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First applications of sound-based control
on a mobile robot equipped with two microphones

Aly Magassouba1, Nancy Bertin2 and François Chaumette3

Abstract— This paper validates experimentally a novel ap-
proach to robot audition, sound-based control, which consists in
introducing auditory features directly as inputs of a closed-loop
control scheme, that is, without any explicit localization process.
The applications we present rely on the implicit bearings of the
sound sources computed from the time difference of arrival
(TDOA) between two microphones. By linking the motion of
the robot to the aural perception of the environment, this
approach has the benefit of being more robust to reverberation
and noise. Therefore neither complex tracking method such
as Kalman filtering nor TDOA enhancement with denoising or
dereverberation methods are needed to track the correct TDOA
measurements. The experiments conducted on a mobile robot
instrumented with a pair of microphones show the validity of
our approach. In a reverberating and noisy room, this approach
is able to orient the robot to a mobile sound source in real time.
A positioning task with respect to two sound sources is also
performed while the robot perception is disturbed by altered
and spurious TDOA measurements.

I. INTRODUCTION

As a part of the five natural senses, aural perception pro-
vides rich information that naturally complements the other
senses. Exploiting such information that uses cheap sensors,
with omnidirectional properties and less occlusions, brings
an increase in value in the perception of the environment.
It is then natural that the interest in robot audition has
raised accordingly in the robotic community. In this topic
that encompasses fields like speech processing or auditory
scene analysis, sound source localization (SSL) remains a
challenging task that consists in computing the location of
sound sources with respect to (w.r.t) the robot frame on which
are embedded the sound sensors.

The current work on SSL has led to the development
of several branches such as binaural hearing [17][5][12]
or microphone array-based localization [10][16]. These two
approaches consider an embedded auditory system in an
environment of static or moving sound sources. They imply
a first step of localization, followed by a tracking of the
sound source(s) in the scene. The auditory system is thus
completely independent from the control part. Consequently
since the navigation of the robot and the sound perception are
disconnected, the SSL becomes difficult to perform with few
microphones. Indeed, when considering an unknown motion
of the sound source(s), erroneous localization are common
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because of the natural reverberation and the potential noise
in the environment. The robustness of the system is gained
from an array of microphones giving some redundant data
[13]. In addition, complex post-processing methods have
been developed to keep the track of the sound sources.
For instance, a solution including eight microphones and a
particle filter that tracks multiple sound sources is explored
in [15]. Moreover, when the robot is moving in the scene,
the tracking becomes even more difficult because of the
additional dynamic noise that deteriorates the sound signal
perception. In [15] the tracking is limited to two static sound
sources when the robot is moving. Similarly the method
proposed in [9] tracks one static sound source while using
four microphones and a particle filter.

Yet controlling the robot accordingly to the perceived
sound can improve the localization process as shown in
[11]. In this latter work, an incremental control approach
coupled with a neural network is used to track one static
sound source with two microphones. Nonetheless the control
input is determined beforehand by an operator. The idea of
coupling motion and perception has also been exposed in
binaural active audition [14]. This method takes into account
the motion of the robot through an unscented Kalman filter
tracking a sound source. However, this latter work has been
limited so far to track only one sound source, and without any
explicit model of the controller. In [7], the authors introduce
a control scheme derived from a cost function characterizing
the relationship between the position of a source and the
stereo cues retrieved by a pair of microphones. Still this
approach is specific to a particular task: namely the control
of a rotational degree-of-freedom (DOF) to reach a unique
orientation in an anechoic room.

In contrast, the sound-based control approach introduced
in our previous work [8] processes the sound signal by
straightly linking the aural perception of the environment,
to the control of the robot in a sensor-based framework. The
modelling is based on the measurement of the time difference
of arrival (TDOA) between two microphones. The idea is to
define a robotic task w.r.t angular information similarly to
beaconing or bearing-only tasks. Thus our approach does not
require an explicit localization of the sound sources. This
paper consists in an experimental validation of the sound-
based control theoretically presented in [8]. The experimental
evaluation of our approach is performed considering the
cases of one and two sound sources. We show that using
such control scheme allows to decrease the number of
microphones (2) w.r.t classical methods that usually require
four to eight microphones. Indeed, by processing auditory



cues directly in the control loop, our approach is more
robust to reverberation and noise. Actually the sound-based
control helps simplifying and improving the tracking of the
sound sources. From the motion of the robot related to the
TDOA, it is possible to predict the evolution of the TDOA
measurements. Hence erroneous TDOA estimations due to
reverberation or noise can be eliminated while a prediction
model can replace missing measurements. Therefore the
tracking method becomes simple compared to methods using
particle filters or neural network.

The rest of this paper is organized as follows: we first
introduce the sound-based control framework for one and
two sound sources in Section II. A description of TDOA
estimation and tracking is following in Section III. The paper
ends in Section IV with experimental results validating this
approach with one moving sound source and two static sound
sources.

II. CONTROL MODELLING

A. Geometric configuration

Fig. 1: Robot modelling

We consider a mobile robot modelled as a non-holonomic
unicycle. Fig. 1 illustrates the design of the system instru-
mented by a pair of microphones located at M1 and M2.
We set a frame FR(−→xR,−→yR) attached to the center R of the
robot. Besides a frame FM(−→xM ,−→yM ) is defined so that its
origin M is the midpoint of the pair of microphones. k sound
source(s) Xsi at a distance `i from M may be considered.
In this paper we consider the case where k = 1 or k = 2.
The sound emitted from each Xsi reaches the microphones
with an incident angle αi in FM. We also assume a far field
condition so that the distance d between the microphones
is small w.r.t each `i. Dx denotes the distance between the
center of the robot R and M. The robot is controlled upon
two DOF: the control input q̇ is given by (u ω), respectively
the translation velocity along −→xR and the angular velocity
around −→zR.

B. General framework

The task to realize consists in positioning the robot for
satisfying given bearing conditions. This is performed by

considering k TDOA measurements τ (t) obtained from the
microphones and by minimizing the error ‖e(t)‖ character-
ized by

e(t) = τ (t)− τ ∗ (1)

where τ ∗ denotes the desired value of the TDOAs. The time
variation of τ is related to the sensors velocity by

τ̇ = Lτv (2)

in which Lτ ∈ Rk×3 is the interaction matrix sized by k
the number of measurements and v = (vx, vy, ωz) denoting
the spatial linear and angular velocity of the microphones
expressed in FM. This interaction matrix is obtained from
the relationship between the TDOA and the sound source
direction under the far field assumption given by

τ = A cosα (3)

where A = d/c in which c is the sound celerity. The
interaction matrix related to the TDOA has been determined
in [8] as:

Lτ =
[
− ν2

A`
τν
A` ν

]
(4)

where ν =
√
A2 − τ2. Therefore, when considering the two-

DOF robot previously described, the relationship between τ̇
and the control input q̇ of the robot is:

τ̇ = Jτ q̇ (5)

where Jτ corresponds more explicitly to:

Jτ = LτJr. (6)

Jr being the robot Jacobian given by

Jr =

0 Dx

1 0
0 1

 . (7)

Hence, it is possible design a control scheme given by:

q̇ = −λĴ+
τ e (8)

where J+
τ ∈ R2×k is the Moore-Penrose pseudo-inverse of

Jτ and λ > 0 is a gain that tunes the time to convergence.
Generally, an approximation Ĵ+

τ is considered since it is
impossible to know perfectly either Jτ or J+

τ . Indeed the
distance ` to the sound source used in (4) is a priori unknown.
In practice we approximate the interaction matrix of τ with

L̂τ =
[
− ν2

Ầ τν

Ầ ν
]
. (9)

As shown in [3], this kind of approximation classical in
Visual servoing does not degrade too much the system
behaviour compared with using the real interaction matrix.
The way to tune ̂̀ is discussed and given in the next section
when considering one sound source and two sound sources.



Fig. 2: With one sound source several poses centred on the sound
source exists for a given τ∗

C. Sound-based control with one sound source

When considering more specifically one sound source in
the environment, the interaction matrix of τ is given by (9).
By using only one feature, it can be intuitively expected that
several sensor poses exist so that τ = τ∗. Fig. 2 represents
all possible poses that can fulfill the constraint τ = τ∗ (e.g
α = α∗). These poses can be geometrically represented by
a set of circles centred on the sound source Xs. A task
considering one sound source mainly specifies a desired
orientation of the robot w.r.t the sound source. Therefore
a control input characterized by the angular velocity ω only
is sufficient to achieve any task involving one sound source.
In that particular case where u would always be equal to 0
the Jacobian matrix reduces to

Ĵτ =
Ầν −Dxν

2

Ầ (10)

and the control input becomes

q̇ = −λ 1

ν
(
1− Dx

Ầν
) (τ − τ∗) (11)

Excluding the degenerate case where α = 0 or α = 180 (i.e.,
ν = 0), singularities of the control scheme could in principle
occur if ˆ̀ < Dx. Hopefully, this is impossible in practice.
Indeed, knowing that 0 ≤ ν ≤ A, the denominator of (13)
can never vanish as soon as ˆ̀> Dx. In the same way, it is
very easy to demonstrate the global asymptotic stability of
the system since the Lyapunov stability condition Jτ Ĵ

+
τ > 0

is satisfied as soon as ` > Dx and ̂̀> Dx.
This excellent stability property can also be obtained when

the two DOF of the robot (u, ω) are controlled. The Jacobian
matrix is then given by

Ĵτ =
[
τν

Ầ Ầν−Dxν
2

Ầ
]

(12)

and the control input is obtained as:

q̇ = −λ
[ τν

A a1
−ν(νDx

A − ̂̀)a1
]
(τ − τ∗) (13)

where

a1 =
τ2 + (νDx −Ầ)2

A2 ̂̀2 . (14)

The control scheme input is not singular as soon as ̂̀ >
0, which corresponds to the Lyapunov stability condition
already demonstrated in [8]. So a relevant choice of ̂̀consists
in fixing this parameter to a positive and meaningful value.

D. Sound-based control with two sound sources

For two sound sources, the interaction matrix related to τ
is obtained by stacking (9) for each τi as:

L̂τ =

− ν2
1

A ̂̀
1

τ1ν1
A ̂̀

1
ν1

− ν2
2

A ̂̀
2

τ2ν2
A ̂̀

2
ν2

 . (15)

In this case, all the poses corresponding to a correct achieve-
ment of the task are such that M belongs to a circumscribed
circle shaped by the two sound sources Xs1 and Xs2 with
an orientation where τ1 = τ∗1 and τ2 = τ∗2 (see Fig. 3).

Fig. 3: With two sound sources several poses exist for given τ∗
1

and τ∗
2 on the circumscribed circle defined by the sound sources

and the position of the microphones

For this task, the Jacobian of the system is given by:

Ĵτ =

 τ1ν1A ̂̀
1

A ̂̀
1ν1−Dxν

2
1

A ̂̀
1

τ2ν2
A ̂̀

2

A ̂̀
2ν2−Dxν

2
2

A ̂̀
2

 (16)

and the control input by (8). A classical method to approxi-
mate each ̂̀i is to use the distance `∗i to the sound source at
a desired pose. In this case, it is well known that the system
is locally asymptotically stable in the neighborhood of the
desired pose [3]. In our case, since the set of desired poses is
infinite, many possible choices for ˆ̀∗

i are possible. We will
see in Section IV how we have proceeded in practice.

Sound-based control can also be applied to three or more
sound sources as theoretically exposed in [8]. In that case,
only one single pose generally corresponds to the correct
achievement of the task. Due to the non-holonomic con-
straints of a mobile robot, this would necessitate the design of
a non-stationary control scheme, following the well-known
Brockett theorem. This is of course outside the scope of this
paper.

III. SOUND PROCESSING

A. TDOA estimation

As exposed in the robot hearing literature [6], the es-
timation of the TDOA τ is performed by comparing two
temporal signals x1(t) from the microphone M1 and x2(t)
from M2 in the frequency domain with the Generalized
cross-correlation (GCC):

R1,2(τ) =

F∑
f

φx1,x2
(f)

|φx1,x2(f)|
eϕ(τ). (17)



where ϕ corresponds to the phase shift for a defined τ
and the PHAse Transform (PHAT) filter ψ(f) = |φx1,x2 |−1

used in (17) is a normalization factor that increases the
robustness towards reverberation. The cross-spectral power
density φx1,x2

is usually defined by

φsumx1,x2
(f) =

1

L

L∑
l=1

X1(f, l)X
∗
2 (f, l) (18)

for windows frames from l to L. X1(f, l) and X∗
2 (f, l) are

respectively the Fourier transform of x1(t) and the conjugate
of the Fourier transform of x2(t). In practice, we have
preferred an alternative solution that consists in considering
a "max" pooling function so that:

φmaxx1,x2
(f) = max

l
X1(f, l)X

∗
2 (f, l). (19)

This solution gives the advantage of detecting sound sources
active within few time frames by not integrating irrelevant
information when these sources are inactive [2]. The maxi-
mum peak of the GCC function gives an estimation of the
actual TDOA and can therefore be written as:

τ̂ = argmax
τ

R1,2(τ) (20)

with τ ∈ [−A,A] corresponding to a sound direction of
arrival α from 0◦ to 180◦. When k sound sources are active,
the GCC function returns several peaks wherein the k first
peaks should correspond to the TDOA of each sound source.
But, in real world conditions, the estimation of the TDOA(s)
is altered by spurious peaks caused by reverberation and
noise. Therefore p peaks (p > k) should be considered
among which the k good peak(s) should be found.

B. Tracking routine

Similarly to other sensor-based approaches, the sound-
based control is built upon a good tracking of the input
features. Tracking the true value of the TDOA(s) among a
set of observations is a major issue of the control scheme,
since noise and reverberation affect the sound features mea-
surement, with spurious and/or altered data. Yet, one of
the benefit of coupling motion and perception lies in the
prediction that limits the scope of erroneous measurements.
Thus it is not necessary to use complex tracking methods to
accurately perform a specified task. In our case, the tracking
procedure is divided in two steps.

In the first step, the goal is to find the correct TDOA(s)
in respect of the number of active sound sources defined
beforehand. This step assumes that the robot and the sound
source(s) are not moving. Then the set of peaks obtained
from the GCC function is observed during a given number
of windows frames. A clustering algorithm based on the
Euclidean distance between the TDOAs is then applied to
detect the frequency of appearance of a given TDOA τi. By
combining this frequency to the mean appearance rank of
each τi, the most probable TDOA(s) are then selected. This
method is applied to the initial pose to retrieve τi(t0) and
could also be applied to retrieve each τ∗i when the desired
pose is not characterized by obvious TDOA(s). For some

simple cases each τ∗i can be defined manually, for instance
for a task that consists in orienting the robot to the sound
source (e.g., τ∗ = 0).

The second step is used during the motion of the robot,
and consists in finding the genuine TDOA among the set
of observations given by the GCC function. Knowing the
previous value of the TDOA, we simply select the closest
peak in the current frame. More evolved solutions could
be implemented such as Kalman filter or Bayesian filter.
They would provide more robust estimation of the correct
TDOA but at a higher computation cost. Since the robustness
of the sound-based control can cope with inaccurate and/or
punctual errors in the estimation, we have preferred the sim-
ple and efficient solution exposed above for the experiments
presented in Section IV.

Additionally to the tracking, a labelling of the retrieved
TDOA is necessary when there are two sound sources. The
goal is to associate each τi to the desired τ∗i so that the task
can be correctly completed. In the case of two sound sources,
the labelling problem is trivial. Indeed, if we consider the
working space as the half plane in front of the microphones,
the ordinality of τi(t) and τ∗i is the same. Namely if τ∗1 < τ∗2
then τ1(t) should be lesser than τ2(t). As shown in Fig.3,
it is obvious that each pose of the microphones in the
environment can be characterized by the circumscribed circle
on which the corresponding angles α1 and α2 have always
the same order.

C. Overcoming missing measurements with a prediction
model

By linking the features measurement to the control input,
it is also possible to predict the evolution of the features in
the next time frame. Given τ as the state x and the velocity
q̇ applied to the robot, a local prediction model based on the
Jacobian matrix (5) is simply given as follow:{

ẋ(k) = Jτ q̇
x(k + 1) = x(k) + Teẋ(k)

(21)

in which Te refers to the sample time of the control loop.
Nonetheless the predicted τ is not as accurate as the genuine
TDOA, because of the approximation L̂τ used in (6) in which
`i = ̂̀

i. Several methods such as state space observer [4]
could be used to obtain a better estimation of ̂̀i , but the
closed-loop control scheme is sufficiently robust to cope with
a rough approximation of `i.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The experiments were conducted with a Pioneer 3DX
robot on which two omnidirectional microphones are set as
illustrated on Fig. 4. These microphones were connected to a
sound card 8SoundsUSB [1] so that the sound was processed
in real time. The sound card operates at a frequency of 48
kHz, and provides windows frames of 256 samples. The
TDOA is computed from 10 consecutive windows frames
(e.g 50 ms), that are sub-sampled at 16 kHz. Processing the
sound signal at a frequency of 16 kHz gives two advantages:



d 0.31 m

c 343 m.s−1

̂̀
i 1 m

A 0, 00090379 s

λ(x) 5e(−4000x)

Fig. 4: Experimental settings

better results are obtained from uttered speeches by not
considering high frequencies and the processing time is
reduced with less samples to analyze. Consequently, the
global control framerate is around 12 Hz. The environment
consists in a room with a reverberation time (RT60) of
approximately 580 ms. Moreover, the measured signal-to-
noise ratio (SNR) is around 20 dB in presence of typical
noise such as computer noise and ventilation in the room.
We processed two experiments detailed in the next sections
and in Fig. 5. The parameters given in Fig. 4 are used for
both experiments. An adaptive gain λ(x) in which x refers
to the infinity norm of the error e is used to smooth the robot
motion. The accompanying video to this paper illustrates the
results obtained.

(a) (b)

Fig. 5: In experiment (a), one moving sound source is considered,
the goal is to maintain the microphones in the direction of the
sound source (τ∗ = 0). In experiment (b), two still sound sources
are considered and the goal is to reach the circle that defines the
set of solution where τ1 = τ∗

1 and τ2 = τ∗
2 .

B. Sound-based control with one moving sound source

In this experiment we considered one sound source that
corresponds to a female voice recording of 10s played in
loop. The goal of the experiment is to maintain the robot
oriented in the direction of the sound source. In the first step
the robot is randomly oriented and τ∗ is set to 0, while the
sound source is 1.5 m away from the robot. In this part of
the experiment the robot correctly positioned itself in the

direction of the static sound source, as illustrated by the
exponential decrease of the error during the 5 first seconds in
Fig.6a. Subsequently the sound source was moved from one
side in the environment and at different distances. As a result,
the robot constantly moved in the direction of the source,
despite spurious measurements due to reverberation or noise.
Indeed we can notice in Fig. 6c several false measurements
represented by the green dots not tracked by the system.
The effect of the noise can also be denoted by the aligned
green dots at α = 90◦ during all the frames of the task.
Nonetheless, the task is correctly achieved since the lag
between the robot orientation and the desired one did not
exceed 10◦ despite the low dynamic response of the mobile
robot. Nevertheless this tracking error could be reduced by
introducing an integrator in the control law or more advanced
control techniques [3].
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Fig. 6: Experiment with the robot tracking one moving sound
source.

C. Sound-based control two static sound sources

In this experiment, besides the female speech we added
a second sound source corresponding to a burst of white
Gaussian noise of 25 ms followed by 25 ms of silence
played in loop. This time, the objective is to reach a pose
where τ∗1 = −τ∗2 with α1 = 50◦. From a pose fulfilling
that condition, the system extracted τ∗1 and τ∗2 in the first
step. After, starting from a pose around 3 meters away
from the sources, the system automatically initialized and
labelled τ1(t0) and τ2(t0). The results in Fig. 7 show a
correct initialization followed by the completion of the task.
Once again, corrupted TDOA estimations occurred during
the robot motion but were coped with the tracking routine.
More precisely the spurious TDOAs were caused by echoes
following the same dynamic as the real TDOAs. This could



be expected since the echoes appear as virtual sound sources.
Moreover the noise effect is still present with observation
of peaks for α = 90◦ during most of the frames. Despite
these poor observations, the error of the measured TDOAs
successfully converges to zero while the robot followed a
straight and smooth trajectory in the direction of the circle
to be reached and with a correct orientation.
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Fig. 7: Experiment with two sound sources

V. CONCLUSION

In this paper, the sound-based control approach proposed
in our previous work [8] has been validated for the first
time with experiments on a mobile robot. The obtained
results show the effectiveness and the benefits of this method
in the case of one moving and two fixed sound sources.
First, this method is robust to reverberation and noise since
this type of sensor-based approach can cope with false and
missing measurements. Punctual errors and approximation in
the TDOA estimation do not compromise the good progress
of the task. Therefore this approach reduces the complexity
of TDOA pre-processing computation (for instance noise
filtering or dereverberation) besides simplifying the TDOA
tracking process.

In the case of one sound source, we have been able to
correctly orient the robot in the direction of one moving
sound source. This task was performed in real time. This
result is a clear contribution to robot hearing since we
obtained similar results to array-based localization without
complex filtering methods such as Kalman or particle filter
while using only two microphones. Therefore applying this
method to binaural hearing which is known as less robust
than array-based localization can overcome this flaw.

In the second experiment, we have been able to correctly
position the robot with respect to two sound sources. The

robot successfully reached a pose characterized by the de-
sired bearing conditions. Furthermore the tracking of the
two sound sources were correctly performed among a set
of spurious and altered TDOA estimations.

This kind of positioning task can have many uses for
multi-robot applications. Indeed when considering robots that
have to move according to the rest of the group, taking into
account the hearing sense seems particularly suitable.

Ongoing work concerns the use of different auditory cues
in a similar sensor-based control framework. Interaural phase
difference, interaural level difference or sound energy are
also features to prospect in order to achieve different and
various tasks. Experimental extension to more sound sources
and different robots is also intended in a near future.
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