Gallager, and P. Humblet, “Data networks,”
vol. 2, 1992.

[28] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory,
algorithms, and applications,” 1993.

[29] “Google Optimization Tools,” 2017. [Online]. Available: https:
//developers.google.com/optimization/

[30] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 36, no. 1, pp. 58–72, 2014.

[31] J. H. Yoon, M.-H. Yang, J. Lim, and K.-J. Yoon, “Bayesian multi-object
tracking using motion context from multiple objects,” IEEE Winter
Conference on Applications of Computer Vision, pp. 33–40, 2015.

[32] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3d traffic
scene understanding from movable platforms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1012–
1025, 2014.

[33] J. Hong Yoon, C.-R. Lee, M.-H. Yang, and K.-J. Yoon, “Online
multi-object tracking via structural constraint event aggregation,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1392–
1400, 2016.

[34] A. Gaidon and E. Vig, “Online domain adaptation for multi-object
tracking,” arXiv:1508.00776, 2015.

[35] W. Choi, “Near-online multi-target tracking with aggregated local flow
descriptor,” IEEE International Conference on Computer Vision, pp.
3029–3037, 2015.

[36] S. Wang and C. C. Fowlkes, “Learning optimal parameters for multi-
target tracking.” British Machine Vision Conference, pp. 4–1, 2015.

[37] A. Milan, K. Schindler, and S. Roth, “Detection-and trajectory-level
exclusion in multiple object tracking,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3682–3689, 2013.

[38] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” IEEE International Conference
on Computer Vision, pp. 4705–4713, 2015.

[39] B. Lee, E. Erdenee, S. Jin, M. Y. Nam, Y. G. Jung, and P. K. Rhee,
“Multi-class multi-object tracking using changing point detection,”
European Conference on Computer Vision, pp. 68–83, 2016.

[40] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.

https://developers.google.com/optimization/
https://developers.google.com/optimization/

[41] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybridboosted
multi-target tracker for crowded scene,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2953–2960, 2009.

[42] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, no. 1, pp. 1–10, 2008.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

	I Introduction
	II Related Work
	III Deep Structured Tracking
	III-A Model Formulation
	III-B Conservation of Flow Constraints
	III-C Deep Scoring and Matching
	III-C.1 Detection Wdet(x)
	III-C.2 Link Wlink(x)
	III-C.3 New Wnew(x) / End Wend(x)

	III-D Inference
	III-E End-to-End Learning

	IV Experimental Evaluation
	IV-A Dataset
	IV-B Metrics
	IV-C Training Parameters
	IV-D Experiments

	V Conclusions
	References

