
What are Cycle-Stealing Systems Good For?
A Detailed Performance Model Case Study

Wayne Kelly and Jiro Sumitomo
Queensland University of Technology, Australia

{w.kelly, j2.sumitomo}@qut.edu.au

Abstract
The idea of stealing cycles has been hyped for some

years, boasting unlimited potential by tapping the
computational power of millions of under utilized PCs
connected to the Internet. Despite a few spectacular
success stories (eg SETI@HOME), cycle-stealing is today
not a widely used technology. We believe two principal
impediments need to be overcome. The first is ease of
development and use. Most of the problems faced in
developing cycle stealing applications are not specific to
those applications, so generic cycle stealing frameworks
such as our G2 framework can play a vital role in this
regard. The second is uncertainty. Potential developers
don’t know whether if they went to the effort of developing
a parallel application for a cycle stealing environment, it
would pay off, i.e. whether they would get a reasonable
speedup. To minimize this risk, we propose the
development and use of detailed performance models.

1. Introduction
Applications such as SETI@HOME have demonstrated

that cycles can be effectively harvested from large
collections of PCs connected via the Internet. Such
applications are ideally suited to this environment as the
tasks involved are completely independent, the sizes of the
inputs and outputs to these tasks are relatively small, yet
each task typically requires several hours of processing.
What about other classes of application - applications that
may not be embarrassingly parallel, which consume or
produce relatively more data or which require less
processing time per task? Even dedicated supercomputers
with high-performance interconnects have their limits
when it comes to achieving speedups if the computation to
communication ratio is not sufficiently high. Cycle
stealing systems which operate over the Internet have
substantially higher overheads, so what is the limit of their
applicability? Clearly there are some applications that
work effectively in this environment and others that will
not. What is crucial is a means of distinguishing without
having to implement and test empirically.

In this paper we present a detailed performance model
for our Internet cycle stealing framework, G2 [1, 2], and
show that it can be used to prescribe the properties that
applications need to exhibit in order to perform well in this
environment.

In Section 2 we outline the architecture of G2. Despite
its seeming simplicity, we found it surprisingly difficult to
accurately model the performance of G2 applications. We
started by abstracting aspects of parallel execution such as
average job execution time and job parameter sizes and
modelling the various points at which jobs and results are
queued. It soon became apparent that we needed to start by
developing a discrete event simulator for our framework
so that we could be sure that we were not overly
simplifying crucial aspects of the actual system. What
started out as a simple discrete event simulator soon turned
into a very complex and detailed simulator. This simulator
is described in Section 3. This gave us a good
understanding of how the actual system behaved at a more
abstract level, but ultimately we desired an analytical
model. As well as allowing predictions to be made more
rapidly, analytical models also allow us via investigation
of the equations themselves to discover new rules and
relationships.

What we are modelling is clearly a queuing system;
however, we had to further simplify some aspects of our
discrete event simulator in order to allow state of the art
queuing theory techniques to be applied. To determine the
extent to which such further simplification affected the
accuracy of the predictions, we constructed a simpler
simulator that reflected only those aspects of our original
simulator that could be modelled using queuing theory
techniques. This simplified simulator is outlined in Section
4 and a comparison of results obtained by the two
simulators is given in Section 7. In Section 5 we present
our analytical performance model based on Mean Value
Analysis (MVA) [3] for multi-class closed queuing
networks. In Section 7 we compare empirical performance
results to those predicted by our complex and simple
simulators and our analytical model, with conclusions in
Section 8.

2. G2 Architecture
The G2 Framework is designed to make programming

cycle stealing applications as simple as possible. It does so
by hiding application programmers from much of the
underlying physical topology, job management and
communication that takes place. To model the
performance of such a system we need, however, to delve
into these internal implementation details. This section
gives a brief overview of these details.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Figure 1: G2 Architecture

Job
Repository

Web
Server

Clients
Server

Volunteers

Submit Jobs

Fetch Results

Fetch Jobs

Submit Results

A G2 system comprises a Server that acts as clearing
house for jobs waiting to be executed and results waiting
to be collected. Client applications use automatically
generated application specific proxy classes to submit jobs
to the server via a web service interface. A job consists of
executing a programmer specified method with a given set
of parameters and can be executed completely
independently from all other jobs.

Volunteers use a web browser to launch a generic
volunteer host application that fetches jobs from the
server, executes them and submits the results back to the
server (again via a web service interface).

The volunteer host application maintains its own local
queues of jobs waiting to be executed and results waiting
to be submitted. It does this so as to pipeline the execution
of jobs - overlapping the execution of one job with the
fetching of the next job and the submitting of the previous
result. If a volunteer attempts to fetch a job and there are
none currently on the server then it sleeps for a while
before reattempting.

When results arrive back at the server they cannot be
simply forwarded to the appropriate client as we assume
conservatively that not all clients will be accessible from
the server due to firewalls etc. The only machine that we
require to be universally accessible to the other machines
making up the cycle stealing network is the server itself.
This means that clients and volunteers can be located
anywhere on the Internet provided they can contact the
server. This restriction means that the clients need to
“pull” job result off the server by means of a FetchResults
web method. To minimize network traffic each client only
ever has outstanding one FetchResults request. Such a
request returns all results currently waiting on the server
for that client. If there are no results currently present then
the request will wait (on the server side) until at least one
result becomes available.

3. A Discrete Event Simulator
In producing our discrete event simulator for G2 we

ended up producing a generic distributed computing
discrete event simulation framework. Only a small part of
the simulator deals specifically with the behaviour of the

G2 framework. Our simulation framework models a
collection of workstations connected by network links
along which IP packets flow in a FIFO fashion. Each
workstation possesses one or more CPUs which execute a
collection of local threads in a round robin fashion. The
behaviour of each thread is controlled by a finite state
machine that expresses an abstraction of the application’s
logic. Each thread state determines a task to be performed.
Some tasks are purely CPU bound, requiring a certain
number of cycles to complete, others are entirely memory
or disk bound which means they have no need for the CPU
during that period. Other tasks deal with sending and
receiving messages via a network card.

The workstations may possess network interface cards
which maintain physical I/O buffers and the ability to send
an interrupt to the workstation’s CPU when a new packet
arrives. Such workstations may implement a TCP/IP stack
which allows socket connections to be established and
maintained with other machines. The TCP protocol uses
special connect, accept and acknowledgment messages in
order to control data flow such that buffers do not
overflow. The key outcome of this mechanism from our
point of view is that receivers are able to exert backward
pressure on senders, preventing them from sending
additional packets until the receivers have caught up to a
certain extent. Figure 1 shows the components that make
up our G2 simulator.

The G2 specific parts of the system are three subclasses
of workstation for the clients, server and volunteers
respectively. The client workstation creates a job
submission thread and a fetch results thread. The volunteer
workstation creates threads for fetching, executing and
submitting. The server workstation simulates the
behaviour of the IIS web server and the G2 web service
implementation via a Listen thread which listens for TCP
connection requests on port 80. A fixed pool of recyclable
worker threads is used to process the incoming HTTP
requests on the sockets established by the listen thread.
The worker threads must first de-serialise the incoming
web service requests before being able to extract the name
of the web service method and process it appropriately
according to the abstracted semantics of that method.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Figure 1: G2 Simulator Components

Most of these web methods involve a “database” task
which consists of a series of CPU phases and memory/disk
phases. This detailed modelling was necessary in order to
accurately predict the behaviour of the server when large
numbers of web requests are being processed concurrently
as the CPU bound phase of one web request can be
overlapped with the memory/disk bound phase of another.

The transitions which the state machines make is
determined in part by G2 specific state maintained by the
client, server and volunteer components, such as the
number of jobs currently waiting to be processed on the
server or the number of results on a volunteer waiting to
be submitted. Figure 2 shows a summary of the state
machine that controls the G2 server worker threads.

The length of the ticks that control the flow of the
discrete events can be easily adjusted so as to trade-off the
accuracy of the simulation with the length of time required
to run the simulator. The number of ticks attributed to each
task for the G2 threads was determined by extensive
experimentation and various methods of profiling
designed to isolate the constituent costs. The experiments
were repeated for various parameter values and equations
fitted to the empirical data. In most cases, the equations
were linear in one or more of the input parameters.

4. Towards an Analytical Model
In order to allow analytic queuing theory techniques to

be applied we had to simplify some of the aspects that we
modelled in our original simulator. We made these
simplifications first to our simulator in order measure the
exact effect of doing so. If we had attempted to go directly
to an analytical solution we would not have known if the
(presumably) different results were due to these
simplifications or due to a flaw in the process of
translating our dynamic simulator into a static analytical
model.

Figure 2: Worker Thread State Diagram

The following simplifications were made:
o We eliminated the server multithreading.
o The CPU and memory/disk phases of the server were

amalgamated into a single service time.
o The TCP/IP elements of the communication were

dramatically simplified by incorporating all
communication costs into the request generation and
the response processing times on the clients/volunteers.

5. An Analytical Performance Model
We model the server as a multi-class FCFS queuing

centre with class dependent service times. The classes are
Submit Job (SJ), Fetch Job (FJ), Submit Result (SR) and
Fetch Results (FR). We are able to model the system as
closed since the number of requests for each class remains
constant for a given number of clients and volunteers.

Mean Value Analysis [3] tells us that the average
response time (R) of a request is equal to the average time
the request waits in the queue plus the average service
time (S) spent actually servicing the request. The average
time waiting in the queue is approximately equal to the
average number of requests (Q) in the queue multiplied by
their respective average service times:

d
cd

dccc QSQSR �++=
≠

)'1(

where the subscripts represent the various classes.

cQ ' represents the average number of requests that
would be in the queue for a closed system containing one
fewer total requests (Nc) of class c. In general, this would
require us to recursively solve the entire problem with this
reduced number of requests for this class. Doing so would
be extremely costly in both time and space, but in our
peculiar scenario it is not even valid as the numbers of
requests in each class are coupled. It is not possible for

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

example to consider a G2 system in which there is 1
FetchResult request, but 0 SubmitJob requests as without
jobs being submitted, no results will ever be fetched.
Fortunately there is a well known approximate MVA
algorithm [4] for multi-class queuing networks that solves
this problem. The approximate MVA algorithm
approximates cQ ' by:

�
�
�

�
�
�
�

� −

c

c
c N

N
Q

1
.

So, for example, we have:

FRFRSRSRFJFJ
SJ

SJ
SJSJSJ QSQSQS

N
1N

Q1SR +++��
�

�
�
�
�

� −
+=

NSJ and NFR will be equal to the number of clients while
NFJ and NSR will be equal to the number of volunteers.

Fetch results (RFR) is a little different as the
FetchResults web service is implemented asynchronously.
If there are no results for that client currently waiting on
the server, the server will wait until such a result arrives
before processing the FetchResult request. This adds an
additional wait time (W) to the response time RFR. The
average wait time W is given by the probability WP that
no results are available when the FetchResults request is
first serviced, multiplied by the average duration WD we
will have to wait for a new SubmitResult request to arrive.

If we assume the arrival of the requests follows a
Poison stream we have:

�
�

�

�

�
�

�

�
−

= FJ

SR
X
X

eWP and
SR

X
WD

1=

where Xc is the average throughput of class c.
The average queue length is given by the standard

multi-class MVA equation:
ccc RXQ =

The standard MVA equation for throughput (X) is:

cc

c
c ZR

N
X

+
=

where Zc is a lower bound on the time that the requests
will spend away from the server. This includes the time
required by the clients/volunteers to generate each new
request, the time to transport the request over the Internet
to the server, the time to transport the server’s reply back
to the client/volunteer and the time required by the
client/volunteer to process the reply before the next
request of that class can be generated.

However, we have so far ignored the fact that the four
classes of request are coupled to one another. The actual
throughputs (Xc) may therefore be lower than the above
formula predicts due to these other influences.

A FetchJob request will return a job if one is available
on the server, otherwise it will return a null value. The
percentage (r) of FetchJob requests that will succeed is

determined by the rate at which jobs are being submitted
and the rate at which jobs are being fetched:

�
�
�

�
�
�
�

�
= %100,min

FJ

SJ

X
X

r

This FetchJob success rate r affects the average service
time SFJ on the server as well as the behaviour of the
volunteer receiving the FetchJob replies. If a volunteer
receives a null value it will sleep for some period before
attempting to request another job. If, however, a job is
successfully received, the volunteer will execute it which
will take some other period of time. We account for this
difference by having two different Z values, one for the
case where the volunteer sleeps (Zsleep) and one for the
case where the volunteer executes the job (Zexecute).

Whilst the volunteer has jobs to execute, the
volunteer’s “fetch” thread will be kept busy trying to fetch
new jobs from the server to replace the ones that the
volunteer’s “execute” thread is removing from the local
job queue. The minimum time required to generate,
transport and process the results of these FetchJob requests
is represented by ZFJ.

Whilst the volunteer’s “execute” thread is executing
jobs and placing their results in the local result queue, the
volunteer’s submit thread is kept busy trying to submit
those results to the server. The minimum time required to
generate, transport and process the results of these
SubmitResult requests is represented by ZSR.

If the output queue becomes full, then job execution
pauses until the submit thread can catch up. Any of these
three volunteer threads can therefore become the
bottleneck that limits the FetchJob throughput. So we
have:

rRZZRZrRZ
N

SRSRexecuteFJFJFJsleep

FJ

),max()1)((
X

,
FJ +++−+

=

The rate at which we submit results cannot be higher than
the rate at which we successfully fetch jobs, so we have:

�
�
�

�
�
�
�

�

+
= FJ

SRSR

SR rX
RZ

N
,minXSR

The rate at which we fetch results cannot be higher than
the rate at which we submit results since FetchResult
requests wait on the server side until at least one result
becomes available, so we have:

��
�

�
��
�

�

+
= SR

FRFR

FR X
RZ

N
,minXFR

If we are interested in an optimal steady state then there
is no point in submitting jobs at a rate higher than the rate
at which we can fetch, so we have:

�
�
�

�
�
�
�

�
⋅

+
= FR

SJSJ

SJ XE
RZ

N
,minXSJ

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

where E is the average number of results returned per
FetchResults request.

FRX
SRX

E =

E also affects the average FetchResults service time
(SFR) on the server and the time ZFR required by the client
to process that number of results. So, SFR and ZFR are a
function of E, while SFJ and XFJ are a function of r.

These and other cyclic dependences in our analytical
equations mean that we cannot solve them directly. We
instead solve them in an iterative manner.

6. Volatile Volunteers
One of the biggest challenges with cycle stealing is that

volunteered computers may (by fault or intention) leave
the network without warning at any time. The G2
framework transparently handles this problem quite
simply by retaining a record of each job on the server until
a result has been submitted. If the volunteer that had been
assigned that job leaves, the server can simply reassign it
to some other volunteer.

This behaviour was easy to incorporate into the
simulators but we are still working on incorporating it into
our analytical model. This behaviour is actually quite
important, as without the assumption that volunteers may
leave without warning there is nothing to dissuade us from
performing as much computation in each job as possible.
Choosing the appropriate job execution time becomes a
balancing act between keeping the computation to
communication ratio high while not making the execution
times so long that large amounts of computation are lost
when a volunteer departs.

7. Experimental Validation
Figures 3 through 5 compare the performance of our

actual cycle stealing system with the performance
predicted by our complex simulator, simple simulator and
analytical model as the data size, execution time and
numbers of volunteers are varied respectively.

Variable task data size, 8 volunteers, 1000ms task time

0

1

2

3

4

5

6

7

8

9

0 200000 400000 600000 800000 1000000

Datasize

R
es

u
lts

p
er

se
co

nd

Measured
Complex

Analysed
Simple

Figure 3: Throughput vs Data Size (i/o)

Variable task execution times, 32K Datasize, 8
Volunteers

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000

Task Execution Time (ms)

R
es

ul
ts

pe
rs

ec
on

d

Measured

Complex

Analysed

Simple

Figure 4:Throughput vs Job Execution Time

Variable Volunteers, 32K tasksize, 1000ms per Task

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

Volunteers

R
es

ul
ts

pe
rs

ec
on

d

Measured

Complex

Analysed

Simple

Figure 5: Throughput vs Nr. of Volunteers

8. Conclusions
Our complex simulator reasonably accurately predicts

the performance of the actual system. The simple
simulator and analytical model predict well in most cases
but underestimate performance when the server is heavily
loaded. This is due to the lack of concurrency modelled in
those systems. We are currently investigating multi-server
models that may help address these inaccuracies.

References
[1] Wayne Kelly, Paul Roe and Jiro Sumitomo, G2: A Grid

Middleware for Cycle Donation using .NET, International
Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, June 2002.

[2] Wayne Kelly and Paul Roe, A Framework for Automatic
and Secure Cycle Stealing, International Conference on
High Performance Computing and Grid in Asia Pacific
Region, July 2004.

[3] M. Reiser and S.S.Lavenberg, Mean-Value Analysis of
Closed Multichain Queuing Networks, Journal of the ACM,
27(2):313-322, April 1980.

[4] P.J. Schweitzer, Approximate analysis of multiclass closed
networks of queues, Proceedings of the International
Conference on Stochastic Control and Optimization, 25-29,
Amsterdam, Netherlands, 1979.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

