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Abstract— Most animal and human locomotion behaviors
for solving complex tasks involve dynamic motions and rich
contact interaction. In fact, complex maneuvers need to con-
sider dynamic movement and contact events at the same time.
We present a hierarchical trajectory optimization approach
for planning dynamic movements with unscheduled contact
sequences. We compute whole-body motions that achieve goals
that cannot be reached in a kinematic fashion. First, we find a
feasible CoM motion according to the centroidal dynamics of
the robot. Then, we refine the solution by applying the robot’s
full-dynamics model, where the feasible CoM trajectory is used
as a warm-start point. To accomplish the unscheduled contact
behavior, we use complementarity constraints to describe the
contact model, i.e. environment geometry and non-sliding active
contacts. Both optimization phases are posed as Mathematical
Program with Complementarity Constraints (MPCC). Exper-
imental trials demonstrate the performance of our planning
approach in a set of challenging tasks.

I. INTRODUCTION

Legged robots are able to traverse areas that are inacces-
sible to wheeled vehicles, such as complex and unstructured
environments. Such environments are common to search
and rescue scenarios, one promising application of legged
systems. From the legged locomotion point of view, natural
disaster scenarios require planning and execution of complex
behaviors in environments with high uncertainty. Complex
behaviors require whole-body movements and multiple con-
tact interactions at the same time. Indeed, whenever an
articulated body is in contact with the environment (e.g.
legged robots) the set of contact forces and joint commands
describe the evolution of the motion. Dynamic maneuvers
such as jumping and rearing need to consider different
sequences of contacts (mode-switching), which cannot be
tackled with traditional predefined gaits [1], [2].

Locomotion in complex environments requires reasoning
about terrain conditions, planning and execution of move-
ments through a sequence of contacts, i.e. footholds and/or
handholds. These can be posed as separate problems (de-
coupled approach), i.e. motion and contact planning, and
control. Such approaches reduce the combinatorial search
space at the expense of the richness of complex behaviors.
In contrast, highly-dynamic movements need to consider
contact forces and robot dynamics. For instance, contact
forces play an important role for predicting the ballistic
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Fig. 1. The proposed hierarchical trajectory optimization reduces the
complexity of the motion planning problem by considering two different
optimization phases: centroidal and full trajectory optimization. First, the
centroidal trajectory optimization phase produces a locally optimal CoM
motion using the centroidal dynamics model [3], which does not consider
joint dynamics (i.e. link’s CoM). Second, the full trajectory optimization
phase refines the CoM trajectory by applying the robot’s full-dynamics and
joint limits. Both optimization phases use complementarity constraints to
model the contact interactions.

trajectory in a jumping task. A decoupled motion planner has
to explore different plans in the space of feasible movements,
which is often defined by physical (friction properties),
stability (whole-body balance), dynamic (inertial properties)
and task constraints (goal positions and orientations). On the
other hand, coupled motion planners compute simultaneously
contacts and body movements by posing the problem as a
hybrid system or a mode-invariant optimization problem.

In this paper, we are concerned with finding feasible
trajectories for complex tasks, i.e. tasks that require the
exploration of different mode sequences through highly-
dynamic movements. We choose a set of jumping tasks
as examples, as these highlight the ability to explore the
dynamical capabilities of the robot in order to reach goals
that are unreachable in a kinematic manner.

The main contribution of this paper is a novel hierarchical
trajectory optimization approach based on the principle of
divide and conquer ( Fig. 1). Our hierarchical trajectory op-
timization is capable of producing a wide range of complex
behaviors without scheduling a contact sequence by reducing
the search space to a fixed sequence of commands, which
can be used to find continuous motion plans. The trajectory
optimization approach is posed as a MPCC. First, we prune
the search space by finding a feasible trajectory according to
the robot’s centroidal dynamics. Second, we find a feasible
trajectory in terms of the full dynamics and joint limits of
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the robot.
The rest of the paper is structured as follows: after

discussing previous research in the field of dynamic motion
planning for legged systems (Section II) we describe the
direct hierarchical trajectory optimization approach proposed
for dynamic motion planning in Section III. In Section IV
we evaluate the performance of our trajectory optimization
approach in experimental trials with a robotic leg before
Section V summarizes this work and presents ideas for future
work.

II. RELATED WORK

State-of-the-art legged motion planning methods are often
constrained to non-dynamic regimes with scheduled contact
sequences [4][5][6][7] and decoupled models [8][9]. For
example, most of the current locomotion approaches follow
predefined contact sequences, specified by fixed patterns
of locomotion. These assumptions reduce the capability of
traversing complex environments with legged systems. We
believe that natural locomotion in complex environments
requires dynamic movements with unscheduled contact se-
quences. Nevertheless, these approaches are often posed as
non-linear optimization problems in which kinematic and
dynamic models of the robot, and task information are stated
as hard [10][11][12] or soft constraints [13][14]. Currently,
there are many approaches that reduce the complexity of the
problem. Different dynamic formulations have been proposed
such as: point-mass, cart-table [5][7], spring-loaded inverted
pendulum model [15][16] and contact wrench sum [11][3].
However, most of these approaches use simplified models
that do not capture the full-body dynamics of the robot,
and reduce the richness of the solutions. On the other hand,
using full-body dynamic models [10][17], one can produce
richer movements but often such formulations require an
excessively long amount of time to compute solutions, they
are prone to reaching and becoming trapped in local minima
and infeasible regions.

Defining a scheduled contact sequence considerably re-
duces the search space by constraining the plans to a fixed
pattern of locomotion [8]. On the other hand, with an un-
scheduled contact sequence, we can increase the possibilities
of locomotion [18][19], which could in turn be crucial
for finding solutions in complex environments. From the
optimization point of view, unscheduled contact sequence
approaches include the contact forces as decision variables,
allowing us to consider friction cone constraints. In the
literature there exist two main approaches that incorporate
contact forces in the optimization; the first one, smooths the
contact forces but has the drawback of allowing the contact to
be enabled when there is a distance w.r.t. the contact surface
[13], the second one, uses complementarity constraints to
model inelastic contacts [10][11]. Complementarity con-
straints describe inelastic contact forces without resulting in
stiff differential equations that require an extremely small
time step [20].

III. HIERARCHICAL DYNAMIC PLANNING

Our work was motivated by the observation that most
animal and human locomotion behaviors involve dynamic

motions through contact interactions. For instance, kanga-
roos are dynamic jumpers that use hopping as the main
locomotion strategy. Indeed, in kangaroo locomotion, highly-
dynamic movements and contact forces play an important
role for finding efficient locomotion trajectories.

Although such dynamic maneuvers are undoubtedly ben-
eficial, planning and execution of these whole-body trajecto-
ries is challenging due to the loss of control authority during
flight phases and undefined contact events. We tackle it by
generating a whole-body trajectory toward a body goal state
(desired body height) that ensures a dynamic motion plan
through contact interactions. To accomplish this, we describe
the contact model using complementarity constraints which
defines our approach as a mode-invariant trajectory planner.

A. Generating Dynamic Motions
Consider a rigid body system with n degrees of freedom,

of which nb are floating-base degrees of freedom. The state
of the robot is represented by its floating-base and actuated
joint components, q = (qb,qq). Additionally, the robot has
p end-effector or contact points.

The system’s evolution depends on the internal joint
torques, τq , and the contact force, λj , applied at the jth

end-effector. This evolution is subject to robot and envi-
ronmental constraints such as: joint limits and environment
geometry. Exploring different mode switches (contact events)
and dynamic movements could produce unsuccessful locally
optimal solutions. We improve the solutions by applying a
hierarchical trajectory optimization. In the first phase, we
model the system’s evolution with the centroidal dynamics,
i.e. in the CoM space. Then, we impose joint dynamics
and limits using a full-dynamic model. Figure 1 presents
an overview of our hierarchical trajectory optimization ap-
proach.

1) Centroidal-dynamic model: The robot dynamics can
be projected at the CoM, i.e. the centroidal dynamics of
the robot. In a full floating-base system (nb = 6 DoF), the
centroidal-dynamic model describes the rate of change of
linear and angular momentum of CoM with respect to the
inertial frame of reference [3]. The rate of change of linear
and angular momentum is determined by contact forces λj ,
gravitational force mg and the motion of the robot’s links

mr̈ =

p∑
j=0

λj +mg (1)

Ḣc(q, q̇) =

p∑
j=0

(xj − r)× λj (2)

where m is the total mass of the robot, r ∈ R3 is the CoM
position, λj ∈ R3 is the contact force applied at the jth

end-effector, Hc ∈ R3 is the centroidal angular momentum
and xj ∈ R3 is the end-effector position. The centroidal
angular momentum is computed through the computation of
the Centroidal Momentum Matrix (CMM) as defined in [3].

2) Full-dynamic model: The full-dynamic model enables
us to compute the joint efforts given a motion state (q, q̇, q̈)
subject to contact forces λj . We partition the dynamics equa-
tion of the robot into the unactuated floating-base DoFs qb



(nb equations) and the active robot joints qq (nq equations):

H(q)

[
q̈b

q̈q

]
+

[
cb
cq

]
(q, q̇)−

p∑
j=0

[
JT
bj

JT
qj

]
λj︸ ︷︷ ︸

b=ID(model,q,q̇,q̈)

=

[
0
τq

]
(3)

where H ∈ Rn×n is the floating-base inertial matrix, c =
(cb, cq) ∈ Rn is the force vector that accounts for Coriolis,
centrifugal, and gravitational forces, λj ∈ R3 are the ground
contact forces at the jth end-effector (i.e. point feet), and
their corresponding Jacobian, Jj =

[
Jbj Jqj

]
∈ R3p×n

and τq ∈ Rnq are the joint efforts that we wish to calculate.
The left-hand term b = (bb,bq) is computed efficiently

using the Featherstone implementation of the Recursive
Newton-Euler Algorithm (RNEA) [21].

B. Contact Model

In dynamic movements, contact forces play an important
role, e.g. a jumping or hopping task. Traditional approaches
compute trajectories given a predefined contact sequence.
These approaches do not exploit the fact that an optimized
mode switching could be required for the success of a certain
task.

A contact event occurs when a signed distance to the sur-
face is strictly zero, and additionally, there is a contact force
acting along the surface normal. Moreover, it is expected a
null normal contact force when the contact is inactive, i.e.
a positive signed distance. In other words, normal contact
forces and signed distances are orthogonal and positives
functions (4). Additionally, we desire that active contacts
do not slide. Such condition implicates an orthogonality
between normal contact forces and tangential velocities (5).
In the optimization literature, constraints with combinatorial
nature, such as the set of contact model equations (4)(5), can
be described as complementarity constraints

0 ≤ λn̂j ⊥ φj(q) ≥ 0 (4)

0 ≤ λn̂j ⊥ ẋt̂
j(q, q̇) ≥ 0 (5)

where λn̂j is the contact force acting along the surface normal
at the jth end-effector (i.e. contact point), φj(q) is the signed
distance between the jth contact point xj and the surface Si,
and ẋt̂

j(q, q̇) is the velocity of the contact point along the
tangential surface. Contact-point positions and velocities are
calculated efficiently using spatial algebra.

C. Trajectory Optimization

Planning problems without scheduled contact sequences
are often hard to solve due to the contact forces producing
discontinuities in the dynamics. Here, we tackle this issue
by applying a hierarchical trajectory optimization scheme,
which uses different dynamic models in a two-phase manner.
Using a different (simpler) dynamic model in the first opti-
mization phase, we imposes a dynamic relaxation, that helps
to explore different mode switches. Thus, we find a feasible
CoM motion in terms of the robot’s centroidal dynamics.
Then, we refine it by applying the full-dynamic model in
the second, more complex, trajectory optimization phase.

1) Centroidal trajectory optimization: The centroidal tra-
jectory optimization step computes a feasible CoM trajectory
through the mapping of contact forces inside the centroidal
dynamics. The CMM maps the robot’s generalized velocities
to its spatial momentum (for more details see [3]). We sample
the trajectory in N knot-points with a fixed-time duration
h. In this optimization phase, the decision variables of the
optimization problem are the robot position q, the robot
velocity q̇, the CoM position r, the CoM velocity ṙ, the
contact forces λ, and the end-effector (contact) positions x.
Our cost function evaluates the trajectory in terms of the
desired high-level goal of the task w(q) as:

min
q[k],q̇[k],r[k],ṙ[k],

Hc[k],Ḣc[k],λ[k],x[k]

h

N∑
k=1

(
‖w(q[k])−w(q∗[k])‖Qq

)
(6)

where w(q) constructs a task-specific value from relevant
features of the task, and ‖w(q[k])−w(q∗[k])‖Qq

computes
its associated quadratic cost given a desired robot position
q∗. Note that ‖x‖Q is an abbreviation for the quadratic cost
xTQx.

We transcribe the centroidal dynamics differential equa-
tions (2) to algebraic ones by applying an Euler-backward
integration rule with a fixed-time step h

r[k − 1]− r[k] + hṙ[k] = 0 (7)
Hc[k − 1]−Hc[k] + hḢC [k] = 0 (8)

m(ṙ[k]− ṙ[k − 1])− h

(
p∑

j=0

λj [k] +mg

)
= 0 (9)

Ḣc[k]−
p∑

j=0

(xj [k]− r[k])× λj [k] = 0 (10)

where the centroidal angular momentum is computed from
the CMM, A(q), as is explained in [3], i.e. Hc[k] =
A(q[k])ẋ[k]. Additionally, we impose contact position con-
straints in order to describe the contact interactions

xj [k]− κj(q[k]) = 0 (11)

where κj(·) is the direct kinematic function which computes
the position of the jth end-effector. We also include joint
position and velocity limits.

ql
q ≤ qq ≤ qu

q (12)

q̇l
q ≤ q̇q ≤ q̇u

q (13)

To describe different possible mode switches, we add
contact position and velocity constraints. These constraints
are described as complementarity constraints as follows

λn̂j [k], φj(q[k]) ≥ 0 (14)

λn̂j [k]φj(q[k]) = 0 (15)

λn̂j [k]
(
xt̂
j [k]− xt̂

j [k − 1]
)
= 0 (16)

We approximate the contact velocity as contact displace-
ment along the tangential surface. Note that a contact velocity
constraint does not guarantee zero displacement between
knots.



2) Full trajectory optimization: Once a feasible, and
locally optimal, CoM trajectory is computed, we use this
CoM trajectory as a warm-start point of the full trajectory
optimization phase. We transcribe the full-dynamic model
with the same time step value of the centroidal trajectory
optimization phase. In this optimization phase, we formulate
the problem with the following decision variables: the robot
position q, the robot velocity q̇, the joint efforts τq and the
contact forces λ.

In this stage, the cost function also considers the joint
effort energy of the movement τq as

min
q[k],q̇[k],
τ [k],λ[k]

h

N∑
k=1

(
‖w(q[k])−w(q∗[k])‖Qq

+ ‖τq[k]‖R
)
(17)

We apply the same integration rule to the full-dynamic
differential equation (3). Additionally, we add a selection
matrix B in order to impose a null wrench vector to the
floating-base:

q[k − 1]− q[k] + hq̇[k] = 0 (18)

H[k] (q̇[k]− q̇[k − 1])

+h
(
c[k]−

p∑
j=0

Jj [k]
Tλj [k]

)
−Bτ [k] = 0

(19)

where the contact forces are determined using the comple-
mentarity constraints (14)(15)(16).

In the full trajectory optimization phase, we impose po-
sition and velocity bounds (12)(13), and additionally joint
efforts bounds

τ l
q ≤ τq ≤ τu

q (20)

We derive a continuous motion plan, from the N optimized
knot-points, using a polynomial interpolation. Both optimiza-
tion phases model contact interactions using complemen-
tarity constraints. In general, optimization problems with
complementarity constraints are difficult to solve because
constraint qualifications are hard to satisfy. We solve the
MPCC using interior point method as this is faster than a
Sequential Quadratic Programming (SQP) algorithm when
the number of complementarity constraints increases [22].
We use the IPOPT library [23]. We relax the orthogonality be-
tween the complementarities, for example λn̂j [k]φj(q[k]) = 0
is posed as λn̂j [k]φj(q[k]) ≤ 0. For more information about
different interior point methods see [22].

IV. EXPERIMENTAL RESULTS

This section describes the experiments conducted to val-
idate the effectiveness and quantify the performance of the
proposed hierarchical optimization approach.

A. Experimental Setup

We use the hydraulically-actuated robot leg, HyL, in our
experiments. HyL weighs approximately 11 kg, is fully-
torque controlled and equipped with precision joint encoders,
and load cells. HyL is a 1D floating-base system with 2
actuated joints as is shown in Fig. 2. Controller computations

+
-

+-

+

-

Fig. 2. HyL: one hydraulically actuated and fully torque controlled leg
of the quadruped robot HyQ [24]. The HyL robot has a total number of 3
DOF: 1D floating-base system qb1 with 2 actuated joints (qq1 , qq2 ).

are done on-board in an i7/2.8 GHz PC with a realtime-
time kernel. Motion plans are computed off-line using a
predefined terrain model.

For each experiment, we specify the goal state of the
robot’s trunk, and the desired final joint position as a terminal
cost. The hierarchical trajectory optimizer finds a sequence of
footsteps through dynamic movements without a predefined
order, which the controller then executes dynamically. We
use a PD controller, using the planned joint efforts as
feedforward inputs. We validate the performance of our
framework in 3 different examples as seen in Fig. 3, and
compare against the full dynamic optimization (Table I) on
the same benchmark examples. The first example consists
of reaching a goal that is kinematically not feasible, called
the jumping task. In the next examples, the step-jumping
tasks, the robot has to reach and keep the desired trunk
height, which is done through two different steps: a small
step (10 cm) and a big step (15 cm). Additionally, the reader
is strongly encouraged to view the accompanying video
as it provides the most intuitive way to demonstrate the
performance of our approach.

B. Results and Discussion

1) Motion planning through dynamical system relaxation:
We focus on finding trajectories that are only feasible when
dynamics and contact forces are considered. Our motion
planning approach describes contact events in a MPCC
problem. Since the problem is non-convex, our hierarchi-
cal optimization tends to guide the exploration away from
infeasible regions through dynamical system relaxation, i.e.
centroidal to full dynamics. This dynamical relaxation helps
to reduce the computation time and cost value.

Our experiments suggest that dynamical system relaxation
is key for finding successful motion plans. Table I shows
the time and cost reduction of our approach compared
with a single full trajectory optimization. We can see that
the hierarchical optimization approach tends to have better
performance in complex tasks. Nevertheless, in general, the
central tendency (median) of the computation time reduction
is decreased, while, on average, we improve the quality of
the solution (cost reduction). We define a set of 8 different
goal states (i.e. trunk height) for computing the time and



Fig. 3. Snapshots of three experimental trials used to evaluate the performance of our hierarchical trajectory optimization approach. From top to bottom:
jumping task; small step jumping (10 cm of height); big step jumping (15 cm of height).

TABLE I
TIME AND COST REDUCTION OVER 8 TRIALS COMPARED TO A SINGLE

FULL TRAJECTORY OPTIMIZATION.

Time reduction [%] Cost reduction [%]

Task Md. Av. Md. Av.

Jumping 10.36 0.0 0.0 1.44
Step Jumping 48.29 30.46 0.0 12.91

cost reduction of our approach. For computing the time
and cost reduction, we compare the time and cost of a
single full trajectory optimization trial against our hierachical
optimization approach in the set of goals defined.

2) Reaching goals that are kinematically not feasible:
The jumping task demonstrates the ability of exploring the
dynamical capabilities of the robot in order to reach goals
that are not kinematically possible. In this particular case,
we desire to reach with the trunk, a height of 0.85 cm w.r.t.
the ground (or 0.27 cm w.r.t. the initial position), which
is kinematically not feasible. Thus, our hierarchical motion
planner explores different mode sequences in order to plan
a dynamically feasible motion. In Fig. 4, the robot plans a
countermovement jump (around 7 cm) without being prede-
fined. In countermovement jumps, a preliminary downward
movement is executed which increases the jump height
because the robot is carried by its own inertia. Then, a fast
movement of the foot is planned considering a desired task
behavior, e.g. joint position in the apex point.

3) Discovering of new contacts: For the success of some
tasks, it is crucial to exploit the environmental conditions,
e.g. reaching and keeping a desired trunk position that is
kinematically not reachable. So, imagine that we want to
keep a desired trunk position but due to gravitational forces
this is not possible with just a vertical jump, for instance
we need to climb onto an obstacle to accomplish this. With
the hierarchical trajectory optimization, we can plan such

kind of maneuvers. In fact, Fig. 5 shows that our motion
planner solves these tasks by defining a foolhold on top of
an available step. Note that a pre-defined footstep sequence
is not required to arrive to such a solution.

V. CONCLUSION

In this paper we presented a hierarchical trajectory opti-
mization approach for planning dynamic movements through
unscheduled contact sequence. First, the hierarchical trajec-
tory optimization finds a feasible CoM motion according to
the centroidal dynamics of the robot. Then, a second phase
of optimization considers the full-dynamics of the robot. In
both phases we use complementarity constraints for contact
modeling. We demonstrated that, with our approach, the
robot can plan a wide range of movements that consider the
full-dynamics and joint effort limits of the robot. We believe
that these considerations are crucial for highly-dynamic
locomotion tasks, i.e. step-jumping tasks that are cannot be
accomplished in a kinematic fashion. We showed how the
hierarchical trajectory optimization improves the solutions
and significantly reduces the computation time, compared
with the full dynamic optimization. Experimental trials with
a robotic leg performing highly-dynamic and challenging
tasks demonstrate the capability of our planning approach.

In general, trajectory optimization produces motion plans
for a fixed sequence of points, N knot-points. Here, we
arrive at a continuous motion plan by applying a polynomial
interpolation. Nevertheless, polynomial interpolations cannot
predict accurately changes in the contact forces, which gen-
erally happen in less than 10 ms. We are currently working
on generating motion plans given a library of synthesized
motions, improving the quality of the solutions, and permit-
ting on-line computation and execution.
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