
Similarity Management in Phonebook-centric Social Networks

Péter Ekler
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

Magyar Tudósok Körútja 2., 1113 Budapest, Hungary
peter.ekler@aut.bme.hu

Zoltán Ivánfi
Nokia Siemens Networks

Köztelek utca 6., 1092 Budapest, Hungary
zoltan.ivanfi@nsn.com

Kristóf Aczél
Nokia Siemens Networks

Köztelek utca 6., 1092 Budapest, Hungary
kristof.aczel@nsn.com

Abstract

In the past years many social network implementations
have come to existence. There is not one network but many,
and the user-base of these networks is different. Connecting
the users of the separate networks is currently unsolved and
seducing new users to existing systems becomes harder and
harder as the users are not willing to join too many systems
and build up their contact base from scratch each time. In
this paper we propose a solution for the problem of find-
ing existing contacts in a new system. An implementation
of the described algorithm is also illustrated. Utilizing the
algorithm in existing or new social networks can efficiently
reduce the time needed for the users to find their friends in
a newly joined network.

1. Introduction

Social networks are becoming more and more important
in everyday life. A social network is basically a social struc-
ture consisting of nodes that generally correspond to indi-
viduals or organizations. Nodes are connected by one or
more specific types of relation. A few years ago nobody ex-
pected social networks to get so popular, and it may seem
surprising that very often even older people use social net-
working applications for various reasons – to find other peo-
ple, send messages, manage a personal site, share photos
and videos, etc. From another perspective, a social network
is an environment that is created by the people who use it.

A common feature of social networks is that they usu-
ally have a web-based user interface and users can access
the social network using different types of web browsers.
There are various kinds of social networks with different

functionality but the general principles are the same. The
most popular systems include Myspace [4], Facebook [3],
etc. These have several millions of users and it is also quite
common that users have accounts for more than one social
networks; this way these networks are somehow intercon-
nected by their users as well.

Mobile phones and mobile applications are another hot
topic nowadays. Both hardware and software capabilities
of mobile phones have been evolving in the last decades.
Yet support of mobile devices is generally marginal in most
social networks, it is limited to photo and video upload ca-
pabilities and access to the social network using the mobile
web browser. However, if we consider the phonebook in our
mobile phone, we realize that basically it is a small part of a
social network because every contact in our phonebook has
some kind of relationship to us. Given an implementation
that allows us to upload as well as download our contacts
to and from the social networking application, we can com-
pletely keep our contacts synchronized so that we can also
see all of our contacts on the mobile phone as well as on
the web interface. In the rest of this paper we refer to this
solution as a phonebook-centric social network.

In this paper we examine the characteristics of
phonebook-centric social networks and we describe prob-
lems related to this approach like similarity handling and
contact customization. Definitions of the concepts related to
this type of social network are given for easier understand-
ing of the proposed algorithms. Measurements are also pro-
vided to show the efficiency of the algorithm.

The rest of paper is organized as follows. Section 2 high-
lights problem context and problem statements related to
phonebook-centric social networks. It also introduces our
phonebook-centric social network implementation called
phonebookmark which we used to examine the problem of



similarity handling. Section 3 discusses related work in the
area of social networks and mobile-based solutions. Section
4 gives detailed definitions related to phonebook-centric so-
cial networks which is necessary to understand the rest of
the paper and the proposed solutions and algorithm. Sec-
tion 5 describes our solution to similarity detection and it
demonstrates how the solution enables resolving detected
similarities. This Section also demonstrates how phone-
bookmark handles profile change propagation after similar-
ity resolution. Finally Section 6 concludes the paper and
proposes future research directions.

2. Problem Statement

We have implemented a reference phonebook-centric so-
cial network called phonebookmark. This application is
currently closed to the public but it is internally used by
more than 400 users to manage more than 70,000 contacts
in total. In our system the entries in the phonebook of a user
are also considered his or her contacts in the social network.
A mechanism allows for synchronization between the mo-
bile device and the social network. This approach raises
interesting problems that are not experienced by general-
purpose social networks. Consider the case where one has
a contact called John Doe in his phonebook and he is also
connected to him via the social network. Let us suppose he
synchronizes his contacts. How does the system realize that
these contacts are the same? What happens if someone has
two or more matching contacts in the system? How should
the system react to this kind of similarity? In the following
discussion we will refer to this problem as similarity han-
dling.

If there are similar contacts in the system a merge mech-
anism is desired by the users. However the implementation
has to handle this merge function very carefully to avoid los-
ing any details of the persons. Besides that members of the
system should be informed when their friend changes some
of his details, or adds any extra fields to his profile. Fur-
thermore the possibility of editing and extending contacts
in the phone should also be provided. Consider a member
with a contact called John. The member may wish to re-
name this contact to Dad, since John is his father. How can
a phonebook-centric social network implementation enable
such functions? In the following discussion we will refer to
this situation as customization.

The high-level architecture of phonebookmark consists
of a Drupal-based [13], [1] server providing a web UI and
XML-RPC access for mobile clients written in Java ME and
desktop clients written in Adobe Air. Phonebookmark is
basically an advanced social network that supports all com-
mon social networking and content management functions,
but it extends these with mobility support and synchroniza-
tion features.

3. Related Work

Nowadays, the number of social network users is in-
creasing, thus the efficient implementation of these net-
works is an important research area. Newman et al. [14]
describe some novel uniquely solvable models of the struc-
ture of social networks based on random graphs with arbi-
trary degree distributions. They give models both for sim-
ple unipartite networks such as acquaintance networks and
bipartite networks such as affiliation networks. They com-
pare the predictions of their models to data from a number
of real-world social networks and find that in some cases,
the models show high correlation with the data, whereas in
others the correlation is lower, perhaps indicating the pres-
ence of additional social structure in the network that is not
captured by the random graph.

Bakos et al. [8] have concluded that search engines gen-
erally lack the trust and level of personalization needed for
recommendation systems to answer searches like: I need
a reliable plumber close to my house. In order to achieve
personalization, social relevance and an acceptable level
of privacy, the search database itself needs to be person-
alized. One possible dimension of personalization is the so-
cial neighborhood of the searcher. In particular, phonebook
links represent a readily available infrastructure to create
a peer-to-peer social network for socially relevant search.
They have demonstrated their concept via a novel search
engine algorithm for social networks that operates on S60
and uses SMS messages to communicate.

Duncan et al. [9] present a model that offers an explana-
tion of social network searchability in terms of recognizable
personal identities defined along a number of social dimen-
sions. Their model defines a class of searchable networks
and a method for searching them that may be applicable
to many network search problems including the location of
data files in peer-to-peer networks, pages on the World Wide
Web, and information in distributed databases.

Nathan et al. [10] propose the Serendipity system that
senses a social environment and cues informal interactions
between nearby users who might know each other. Their
system uses Bluetooth addresses to detect and identify prox-
imate people and matches them from a database of user pro-
files. They show how inferred information from the mo-
bile phone can augment existing profiles, and they present a
novel architecture for investigating face-to-face interaction
designed to meet various levels of privacy requirements.

In a social network nodes and links represent participants
and their relationships, respectively. Tomiyasu et al. [12]
have designed and implemented a query propagation mech-
anism and its applications to realize a social network com-
posed by cellular phone users. In these applications, users
can retrieve information on their friends or their friends’
friends by propagating the query in the network. To propa-



gate a query in a wide range and improve the query success
ratio most users who receive the query must relay it to all
their friends. However, this increases network traffic. In
their paper they have proposed a query routing method to
decrease the number of communication packets by using
user profiles.

We investigated previously [11] how mobile devices can
connect to a web-based social network. We outlined an ar-
chitecture where mobile devices connect to a social network
via web services. Additionally we demonstrated this solu-
tion with a web-based social network application that of-
fered all of its main functionality to a mobile client through
web-service functions.

The key difference between our current work and previ-
ous research is that the former social networking solutions
do not allow mobile phones to become an integrated com-
ponent in the social network. They do not fully exploit the
fact that the phonebook of these devices is in itself a small
but very important part of the social network.

During the development period of phonebookmark, we
have checked other phonebook-centric social network solu-
tions on the web. Zyb [6] and Plaxo [5] allow for synchro-
nizing with mobile phones and managing of one’s contacts
using a web browser. Xing [7] has mobile access also, but
focuses more on business relationships. Automatic simi-
larity detection is missing from these systems though, thus
there is no notification when one of a user’s phonebook con-
tacts becomes (or already is) a user of the system.

4. Phonebook-centric Social Network

To understand the rest of the paper we have to clarify
some definitions and terms.

Definition 1. A phonebook-centric social network is a
special social network that is extended with the phonebook
entries of each user who has a mobile device. It keeps
the acquaintances and the phonebook contacts of the users
synchronized.

Generally a social network only manages the data of
people who are members of the system. Most commonly,
users can set up a profile including phone numbers, e-mail
addresses, hobbies, job titles, topic of interests, etc. From
the previous definition it follows that a phonebook-centric
social network does not only have to manage the data of
the members of the system, but also their private contacts.

Definition 2. A member is a registered user of the
service. Basically, members are similar to users of other
general social networks. They can log into the system, find
and add acquaintances, upload and share information about
themselves, write forum or blog entries, etc. Furthermore,

they can synchronize their mobile phones to the social
network.

Definition 3. A private contact is transferred into the
system when a member synchronizes his or her phonebook
with the social network. Essentially, a private contact
corresponds to a phonebook entry of a member. Each
member may have multiple private contacts. However,
these private contacts are not shared between members.

With the help of these definitions we can clarify what
we exactly mean by similarity handling.

Definition 4. Similarity handling refers to the recogni-
tion and management of the situation in which a contact
of a user is similar to a member’s profile. This means that
a private contact possibly represents the same person as a
member (Figure 1).

Figure 1. Similarity

Another type of similarity is when two of our private
contacts are similar to each other, which we will refer to as
duplication.

Automatic similarity recognition is extremely important
in phonebook-centric social networks, it makes the system
capable of recommending members the current user may
know since they are similar to items in the user’s phone-
book.

There are several applications not closely related to so-
cial networks that have similarity and duplication detection
functions (Nokia PC-Suite, Yahoo contacts, etc.). It is hard
to compare these solutions as their definition of similar per-
sons is different. For example, some applications can de-
tect similarities only if the contacts have the same first and
last name, otherwise, they are not recognized as duplicates.
In other solutions two people are marked similar with high
probability even if they have different birthdays. The appli-
cation called DupeDeDupe [2] for Windows Mobile-based
devices searches for duplicate contacts from the address
book and removes one of the duplicated results. DupeD-
eDupe compares email fields as well as home, work, and



mobile phone numbers of each contact. If all of those fields
match, the application considers the contact to be a dupli-
cate.

These solutions are based on exact field matching and
therefore often lead to false matches: for example, they
detect several persons to be identical based on the phone
number even if these phone numbers represent a central
work phone number. Another issue is that they do not
recognize synonymous names like Joe and Joseph.

Definition 5. The similarity vector belongs to the
contact entry of a person and the dimension of the vector
depends on how many attributes of the contact is filled. The
values of the vector represent the number of similarities
found in the social network related to that attribute. The
vector measures the degree of similarity between a person
and all other people in the social network.

For instance if the following contact structure represent
a person: (first name: John; last name: Doe; phone num-
ber: 111-2222) and the similarity vector to this person is
(10,2,0) then it means that there are ten persons in the so-
cial network with the first name John and two with the last
name Doe and there are nobody who has the phone num-
ber 111-2222. Later we will use this definition to determine
the upper bound of how many similar persons can a simple
similarity detection algorithm find and we will prove that
our algorithm is below this value.

A real similarity is always resolved by merging the two
persons following certain rules. However, as mentioned
earlier, they cannot be merged into one person, which leads
us to the the definition of a third person type:

Definition 6. A customized contact is created when a
member is similar to one of our private contacts and we
mark them as similar persons. This way we can edit this
contact in our contact list but if the original member changes
her or his profile, the change will be propagated to the cus-
tomized contact.

5. Detecting and Resolving Similarities

In order to detect similarities and duplicates an algo-
rithm is needed to compare two persons (member or private
contact) when a new one appears in the system. Most of the
contact similarity detection algorithms are based on com-
paring the attributes of the contacts. In phonebookmark we
had the advantage that we could determine what kind of at-
tributes we store in a profile, since the mobile phone already
determines the available fields (that it can handle).

The resolution of the similarities is also a complex task.
To avoid automatic merging of false positives in phone-
bookmark we do not resolve similar persons automatically,

thus users have to decide whether to accept or ignore the
hit. Ignore can be used also when a user does not want to
have a social network like connection with one of her or his
private contact.

5.1. Weight based algorithm

The basic idea behind our similarity detection algorithm
is defining different types of matching criteria (e.g. last
names are the same) and assigning weight values to these
criteria. Based on these criteria we can define a limit above
which we consider two persons similar or duplicated. Ta-
ble 1 shows match terms and their weight values. These
values were formed by intuition after several measurements
in phonebookmark, however the proper balance of these
weight values can be improved with learning methods.

Table 1. Match terms and weight values
Fields Weight
Similar first and last name 30
Similar private phone number 10
Similar public phone number and first name 10
Similar e-mail address 15
Different birthday -40

In Table 1 the private phone number stands for mobile
phone number, home phone number, pager number, etc.,
while public phone number stands for fax number, work-
place number, etc.

In Table 1 the Different birthday term has a negative
value. It means that if two persons have different birthdays
then the algorithm decreases the similarity value because it
is a relevant difference.

When a user synchronizes his contacts, the algorithm has
to decide whether a new private contact (if there is any) is
similar to a member or to an other private contact of the
user. First it calculates a similarity value using the weights,
then it checks the previously introduced match terms. If one
of the match terms turns out to be true then the respective
weight value will be added to the similarity value. This way
after the algorithm compared two persons, the result will be
the calculated similarity value. If this value is over a cer-
tain threshold (currently in our case it is 10) then this case
will be considered as a possible similarity. Algorithm 1
describes the step that finds similarities to a person. In Al-
gorithm 1 the main similarityCheck function calls check-
MatchTerm function several times to check a specific match
term.

If we search for persons similar to a private contact we
have to check all the members and the private contacts of
the user doing the synchronization. Meanwhile if we search



for persons similar to a member, we have to check all pri-
vate contacts in the network. Since the similarity detection
algorithm runs several times when a new contact or person
enters the system it has to be fast. In order to minimize its
execution time we implemented the core of the algorithm
on database side. For better understanding in Algorithm 1
we omitted the handling of cases when a match term seems
to be irrelevant. However, match terms providing more than
1000 hits are skipped in the full implementation. For exam-
ple it is possible that there are 1000 John’s in the network,
making similar first name search unnecessary.

Algorithm 1 Similarity detecting
1: function similarityCheck(person)
2: {
3: // matches is a ’person–weight’ mapping
4: matches = array();
5: // fieldWeights contains Table 1
6: for fieldWeights as fw do
7: {
8: checkMatchTerm(fw.field, fw.weight,
9: person[fw.field], matches);

10: }
11:
12: // save matches if the weight is significant
13: for matches as match do
14: {
15: if (match.weight > minWeight) then
16: {
17: storeSimilarity(person, match.person,
18: match.weight);
19: }
20: }
21: }
22:
23: function checkMatchTerm(field, weight,
24: matchTerm, &matches)
25: {
26: foundMatches = getMatches(field,matchTerm);
27: // ignore non relevant matches (too many hits)
28: if (foundMatches.size < maxMatches) then
29: {
30: addMatches(matches, weight, foundMatches);
31: }
32: }

5.2. Handling similar names

The algorithm is able to detect similar names like Joe
and Joseph which improves the probability of detecting sim-
ilarities or duplicates even if people have entered names in
different ways. We have implemented the similar name han-

dling by storing similar names in a database (see Table 2).
When people use the system and resolve similarities then
for each resolution case the system checks whether the cur-
rently resolved persons have the same first name. If not, an
entry is stored in the similar names table indicating that the
two names may be similar because they were resolved by
the users manually.

Table 2. Similar names
name1 name2 count
Joe Joseph 10
Katharine Kate 7
Samantha Sam 2

The system also counts how many times these similar
but different first names were resolved and if it reaches a
certain limit then the similarity detection algorithm will use
this first name similarity in the first name match term. This
way the algorithm is able to learn similar names from the
users’ resolving decision.

5.3. Resolve single or multiple similarities

In many cases if we search for duplicates or similarities
to a private contact it is possible that the algorithm finds
more than one possible similar persons. In this case the user
has to decide which is the proper similarity with the help of
the calculated similarity value. While the upper bound of
this value is not determined because people can have un-
limited phone numbers, e-mail addresses, etc.; we have to
calculate a probability percentage (pp) from this value that
is easily to understand for the user. This number represents
the probability that the two persons are in fact the same.
For example if two persons have the same name then the
probability should be large enough. However, the probabil-
ity should not increase linearly if two persons have several
similar attributes. In our current experimental implementa-
tion we have used the arcos tangent function to calculate
the probability percentage:

pp =

{
50 + weight

50·30
80 + arctan

(
weight

100

)
40
π

if weight ≤ 50
otherwise

The value of probability percentage starts from 50, it
increases linearly to 80 and above that it increases much
slower. The reason for that is that the algorithm can never
say for sure that two persons are the same, but the probabil-
ity for that is very high if 3 or 4 relevant attributes are the
same. This probability percentage can be used to arrange
the possible similarities making the most probable similar-
ity first in the list (Figure 2).



Figure 2. Multiple similarity

Phonebookmark provides an intuitive merge user inter-
face after the two similar people was selected by the user
(Figure 3).

Figure 3. Merge user interface

This merge interface allows the user to decide which at-
tributes he wants to keep from which person. In order to
make the decision easier an algorithm calculates an esti-
mated merge resolution. The strategy of this algorithm is
to keep as much data as possible from each representation
of the same person.

5.4. Keep contact details up-to-date

The similarity resolution is a bit more complicated when
merging a private contact and a member together. The
merged contact is desired to remain editable by the user like
other contacts, but it must also keep being updated as the
member changes his profile.

In order to tackle this problem we have implemented a
mechanism in phonebookmark which detects when a mem-
ber changes any of its details. It automatically updates
all the customized copies of this member in the system as
long as the owner of the customized contact has not already
changed this specific detail in his copy.

This mechanism is also efficient on contact photo stor-
age, as it is not duplicated, but only a reference is kept in
the profile image.

5.5. Efficiency of the algorithm

It is hard to determine the exact efficiency of a similar-
ity detection algorithm because the behavior of the users is
not deterministic. For instance they often leave important
attributes empty in profiles and phonebook entries and it is
also quite common that they enter attributes to wrong fields.

The efficiency of similarity detection algorithms can be
measured by the number of detected similarities. We can
use the definition of the similarity vector to estimate an up-
per bound for the detected similarities. The simplest simi-
larity detection algorithm compares the attributes of the per-
son one by one and if one of the attributes matches then it
marks the persons similar. We can see that the sum of the el-
ements of the similarity vector represents exactly this upper
bound. The following statement summarizes that our algo-
rithm is below the upper bound. The size of the provided
result set of the introduced similarity detection algorithm is
below the sum of the elements of the similarity vector.

Proof. The algorithm examines five match term. The first
one checks the first and the last names together, this way if
value a belongs to the first name and value b belongs to the
last name in the similarity vector then this match term can
result maximum the value of min(a, b).

The second match term checks private phone numbers
which can result maximum c values.

The third term checks public phone number and first
name together. If the similarity vector contains d as the
value of the public phone number field then this term re-
sults maximum the value of min(a, d).

The forth term checks e-mail addresses which can result
maximum e values.

The last term checks whether the birthdays are different.
Since it can only decrease the result of possible matches we
do not consider it in this proof.

If we add this values we can see that min(a, b) + c +
min(a, d) + e < a + b + c + d + e.

To support the previous statement and check the effi-
ciency of our algorithm also in practice we have measured
how the number of detected similarities in our reference ap-
plication phonebookmark depends on the number or users
in the system. The results of this measurement are shown
on Figure 4. Although the number of users increases, the
detected similarities per person remains on the same level.

Although the detection of false similarities is important
from the efficiency point of view, they were not considered
in the previous measurements.

It is obvious that the proposed algorithm finds less false
similarities than a simple field-based detection algorithm
since it handles details together, like first name and last
name. To observe the trend of false similarities we have
logged how users resolved the similarities proposed by our



Figure 4. Number of users and detected sim-
ilarities

algorithm. The results show that false similarities were of-
fered by the algorithm in under 10 % of the cases.

6. Conclusion and Future Work

Social networks that handle mobile devices have several
interesting research implications. Not only they can offer
searching according to usual social network query criteria
(e.g. name or workplace) but also location-based function-
ality such as automatic recommendation of a contact person
who is close to us.

Phonebookmark is unique from several points of view.
For example, let us assume that somebody changes his or
her phone number in the system while others synchronize
their mobile phones to the social network, their phonebook
will be automatically updated with this new information.
Phonebookmark is in internal use since April 2008. Cur-
rently it has around 400 users with more than 70,000 private
contacts.

Phonebook-centric social networks raise several inter-
esting issues. In this paper we have focused on similarity
handling and resolving. We have introduced an algorithm
for detecting similarities and duplications along with a set
of useful methods for similarity resolving, treating multi-
ple similarities and handling similar names. With the help
of the definition of the similarity vector we have calculated
the upper bound value. This value can be imagined as the
result of a very simple similarity detection algorithm. We
have proved that the result of our algorithm is below this
threshold. Our measurements in phonebookmark also show
that using the introduced algorithm the rate of the detected
false similarities is below 10 percent.

Future work plans include improving the current algo-
rithm with learning models that can control the weight val-
ues of the match terms. Currently the implementation logs
the decision of the users if they ignore or resolve a similar-

ity. While our current implementation is closed for public
and has only internal users from Nokia Siemens Networks,
we can use the log files and behaviors of the users to im-
prove the algorithm. We are also planning to develop the
similarity vector definition further, it currently represents
only basic field matches and it does not count social net-
work related attributes like similar names. Besides that it
can be improved further if it distinguishes attributes that are
different or not filled in at all.

Additional work will also cover work issues of scala-
bility and further examination of phonebook-centric social
networks to provide efficient algorithms for search and au-
tomatic recommendation functions.

References

[1] Drupal content management platform. http://drupal.org, Dec
2008.

[2] Duplicate contact remover application.
http://solsie.com/delete-duplicate-contacts-with-
dupededupe, Dec 2008.

[3] Facebook social networking application.
http://www.facebook.com, Dec 2008.

[4] Myspace social networking application.
http://www.myspace.com, Dec 2008.

[5] Plaxo social networking application. http://www.plaxo.com,
Dec 2008.

[6] Zyb social networking application. http://www.zyb.com,
Dec 2008.

[7] Xing social networking application. http://www.xing.com,
Feb 2009.

[8] B. Bakos, L. Farkas, and J. K. Nurminen. Phonebook search
engine for mobile p2p social networks. Databases and Ap-
plications, pages 210–215, 2005.

[9] M. E. J. N. Duncan J. Watts, Peter Sheridan Dodds. Identity
and search in social networks. Science, May 2002.

[10] N. Eagle and A. Pentland. Social serendipity: Mobilizing
social software. IEEE Pervasive Computing, 2005.

[11] P. Ekler and H. Charaf. Investigating the role of mobile de-
vices in social networks. Microcad International Confer-
ence, Marc 2008.

[12] T. H. H. Tomiyasu, T. Maekawa and S. Nishio. Profile-based
query routing in a mobile social network. Mobile Data Man-
agement, MDM 2006., May 2006.

[13] M. W. John K. VanDyk. Pro Drupal Development. Apress,
2007.

[14] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Ran-
dom graph models of social networks. Proceedings of the
National Academy of Sciences, 2002.


