QUT

Queensland University of Technology
Brisbane Australia

This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Chen, Zetao, Jacobson, Adam, Erdem, Ugur, Hasselmo, Michael, & Mil-
ford, Michael

(2014)

Multi-scale bio-inspired place recognition.

In Tan, J & Hamel, W R (Eds.) Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA 2014).

Institute of Electrical and Electronics Engineers Inc., United States of
America, pp. 1895-1901.

This file was downloaded from: https://eprints.qut.edu.au/73412/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ICRA.2014.6907109



https://eprints.qut.edu.au/view/person/Chen,_Zetao.html
https://eprints.qut.edu.au/view/person/Jacobson,_Adam.html
https://eprints.qut.edu.au/view/person/Milford,_Michael.html
https://eprints.qut.edu.au/view/person/Milford,_Michael.html
https://eprints.qut.edu.au/73412/
https://doi.org/10.1109/ICRA.2014.6907109

Multi- scaleBio-inspired Place Recognition

Zetao Chen, Adam Jacobsorgud M. Erdem, Michael E. Hasselmo and Michael Midl

Abstract— This paper presents a novelplace recognition
algorithm inspired by the recent discovery oloverlapping and
multi- scale spatial maps in the rodent brair We mimic this
hierarchical framework by training arrays of Support Vector
Machines to recognize places at multiple spatial ates Place
match hypotheses are then crosgalidated across all spatia
scales, a pocess which combines the spatial specificity of tt
finest spatial map with the consensus provided by broade
mapping scales. Experiments on threereal-world datasets
including a large robotics benchmark demonstrate that
mapping over multiple scales uniformly improves place
recognition performance over a single scale approaciwithout
sacrificing localization accuracy We present analysis tha
illustrates how matching over multiple scales leads to bette
place recognition performanceand discuss sevell promising
areas for future investigation.

. INTRODUCTION

Robotic mapping and localizatiaystems typically opere
at either one fixed spatial scale, or over two, biming a
local and a global scale [1-3]. In contrasizent high profile
discoveres in neuroscience have indicated that animatd)
as rodents, navigate the world using multiple pelrmaps,
with each map encodintpe world at a specific spatial sci
[4, 5]. The multiscale rodent mapping system consist:
neurons that encode areaanging from several square
centimetres to several square meters, with maeyrmddiate
scales represented in-between. Unlike hybrid
metric-topological multiscale robot mapping systems, rod
maps are homogeneous, distinguishable only scale.
Although theoretical studidsave highlighted computation
benefits of a multi-scale mapping systemqp no real world
experiments have been done to investigate theseipigs.
In this paper, we present a biologicaithgpiredmulti-scale
mapping systemrmimicking the rodent mul-scale map. Our
approach utilizes multiple arrays of Support Vect
Machines, with each arraytrained to perform plac
recognition at a specific spatial scalend a procesfor
combining place recognition hypotheses from theéferdnt
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spatial scales (Figure .1)Unlike traditional probabilisti
robotics methods, where spatial specificity is pedg
determined by sensor observation models, our aph
intentionally creates parallel training syms to map the
sensor input to the environment at different spatiales
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Figure 1. lllustration of our multcale place recognition syste
Multiple paralel SVMs are trained to recognize placesdifferent
spatial scales ahfilter out hypotheses not supported by all scdle
this example, the number one ranked match at tgheht spatic
precision (yellow)is not supported by matches at lower spi
precisions In contrast, the second ranked match is suppateall
scales and is consequently correctipsen as the place ma

We conduct experiments dhree real world datasets and
compare single- and mukieale place recognitic
performance.We extend an initial pilot study8] by
presenting a new, adaptive method for combiningi-scale
spatial hypotheses based on SVM firing score, rdttan the
manual approach described in].[8or the first time the
method is able to achieveuaiform improvement across all
presented studies, improving tteeall rate at 100% precisic
by an average factor of 77%/e present a new visualizati
method that illustrates how place hypotheses derdifit
scales are combined apdesent for the first time results
the benchmark 70 km Eynsham dat:

The paperis organized as follows. Section Il discus
relatedplace recognition and mapping techniques. In Se:
Il we describethe components of the mi-scale place
learning system. Experiments goeesentecin Section IV,
with results showrin Section V. linally we conclude the
paper in Section VI by discussioggoing and future wor

II.  BACKGROUND

In this section, we summarizéngle- and two-scale robotic
mapping methods and describecent evidenceregarding



multiple parallel mapping systems in the mammaltieain.
A. Robotic Mapping Methods 6, 7]

There has been extensive research in robotics mgrid
localization [9] over the past two decades. Since camera%’ RatSLAM
have become a common sensor modality in many rob®he approach described here is perhaps most closlaked
platforms, a large number of vision-based mappimdjElace to the RatSLAM system. RatSLAM is a computationaliel
recognition algorithms have been proposed. Herdrefly  of the part of the rodent brain thought to be resjide for
discuss some of the key systems, although théslisy no mapping called the hippocampus. The system creates
means exhaustive. simplified single-scale neural spatial map simitar that
Some of the most significant vision-based mappind a stored in the MEC [5]. RatSLAM has been demonstr&iea
localization algorithms proposed over the past dedaclude number of experiments mapping large environmet$ ¢r
FAB-MAP [10, 11], MonoSLAM [12], RatSLAM [13-16], over long periods of time [14]. Much of the repestional
FrameSLAM [17] and SeqSLAM [18, 19]. Those methodpower of RatSLAM is drawn from the temporal dynasnid

been shown to have a number of theoretical advastag
including efficient mapping of arbitrarily large Wronments

primarily focus on performing localization at orbeefd scale.

Hybrid approaches combine local and global mapping

techniques. Atlas [1] is a hybrid SLAM algorithm igh
combines existing small-scale mapping algorithmsh vé
global topology to achieve real-time large-scalgigetion.

the network over time.
I1l.  APPROACH ANDMETHODOLOGY

Our overall approach comprises three stages: infeagere
extraction, place learning and place recall at esgétial

Similarly, a hybrid extension to the Spatial Sermant scale, and combination of place match hypotheses &ach

Hierarchy [2, 3] builds local maps using metric ABLL

methods but represents the structure of large-sspiee
using a topological map. The mapping frameworkthese
and other approaches have generally been limitetivto
distinct scales and heterogeneous, in that diffetgres of
maps are used at different scales. Interestingéycbncept of

investigated in the temporal rather than spatiahaio [20].
B. A Multi-Scale Neuronal Map

In contrast to mobile robots, which are typicalhhocapable
of operating within one specific type of environrhesats are
the second most widespread mammal after humand.réts
found in Alaska are genetically similar to “urbardts that
spend their time living in the walls of a housesewer, as are
burrow rats that never come above ground and ixatsy lin
an open air Asian market or Australian garbage durgis

across all these environments map and perform plaé1
machinery:

recognition using the same neuronal
Underpinning these impressive rodent capabilitiss ai
sophisticated sensory processing and mapping system

The rodent entorhinal-hippocampal (EC) formationd a

more specifically thenedial entorhinal cortex (MEC) stores
spatial information (a map) in the form of a highggular,
grid-like representation of space [5].
spatially-responsive cell in MEC is called a “gricéll [5] —
grid cells fire whenever the rodent (and likely eatanimals
such as bats [21]), is located at a vertex of aleeggrid of
locations over the environment. Recent evidenceshasvn
that grid cells encodemultiple, discrete scales of grid

locations, in steps of2 [4]. The area encoded by a cell at

each grid vertex can vary from a few square certaseto
tens of square metres. The upper limit, if therene, is
unknown. This integrated, multi-scale representati@as

The primary

scale to produce an overall place match hypothesis.

A. Feature Extraction

Dimensional reduction was performed before the &sag
were input to the SVMs. We implemented two commonly
used feature extraction methods — Principal Compbne
multiple scale maps has perhaps been most thorpuginalysis (PCA) and Gist.

1) Principal Component Analysis
PCA [22] is an efficient dimensional reduction nedhWe

applied PCA to down sampled camera images (32x4@) a

selected the top 38 principal eigenvectors, reptasg 90%
of the dataset variance.

2) Gist

A variety of experimental studies have demonstrateat
humans perform rapid categorization of a scene
integrating only the coarse global information gist” [23,
]. Using the model proposed by Oliva [25], werasted
ist features from down sampled (128x40) imagesltiag
In a 512-dimensional feature. We then extractedtdipe32
principle eigenvectors, which captured approxine®@% of
the total variance.

B. Learning Algorithm

We chose Support Vector Machines (SVM) [26] to teand
recall places based on their ease of use (in cirivamore
biologically plausible models such as continuousaator
networks [15]) and applicability to the place rewiign

by

problem, where both positive and negative placecmat

training exemplars are available.

We denote the data and its labe(asy;) wherex; € RV
is an N-dimensional feature apgde {+1,—1} is its label.
With the assumption that the data can be sepatated

hyperplane in some Hilbert space H, we search Her t

optimal separating hyperplane that maximizes issagice to



the closest points in the training data, resultimga 1) Finding Overlapping Hypotheses

discriminant function: To identify overlapping place recognition hypottese
m (consistent place matches reported at every mapgnate,
f() =2 ay K, )+b (1) see Fig. 3), we first normalize the reported plag®gnition

i=1
The sign off (x) indicates the classification result amd
and b can be found by solving a constrained miration
problem, efficiently calculated using the SMO algon

matches to the scale space of the smallest segimenForK
arrays of SVMs, after normalization the matchingrss of
each array are:

[27]. Because visual place recognition data is dsiby My, p=1....K (3)
non-linearly separable, a slack variable is intastl to fomeshee >
enable violations of the classification margin wehil ) 2

minimizing the classification error. A parametércontrols H

this trade-off. Matching

The kernel functiork (x;, x) maps the input data to a high s B B enk

dimensional feature space H where the non-linesabarable
data may be separated linearly. Here we use thel@nioRBF
kernel.

Increasing Spatial Specificity
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C. Place Recognition using an Array of SYMs D, matching >

scores

s ; n&E'SI@ Figure 3. Overlapping SVM matching scores are coetbat the
Each array of SVMs pmduces a flrlng matrix rep the smallest spatial scale in order to accept or rgjkecte match

matching scores of the testing segments on theeleBVMs. hypotheses. In this case, K =3.

The left matrix in Figure 2 shows a summary of S¥iNhg . )
scores over a 20 segment test dataset when comjpaaez0 Suppose there ark, training segments for the matching
segment training dataset. ElemeM(i,j) indicates the scoreM,,. For a segmentin a test data set, its coherence
response of thé" SVM from a training dataset to tj€ measurement on each training segmeit j),i=1...L,

segment in a test dataset. Similarly, tHecolumn provides a depends on whether there are spatially overlapping
place recognition distribution over all traininggseents. hypotheses over all SVMs scales. Without supporglht

Firing scores are normalized to sum to one for galelte spatial scales, the system reports “no coherentémig = 0):
recognition distribution:
1, My(i,j) > 0, Vp

MG, j) MG @) c@i,j) = { 4)
) ZM(i, ) 0, else
! 2) Finding the Best Overlapping Match Candidate
D. Multi-Scale Place Matching Verification It is possible to have multiple competing placeoggttion

Place recognition hypotheses produced by each afay hypotheses supported by all other spatial scalesgetermine

SVMs are only as accurate as the average sizeegraentin the most likely hypothesis, we sum the firing seooé the
that array. For example, in Figure 2, if a 1000 rméong overlapping SVMs at each spatial scale and classifyneni

dataset traversed at approximately constant spedivided to the clas« (j)with largest accumulative firing scores:

into 20 segments (left, Figure 2), place matches arly c(i) = UMD, Vel i) =1 5
accurate to a 50 meters, compared to 25 metersidor () = arg max; 2, My (i, ), ve(i.j) ®)
segments and so on (right, Figure 2). Here we pteae IV. EXPERIMENTAL SETUP

two-step method for combining place recognitiondteses

. ) In this section, we describe the data sets usedren&VM
at these different spatial scales.

training procedure.
A. Datasets

Three datasets are tested in this experiment wthild
summarized in Table I. Each dataset consists ottaue@rses
along the same route with the first traverse usedréining
and the second traverse for testing.

The Eynsham dataset (Figure 4a) is a large 70 km
Figure 2. An example confusion matrix showing thstribution of road-based dataset (2 x 35 km traverses) .us_ede”ilmi
SVM scores over an input dataset comprising 20 seggr(left) and 40 ~ FAB-MAP and SeqSLAM studies. Panoramic images were
segments (right). captured at 7 meter intervals using a Ladybug 2ecam
We also performed experiments on two additionahsizts




first in [8], in order to demonstrate the improvement fi
using the new multi-scale conmiaition processThe Rowrah
dataset was collected from a forwdading camera mounte

on a motorbike. The &npus dataset wecollected using a

GoPro Hero 1 camera mounted on a bicycle pushednl
experimenterDataset descriptions are provided in Tat

TABLE |
DATASET DESCRIPTIONS
Number of Distance between
Dataset Name Total Distance Frames per frames
Traverse
Eynsham 70 km 9575 6.7 m (median)
Campus 1.6 km 1000 1.6 m
Rowrah 2k m 1570 1.2¢€

Figure 4.The (a) 70 km Eynsham, (b) 2 km Rowrah and (ckin¢
Campus environment, each of which consists of teserses along tt
same route

B. Ground Truth

We used the 40 metre tolerance Gd&8ived ground trut|
provided with the Eynsham dataseatonsistent withthe
tolerance used in the original FABAP study[10]. Ground
truth for the Rowrah and Campdsatasets was obtained
interpolating manually selected frame corresponesi

C. Training and Testing Procedure

Images from the first traverse of the environmeatemsec
for training while images from the second travexsee use(
to evaluate performance. The overall training pdoce
consisted of the following three stepsitalselsegmentation,
feature extraction and SVM training.

1) Dataset Segmentation

The images in each dataset were grouped into babf
subsequent segments (S/2 segments per traviFor the
sake of intuition, in the later experiment resulg, referto
different SVM arrays by the spatial siemcoded by eac
segment. For example, the Eynsham dataset corains
frames and therefore splitting it into 320 segmefit€0
segments per traverse) resulte@n average segment size
30 frames, representing approximately 200 me

Place recognition using segment size of 200 meteis
only accurate to a distance 200 metersTo achieve more
precise place match reporting, we segmented thdlest
spatial scale for the Eynsham dataset using ovgrig)
segments offset by 6 framesrresponding to approximate
40 meters (Figure 5ror example, segment 1 covframes 1
to 30 segment 2 overlaps segment 1 and coframes 7 to
36. Larger segmerdizes were not overlapp: We trialed a

variety of segment sizeksted in Table I

Figure 5.The Eynsham dataset was divided into overlappiggsats
in order to increase the spatial precision of laeg@matching proces

TABLE Il
DATASET SEGMENTATION AND SEGMENT SIZES

Number of Segments Eynsham (m) Campus (m)  Rowrah (m)

320 200

160 400

80 800

30 53 67

43 40 47

90 22

170 9

2) Feature Extraction

Two feature types (as discussed in Section llwere
extracted from each dataset. The feature vectam fall
frames in a segment were consolidated into a simgétor

and input into each of the SVMs.

3) SVM Training

To train a SVM model for each seent, we labeled the
images in that segment as positive exais and other%1)
groups of imageas negative exampleCross validation was
used to choose optimal values for the kernel w8 and the
slack variableC.

V. RESULTS

We present three sets of resultstheEynsham dataset —
performancecomparison between single and m-scale
place recognition, ground truth plots and illusua
multi-scale place recognition combination pl We also
summarize performance time Rowrah and Campus datas

A. Single- and Multi-scale Place Recognition

This section presents precision recall (PR) curgsslting
for the single- and mulcale place recognition experime
using Gist and PCA featuresn the Eynsham data
(Figures 6 and 9)Two set of combinations are shov—
“combined200 400 meter system” and “comkd 200 400
and 600 meter systemas well as results from using a sin
200 meter scale. Figures 7 anddiSplay the relative errc
rate (humber ofalse positives divided by the total numbe:
recalled frames)¥or one, two and three spatial scales
varying recall rates.

Multi-scale  matching consistently

improves the



performance. Using Gist features, the recall ratd %
precision improves by a factor of nearly 3 from 8%ing a
single-scale to 28% when using three scales.

corresponding improvement using PCA features isfid%

to 23%. Using two scales results in an intermediate

performance improvement. Matching coverage is ixedbt
evenly distributed throughout the dataset, withléingest gap
at 100% precision measuring approximately 2 knength.

Although our focus is on the improvement potential Wz

offered by adopting a multi-scale approach, we pg®v
absolute comparison metrics here. The maximum Ireats

The

Coverage Plot at 28% recall and 100% precision
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Figure 8. Place recognition coverage at 100% precand 28% recall

of 28% at 100% precision is superior to the baselin on the Eynsham dataset. Coverage is generallytiittd with a worst
FAB-MAP performance, comparable to the motion-model 63S€ 9ap approximately 2 km long.

FAB-MAP performance and less than the approximaaeBs
recall achieved with FAB-MAP using both a motion dab
and epipolar geometric verification, and comparabline 20
frame SeqSLAM implementation [18].

Precision Recall Curve using Gist feature on Eynsham dataset
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Figure 6. Precision recall curves demonstratingsthgle- (“200 meter
system”) and multi-scale ((“combined 200, 400 mefgstem” and
“combined 200, 400 and 800 meter system”) placeogeition
performance using gist feature on the Eynsham efatas

Error Rate Comparison Using GIST Features
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Figure 7. Error rates using (from left to righteach bar cluster) one,
two or three spatial mapping scales at variousllreates using Gist
features.

B. Ground Truth Plots

Figure 11a-b presents ground truth plots showiegtithe
positives (green circles), false positives (blueasgs) and
false negatives (red stars) output by the singiethree-scale
systems for the Eynsham dataset at an identicall reate.

Precision Recall Curve using PCA feature on Eynsham dataset
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Figure 9. Precision recall curves demonstratingsthgle- (“200 meter
system”) and multi-scale (“combined 200, 400 medgstem” and
“combined 200, 400 and 800 meter system”) placeogeition
performance using PCA feature on the Eynsham datase
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Figure 10. Error rates using (from left to rightdgach bar cluster) one,
two or three spatial mapping scales at variouslireates using PCA
features.

C. Multi-hypothesis Combination Plots

Figures 1lc-f show examples of how place match
hypotheses at varying scales are combined together.
general, a large number of false positives at theallsst
spatial scale (bottom yellow row) are eliminatee da lack
of support from larger spatial scales. The examlgg-d)
show how secondary ranked spatially specific matcire
correctly chosen as the overall place match dusupport
from other spatial scales. In (e) the best rankeatially
specific match is correctly supported by the othpatial

Straight lines connect the matching segments. Thgales, while (f) shows a failure case where tkerirct &'

introduction of multiple matching scales removesstraf the
false positive matches from the single scale res#trther
analysis of the multi-scale false positive matcprisvided in
the following subsection.

ranked spatially specific match is more stronglyparted by
the other spatial scales than th& ranked and correct
spatially specific match.



D. Campus and Rowrah Dataset

In these two datasets, the proposed method imprihe
recall rate by an average factof 74.7% across all
experiments at 100% precisiobhis performance represer
a 34% improvement in the recall ratel@0% precisio over
that presented in the original study.[8]larger improvemer
is achieved using Gist than PC#;100% precision, the reci
rate for Gistwas improved by an average of 81.7% ove
experiments, versus 67.9% for PCA.

VI.

We have demonstrated that implementir multi-scale
place recognition systemimproves place recogniti
performance by combining tlmitput from parallemapping
frameworks each trained to recognize places at a spe
spatial scale. Although this paper presents a pevisual
preprocessing techniques and learning mechaniswe
believe that the novel mulseale combination concept shol
generalize tother sensor types, sensor processing sch
and learning method#n this section we discuss several al
of current and future work.

The currensystem assumes that the camera is moving
constant speed during theaining and testing stage

DiscussIiON ANDFUTURE WORK

Incorporating an odometry source will allow the teys to
allocate segments directly based on spatial distatravellec
rather than (in effect) time.Moreover, incorporatin
odometry information will enable us to expand ourrent
system to twadimensional unconstrained movement in le
open environments. Testing the system in open
environments will be more analogous to many cumredént
experiments andnay increase the likelihood of generat
neuroscience insights.

The next step beyond odomedriven segmentation is
datadriven segmentation, where an environment
segmented based on local sdHhilarity. Such an approach
would avoid ineficient representations of large bland sps
with small spatial scale maps. Furthermore, indaoper
spaces, precise localization is often not pos¢ in such a
situation it may be possible tall back to aless spatially
specific place recognition timate that uss broader visual
cues. It may alsde possible to improve the algorithn
efficiency by performing selective hypothesis vatidn
using a “topelown” approach; only searching for finer sc
place matches in areas of a map that are matct the
broadest level.

Recent work using RatSLAM has shown that biolodyc

- Correct Match
Incorrect Match

" Testing Segments
Tralnmg Segmems

s LA, /_//

///////\\\ /////////

Frame Space @ Frame Space _
= Tr .
g 112 z a4 3 5 1 IE
a1 I | = B B R
ki 1 i M B ]
il 3 26 5 a1 il ss 3 17 4z
o 6 | ° | 1l

Frame Spaca N Frame Space _

*
>

: 1 |2 g B 1| 2
il B
|| 1 | B 11
j a
4 g
g g 413 5 2 6
2|52 3l 4 6 =
| (o] v 253 6

Figure 11. Ground truth plots for tif&) single and (b) mu-scale Eynsham datasét-d) show examples of second-ranked spatially
specific place matches (yellow) that became thagny overall place match hypothesis due to sudpmm other spatial sces. In (e) th
first ranked spadilly specific match is supported, while (f) showiidure case where a secondary ranked spatiadlgip match i<

incorrectly chosen as the overall match due to remyeificant support from the other spatial scéhes the correct, fir ranked spadilly

specific match.



inspired algorithms can perform online sensor fasto

enable place recognition in changing environmentfﬂgl

conditions, such as over day-night cycles [28, 28h

obvious extension to this research would be to ase

multi-scale mapping framework to exploit the vatiaspatial

specificity of different sensor modalities, such casneras,
range finders and WiFi. By integrating these msénsor

fusion systems with a biologically-inspired, mudtale

mapping framework, it may be possible to combineirth
functional capabilities to produce a highly capalgeneral

purpose robot mapping and navigation system.
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