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Abstract— This paper presents a novel 
algorithm inspired by the recent discovery of 
multi- scale spatial maps in the rodent brain.
hierarchical framework by training arrays of
Machines to recognize places at multiple spatial scales.
match hypotheses are then cross-validated across all spatial 
scales, a process which combines the spatial specificity of the 
finest spatial map with the consensus provided by broader 
mapping scales. Experiments on three real
including a large robotics benchmark demonstrate that 
mapping over multiple scales uniformly improves place 
recognition performance over a single scale approach 
sacrificing localization accuracy. We present analysis that 
illustrates how matching over multiple scales leads to better 
place recognition performance and discuss severa
areas for future investigation. 

I. INTRODUCTION 

Robotic mapping and localization systems typically operate
at either one fixed spatial scale, or over two, combining a 
local and a global scale [1-3]. In contrast, recent high profile 
discoveries in neuroscience have indicated that animals, such 
as rodents, navigate the world using multiple parallel 
with each map encoding the world at a specific spatial scale 
[4, 5]. The multi-scale rodent mapping system consists of 
neurons that encode areas ranging from 
centimetres to several square meters, with many intermediate 
scales represented in-between. Unlike hybrid 
metric-topological multi-scale robot mapping systems, rodent 
maps are homogeneous, distinguishable only by 
Although theoretical studies have highlighted computational 
benefits of a multi-scale mapping system [6, 
experiments have been done to investigate these principles. 

In this paper, we present a biologically-inspired 
mapping system mimicking the rodent multi
approach utilizes multiple arrays of Support Vector 
Machines, with each array trained to perform place 
recognition at a specific spatial scale, and a process 
combining place recognition hypotheses from these different 
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spatial scales (Figure 1). Unlike traditional probabilistic 
robotics methods, where spatial specificity is passively 
determined by sensor observation models, our approach 
intentionally creates parallel training syste
sensor input to the environment at different spatial scales.

Figure 1. Illustration of our multi-scale place recognition system. 
Multiple parallel SVMs are trained to recognize places at 
spatial scales and filter out hypotheses not supported by all scales. In 
this example, the number one ranked match at the highest spatial 
precision (yellow) is not supported by matches at lower spatial 
precisions. In contrast, the second ranked match is supported at all 
scales and is consequently correctly chosen as the place match.

We conduct experiments on three
compare single- and multi-scale place recognition 
performance. We extend an initial pilot study 
presenting a new, adaptive method for combining multi
spatial hypotheses based on SVM firing score, rather than the 
manual approach described in [8]
method is able to achieve a uniform
presented studies, improving the recall rate at 100% precision 
by an average factor of 77%. We present a new visualization 
method that illustrates how place hypotheses at different 
scales are combined and present for the first time results on 
the benchmark 70 km Eynsham dataset.

The paper is organized as follows. Section II discusses 
related place recognition and mapping techniques. In Section 
III we describe the components of the multi
learning system. Experiments are presented 
with results shown in Section V. F
paper in Section VI by discussing ongoing and future work.

II. BACKGROUND

In this section, we summarize single
mapping methods and describe recent evidence 
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multiple parallel mapping systems in the mammalian brain. 

A. Robotic Mapping Methods 

There has been extensive research in robotics mapping and 
localization [9] over the past two decades. Since cameras 
have become a common sensor modality in many robot 
platforms, a large number of vision-based mapping and place 
recognition algorithms have been proposed. Here we briefly 
discuss some of the key systems, although the list is by no 
means exhaustive.  

Some of the most significant vision-based mapping and 
localization algorithms proposed over the past decade include 
FAB-MAP [10, 11], MonoSLAM [12], RatSLAM [13-16], 
FrameSLAM [17] and SeqSLAM [18, 19]. Those methods 
primarily focus on performing localization at one fixed scale.   

Hybrid approaches combine local and global mapping 
techniques. Atlas [1] is a hybrid SLAM algorithm which 
combines existing small-scale mapping algorithms with a 
global topology to achieve real-time large-scale navigation. 
Similarly, a hybrid extension to the Spatial Semantic 
Hierarchy  [2, 3] builds local maps using metric SLAM 
methods but represents the structure of large-scale space 
using a topological map. The mapping frameworks in these 
and other approaches have generally been limited to two 
distinct scales and heterogeneous, in that different types of 
maps are used at different scales. Interestingly, the concept of 
multiple scale maps has perhaps been most thoroughly 
investigated in the temporal rather than spatial domain [20]. 

B. A Multi-Scale Neuronal Map 

In contrast to mobile robots, which are typically only capable 
of operating within one specific type of environment, rats are 
the second most widespread mammal after humans. Wild rats 
found in Alaska are genetically similar to “urban” rats that 
spend their time living in the walls of a house or sewer, as are 
burrow rats that never come above ground and rats living in 
an open air Asian market or Australian garbage dump. Rats 
across all these environments map and perform place 
recognition using the same neuronal machinery. 
Underpinning these impressive rodent capabilities is a 
sophisticated sensory processing and mapping system. 

The rodent entorhinal-hippocampal (EC) formation, and 
more specifically the medial entorhinal cortex (MEC) stores 
spatial information (a map) in the form of a highly regular, 
grid-like representation of space [5]. The primary 
spatially-responsive cell in MEC is called a “grid” cell [5] – 
grid cells fire whenever the rodent (and likely other animals 
such as bats [21]), is located at a vertex of a regular grid of 
locations over the environment. Recent evidence has shown 
that grid cells encode multiple, discrete scales of grid 
locations, in steps of √2 [4]. The area encoded by a cell at 
each grid vertex can vary from a few square centimetres to 
tens of square metres. The upper limit, if there is one, is 
unknown. This integrated, multi-scale representation has 

been shown to have a number of theoretical advantages 
including efficient mapping of arbitrarily large environments 
[6, 7]. 

C. RatSLAM 

The approach described here is perhaps most closely related 
to the RatSLAM system. RatSLAM is a computational model 
of the part of the rodent brain thought to be responsible for 
mapping called the hippocampus. The system creates a 
simplified single-scale neural spatial map similar to that 
stored in the MEC [5]. RatSLAM has been demonstrated in a 
number of experiments  mapping large environments [16] or 
over long periods of time [14].  Much of the representational 
power of RatSLAM is drawn from the temporal dynamics of 
the network over time. 

III.  APPROACH AND METHODOLOGY 

Our overall approach comprises three stages: image feature 
extraction, place learning and place recall at each spatial 
scale, and combination of place match hypotheses from each 
scale to produce an overall place match hypothesis. 

A. Feature Extraction   

Dimensional reduction was performed before the images 
were input to the SVMs. We implemented two commonly 
used feature extraction methods – Principal Component 
Analysis (PCA) and Gist. 

1) Principal Component Analysis 

PCA [22] is an efficient dimensional reduction method. We 
applied PCA to down sampled camera images (32×10) and 
selected the top 38 principal eigenvectors, representing 90% 
of the dataset variance. 
2) Gist 
A variety of experimental studies have demonstrated that 
humans perform rapid categorization of a scene by 
integrating only the coarse global information or “gist” [23, 
24]. Using the model proposed by Oliva [25], we extracted 
Gist features from down sampled (128×40) images resulting 
in a 512-dimensional feature. We then extracted the top 32 
principle eigenvectors, which captured approximately 90% of 
the total variance. 

B. Learning Algorithm 

We chose Support Vector Machines (SVM) [26] to learn and 
recall places based on their ease of use (in contrast to more 
biologically plausible models such as continuous attractor 
networks [15]) and applicability to the place recognition 
problem, where both positive and negative place match 
training exemplars are available.  

We denote the data and its label as (�� , ��) where �� ∈ �	 
is an N-dimensional feature and �� ∈ 
+1, −1� is its label. 
With the assumption that the data can be separated by a 
hyperplane in some Hilbert space H, we search for the 
optimal separating hyperplane that maximizes its distance to 



  

the closest points in the training data, resulting in a 
discriminant function:  
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The sign of �(�) indicates the classification result and �� 
and b can be found by solving a constrained minimization 
problem, efficiently calculated using the SMO algorithm 
[27]. Because visual place recognition data is typically 
non-linearly separable, a slack variable is introduced to 
enable violations of the classification margin while 
minimizing the classification error. A parameter C controls 
this trade-off.  

The kernel function �(�� , �) maps the input data to a high 
dimensional feature space H where the non-linearly separable 
data may be separated linearly. Here we use the popular RBF 
kernel.  

C. Place Recognition using an Array of SVMs 

Each array of SVMs produces a firing matrix representing the 
matching scores of the testing segments on the trained SVMs. 
The left matrix in Figure 2 shows a summary of SVM firing 
scores over a 20 segment test dataset when compared to a 20 
segment training dataset. Element �(�, �)  indicates the 
response of the ith SVM from a training dataset to the jth 
segment in a test dataset. Similarly, the ��� column provides a 
place recognition distribution over all training segments. 
Firing scores are normalized to sum to one for each place 
recognition distribution: 
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D. Multi-Scale Place Matching Verification 

Place recognition hypotheses produced by each array of 
SVMs are only as accurate as the average size of a segment in 
that array. For example, in Figure 2, if a 1000 metre long 
dataset traversed at approximately constant speed is divided 
into 20 segments (left, Figure 2), place matches are only 
accurate to a 50 meters, compared to 25 meters for 40 
segments and so on (right, Figure 2). Here we present a 
two-step method for combining place recognition hypotheses 
at these different spatial scales. 

 
Figure 2. An example confusion matrix showing the distribution of 
SVM scores over an input dataset comprising 20 segments (left) and 40 
segments (right). 

1) Finding Overlapping Hypotheses 
To identify overlapping place recognition hypotheses 
(consistent place matches reported at every mapping scale, 
see Fig. 3), we first normalize the reported place recognition 
matches to the scale space of the smallest segment size. For K 
arrays of SVMs, after normalization the matching scores of 
each array are: 
 KM p ,,1p, …=  (3) 

 
Figure 3. Overlapping SVM matching scores are combined at the 

smallest spatial scale in order to accept or reject place match 
hypotheses. In this case, K =3. 

Suppose there are ��  training segments for the matching 
score ��. For a segment j in a test data set, its coherence 

measurement on each training segment pLijic ,,1),,( …=  

depends on whether there are spatially overlapping 
hypotheses over all SVMs scales. Without support at all 
spatial scales, the system reports “no coherent” match (c = 0): 

�(�, �) = �1,  ��(�, �) > 0,  ∀ 
0,  !"#! $                 (4) 

2) Finding the Best Overlapping Match Candidate 
It is possible to have multiple competing place recognition 
hypotheses supported by all other spatial scales. To determine 
the most likely hypothesis, we sum the firing scores of the 
overlapping SVMs at each spatial scale and classify segment j 
to the class %(�)with largest accumulative firing scores: 

 %(�) = �&' max� ∑ ��(�, �),  ∀�(�, �) = 1�  (5) 

IV.  EXPERIMENTAL SETUP 

In this section, we describe the data sets used and the SVM 
training procedure. 

A. Datasets 

Three datasets are tested in this experiment with details 
summarized in Table I. Each dataset consists of two traverses 
along the same route with the first traverse used for training 
and the second traverse for testing.  

The Eynsham dataset (Figure 4a) is a large 70 km 
road-based dataset (2 × 35 km traverses) used in the [10] 
FAB-MAP and SeqSLAM studies. Panoramic images were 
captured at 7 meter intervals using a Ladybug 2 camera.  

We also performed experiments on two additional datasets 



 

first in [8], in order to demonstrate the improvement from 
using the new multi-scale combination process. 
dataset was collected from a forward-facing camera mounted 
on a motorbike. The Campus dataset was 
GoPro Hero 1 camera mounted on a bicycle pushed by an 
experimenter. Dataset descriptions are provided in Table I.

TABLE I 
DATASET DESCRIPTIONS 

Dataset Name Total Distance 
Number of 
Frames per 
Traverse 

Eynsham 70 km 9575 
Campus 1.6 km 1000 
Rowrah 2k m 1570 

Figure 4. The (a) 70 km Eynsham, (b) 2 km Rowrah and (c) 1.6 km 
Campus environment, each of which consists of two traverses along the 

same route  

B. Ground Truth 

We used the 40 metre tolerance GPS-derived ground truth 
provided with the Eynsham dataset, consistent with 
tolerance used in the original FAB-MAP study 
truth for the Rowrah and Campus datasets was obtained by 
interpolating manually selected frame correspondences. 

C. Training and Testing Procedure 

Images from the first traverse of the environment were used 
for training while images from the second traverse were used 
to evaluate performance. The overall training procedure 
consisted of the following three steps: dataset 
feature extraction and SVM training. 

1) Dataset Segmentation 

The images in each dataset were grouped into a total of S 
subsequent segments (S/2 segments per traverse). 
sake of intuition, in the later experiment results, we refer 
different SVM arrays by the spatial size encoded by each 
segment. For example, the Eynsham dataset contains 9575 
frames and therefore splitting it into 320 segments (160 
segments per traverse) resulted in an average segment size of 
30 frames, representing approximately 200 meters. 

Place recognition using a segment size of 200 meters 
only accurate to a distance of 200 meters. 
precise place match reporting, we segmented the smallest 
spatial scale for the Eynsham dataset using overlapping 
segments offset by 6 frames corresponding to approximately 
40 meters (Figure 5). For example, segment 1 covers 
to 30, segment 2 overlaps segment 1 and covers 
36. Larger segment sizes were not overlapped.

, in order to demonstrate the improvement from 
nation process. The Rowrah 

facing camera mounted 
ampus dataset was collected using a 

GoPro Hero 1 camera mounted on a bicycle pushed by an 
Dataset descriptions are provided in Table I. 
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frames 
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1.26  
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The images in each dataset were grouped into a total of S 
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sake of intuition, in the later experiment results, we refer to 

encoded by each 
segment. For example, the Eynsham dataset contains 9575 
frames and therefore splitting it into 320 segments (160 

in an average segment size of 
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segment size of 200 meters is 
200 meters. To achieve more 

precise place match reporting, we segmented the smallest 
spatial scale for the Eynsham dataset using overlapping 

corresponding to approximately 
For example, segment 1 covers frames 1 

, segment 2 overlaps segment 1 and covers frames 7 to 
sizes were not overlapped. We trialed a 

variety of segment sizes, listed in Table II.

Figure 5. The Eynsham dataset was divided into overlapping segments 
in order to increase the spatial precision of the place matching process. 

TABLE II 
DATASET SEGMENTATION AND 

Number of Segments Eynsham (m) 

320 200 
160 400 
80 800 
30  
43  
90  
170  

2) Feature Extraction 

Two feature types (as discussed in Section IIIA) 
extracted from each dataset. The feature vectors from all 
frames in a segment were consolidated into a single vector 
and input into each of the SVMs. 

3) SVM Training 

To train a SVM model for each segm
images in that segment as positive example
groups of images as negative examples. 
used to choose optimal values for the kernel width 
slack variable %.   

V. RESULTS

We present three sets of results on the 
performance comparison between single and multi
place recognition, ground truth plots and illustrative 
multi-scale place recognition combination plots.
summarize performance on the Rowrah and Campus datasets.

A. Single- and Multi-scale Place Recognition

This section presents precision recall (PR) curves resulting 
for the single- and multi-scale place recognition experiments
using Gist and PCA features on the Eynsham dataset
(Figures 6 and 9). Two set of combinations are shown 
“combined 200 400 meter system” and “combine
and 600 meter system”, as well as results from using a single 
200 meter scale. Figures 7 and 10 display the relative error 
rate (number of false positives divided by the total number of 
recalled frames) for one, two and three spatial scales at 
varying recall rates. 

Multi-scale matching consistently 
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Campus (m) Rowrah (m) 

  
  
  

53 67 
40 47 
 22 
9  

Two feature types (as discussed in Section IIIA) were 
extracted from each dataset. The feature vectors from all 
frames in a segment were consolidated into a single vector 

To train a SVM model for each segment, we labeled the 
images in that segment as positive examples and other (S-1) 

as negative examples. Cross validation was 
used to choose optimal values for the kernel width , and the 
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performance. Using Gist features, the recall rate at 100% 
precision improves by a factor of nearly 3 from 8% using a 
single-scale to 28% when using three scales. The 
corresponding improvement using PCA features is from 14% 
to 23%. Using two scales results in an intermediate 
performance improvement. Matching coverage is relatively 
evenly distributed throughout the dataset, with the largest gap 
at 100% precision measuring approximately 2 km in length. 

Although our focus is on the improvement potential 
offered by adopting a multi-scale approach, we provide 
absolute comparison metrics here. The maximum recall rate 
of 28% at 100% precision is superior to the baseline 
FAB-MAP performance, comparable to the motion-model 
FAB-MAP performance and less than the approximately 50% 
recall achieved with FAB-MAP using both a motion model 
and epipolar geometric verification, and comparable to the 20 
frame SeqSLAM implementation [18].  

 
Figure 6. Precision recall curves demonstrating the single- (“200 meter 
system”) and multi-scale ((“combined 200, 400 meter system” and 
“combined 200, 400 and 800 meter system”) place recognition 
performance using gist feature on the Eynsham dataset 

 
Figure 7. Error rates using (from left to right in each bar cluster) one, 
two or three spatial mapping scales at various recall rates using Gist 
features.  

B. Ground Truth Plots 

Figure 11a-b presents ground truth plots showing the true 
positives (green circles), false positives (blue squares) and 
false negatives (red stars) output by the single and three-scale 
systems for the Eynsham dataset at an identical recall rate. 
Straight lines connect the matching segments. The 
introduction of multiple matching scales removes most of the 
false positive matches from the single scale results. Further 
analysis of the multi-scale false positive match is provided in 
the following subsection. 

 
Figure 8. Place recognition coverage at 100% precision and 28% recall 
on the Eynsham dataset. Coverage is generally distributed with a worst 
case gap approximately 2 km long. 

 
Figure 9. Precision recall curves demonstrating the single- (“200 meter 
system”) and multi-scale (“combined 200, 400 meter system” and 
“combined 200, 400 and 800 meter system”) place recognition 
performance using PCA feature on the Eynsham dataset. 

 
Figure 10. Error rates using (from left to right in each bar cluster) one, 
two or three spatial mapping scales at various recall rates using PCA 
features. 

C. Multi-hypothesis Combination Plots 

Figures 11c-f show examples of how place match 
hypotheses at varying scales are combined together. In 
general, a large number of false positives at the smallest 
spatial scale (bottom yellow row) are eliminated due to lack 
of support from larger spatial scales. The examples in (c-d) 
show how secondary ranked spatially specific matches are 
correctly chosen as the overall place match due to support 
from other spatial scales. In (e) the best ranked spatially 
specific match is correctly supported by the other spatial 
scales, while (f) shows a failure case where the incorrect 4th 
ranked spatially specific match is more strongly supported by 
the other spatial scales than the 1st ranked and correct 
spatially specific match.  



 

D. Campus and Rowrah Dataset  

In these two datasets, the proposed method improves the 
recall rate by an average factor of 74.79
experiments at 100% precision. This performance represents 
a 34% improvement in the recall rate at 100% precision
that presented in the original study [8]. A larger improvement 
is achieved using Gist than PCA; at 100% precision, the recall 
rate for Gist was improved by an average of 81.7% over all 
experiments, versus 67.9% for PCA.  

VI.  DISCUSSION AND FUTURE W

We have demonstrated that implementing a
place recognition system improves place recognition
performance by combining the output from parallel 
frameworks, each trained to recognize places at a specific 
spatial scale. Although this paper presents a specific 
pre-processing techniques and learning mechanisms, 
believe that the novel multi-scale combination concept should 
generalize to other sensor types, sensor processing schemes 
and learning methods. In this section we discuss several areas 
of current and future work. 

The current system assumes that the camera is moving at a 
constant speed during the training and testing stages. 

Figure 11. Ground truth plots for the (a) single and (b) multi
specific place matches (yellow) that became the primary overall place match hypothesis due to support from other spatial scal
first ranked spatially specific match is supported, while (f) shows a failure case where a secondary ranked spatially specific match is 
incorrectly chosen as the overall match due to more significant support from the other spatial scales than the correct, first
specific match. 

In these two datasets, the proposed method improves the 
of 74.79% across all 

This performance represents 
t 100% precision over 

. A larger improvement 
at 100% precision, the recall 

was improved by an average of 81.7% over all 

WORK 

We have demonstrated that implementing a multi-scale 
improves place recognition 
output from parallel mapping 

, each trained to recognize places at a specific 
spatial scale. Although this paper presents a specific visual 

processing techniques and learning mechanisms, we 
scale combination concept should 

other sensor types, sensor processing schemes 
. In this section we discuss several areas 

system assumes that the camera is moving at a 
training and testing stages. 

Incorporating an odometry source will allow the system to 
allocate segments directly based on spatial distances travelled 
rather than (in effect) time. Moreover, incorporating 
odometry information will enable us to expand our current 
system to two-dimensional unconstrained movement in large 
open environments. Testing the system in open field 
environments will be more analogous to many current rodent 
experiments and may increase the likelihood of generating 
neuroscience insights.  

The next step beyond odometry
data-driven segmentation, where an environment is 
segmented based on local self-similarity. 
would avoid inefficient representations of large bland spaces 
with small spatial scale maps. Furthermore, in large open 
spaces, precise localization is often not possible;
situation it may be possible to fall back to a 
specific place recognition estimate that use
cues. It may also be possible to improve the algorithm’s 
efficiency by performing selective hypothesis validation 
using a “top-down” approach; only searching for finer scale 
place matches in areas of a map that are matched a
broadest level. 

Recent work using RatSLAM has shown that biologically 

(a) single and (b) multi-scale Eynsham dataset. (c-d) show examples of secondary
specific place matches (yellow) that became the primary overall place match hypothesis due to support from other spatial scal

ally specific match is supported, while (f) shows a failure case where a secondary ranked spatially specific match is 
incorrectly chosen as the overall match due to more significant support from the other spatial scales than the correct, first

 

Incorporating an odometry source will allow the system to 
allocate segments directly based on spatial distances travelled 

Moreover, incorporating 
odometry information will enable us to expand our current 

dimensional unconstrained movement in large 
open environments. Testing the system in open field 
environments will be more analogous to many current rodent 

may increase the likelihood of generating 

The next step beyond odometry-driven segmentation is 
driven segmentation, where an environment is 

similarity. Such an approach 
icient representations of large bland spaces 

with small spatial scale maps. Furthermore, in large open 
spaces, precise localization is often not possible; in such a 

fall back to a less spatially 
timate that uses broader visual 

be possible to improve the algorithm’s 
efficiency by performing selective hypothesis validation 

down” approach; only searching for finer scale 
place matches in areas of a map that are matched at the 

Recent work using RatSLAM has shown that biologically 

 
d) show examples of secondary-ranked spatially 

specific place matches (yellow) that became the primary overall place match hypothesis due to support from other spatial scales. In (e) the 
ally specific match is supported, while (f) shows a failure case where a secondary ranked spatially specific match is 

incorrectly chosen as the overall match due to more significant support from the other spatial scales than the correct, first ranked spatially 



  

inspired algorithms can perform online sensor fusion to 
enable place recognition in changing environmental 
conditions, such as over day-night cycles [28, 29]. An 
obvious extension to this research would be to use a 
multi-scale mapping framework to exploit the variable spatial 
specificity of different sensor modalities, such as cameras, 
range finders and WiFi. By integrating these multi-sensor 
fusion systems with a biologically-inspired, multi-scale 
mapping framework, it may be possible to combine their 
functional capabilities to produce a highly capable, general 
purpose robot mapping and navigation system. 
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