
TeamCom: A Service Creation Platform for Next
Generation Networks

A. Lehmann, T. Eichelmann, U. Trick
Research Group for Telecommunication Networks

University of Applied Sciences
Frankfurt/Main, Germany

e-mail: {lehmann, eichelmann, trick}@e-technik.org

R. Lasch, B. Ricks, R. Tönjes
Research Group for Mobile Communications

University of Applied Sciences
Osnabrück, Germany

e-mail: {r.lasch, b.ricks, r.toenjes}@fh-osnabrueck.de

Abstract— The development of value added services is
currently still very time and cost consuming. The need for
specific user generated and in particular business-to-
business services demands for efficient service development
methods. This paper presents a service creation
environment that supports the application developer to
compose a service based on reusable components and to
describe the business process through a control logic.
Forthe service description a language that has been
optimized for business prozesses is suggested: the Business
Process Execution Language (BPEL). However, BPEL has
not been developed for control of specific, in particular real
time, communication services in heterogeneous
networks.Therefore the paper presents a parser translating
the business process description into Java code and
supporting the deployment of the service in a service
execution environment based on JAIN SLEE. The provided
elementary communication Service Components hide the
underlying heterogeneous communication networks.
Thereby the developer does not need any detailed
knowledge of communication protocols and is able to focus
on the application logic instead. This leads to new
opportunities for rapid and efficient service creation using a
new Service Creation Environment (SCE) with higher level
of abstraction and automated service generation.

Keywords-component; SCE (Service Creation Environment;

NGN (Next Generation Networks); Service Components; JAIN
SLEE

I. INTRODUCTION
The provision of customer specific communication

processes is currently still very time and cost consuming. As
a consequence the penetration of specific multimedia
services is low. This holds for business-to-business (B2B)
services as well as for individual services, which are even in
the Web 2.0 area limited to simple services. Hence many
capabilities of today’s multimedia networks remain often
unexploited.

B2B services offer a high potential to allow for the
acceleration of processes and workflows within and between

organizations. Unfortunately, the development of mobile
B2B services requires still a lot of detailed knowledge about
mobile communication systems and their protocols.
Moreover the application developers need a deep
understanding of the embedded business processes. The wide
range of the necessary knowledge hinders the growth of
mobile B2B services and fosters proprietary solutions.
Therefore the TeamCom project [1] aims at enabling fast,
easy and cost efficient provisioning of value added services,
in particular B2B services, by creating a new high level
Service Creation Environment (SCE). Elementary
communication Service Components are derived from the
requirements for telecommunication services. To support the
service developer these communication components should
be provided and integrated into a generic Service Creation
Environment for mobile B2B services in heterogeneous
networks.

For the orchestration, i.e. composition, of services
various SCE have been suggested recently in the literature.
As lessons learnt the European SPICE [2] and OPUCE [3]
projects point out the need for a clear separation between
professional and end-user service creation. The LOMS [4],
the MAMS [5] project and the Open Source Initiative
SPAGIC [6] have proven the advantages of a graphical
service creation workbench, developed in particular for small
and medium sized enterprises, to ease B2B service creation.
To cope with evolving service requirements and the
heterogeneity of the underlying communication and
computing infrastructure, respectively, the SeCSE [7] and
the PLASTIC [8] project suggested self-adapting service
oriented applications.

This paper takes a systematic approach for service
creation by reusing communication Service Components and
suggests building the service creation environment on top of
the future control layer of next generation networks, the IP
Multimedia Subsystem (IMS) [9], which is based on the
Session Initiation Protocol (SIP) [10]. For the first time, IMS
offers the opportunity to provide services uniformly over
heterogeneous networks (cellular networks, WLAN and
fixed networks) and outside of the user’s home network. It
provides an integrative support for mobility, quality of
service, security and service dependent accounting. In
contrast to this centralized approach peer to peer (P2P)

communication, e.g. Skype and P2P-SIP [11], could provide
a cost efficient and scalable alternative.

To speed up the development of services, in particular of
B2B services, this paper proposes a fourfold approach:

• Abstraction of heterogeneous network interfaces
• Definition of reusable communication Service

Components
• Development of a Service Creation Environment

combined with automated service generation
employing reusable components

• Use of partial services by cooperating application
servers

The reminder of this paper is structured as follows: The
next chapter presents the overall architecture of the system.
Chapter III describes the generic Service Creation
Environment and chapter IV discusses the elements for
supporting the service life cycle as a whole. Chapter V
shows an example of service creation and deployment
evaluating the approach and chapter VI finally concludes the
paper.

II. ARCHITECTURE
The TeamCom Project proposes an integrated

architecture for service creation, deployment and execution
(see Fig. 1). This architecture can be divided into four layers:
(1) The Service Creation Environment (SCE), which
includes the design and composition of new services, (2) the
Service Deployment (SD), (3) the Service Execution Engine
(SEE) containing one or more Application Servers (AS)
based on JAIN SLEE (JAIN Service Logic Execution
Environment) and (4) the Service Transport Layer (STL).
The Service Transport Layer abstracts different protocols in
order to enable upper service layers to be independent of a
specific communication protocol. Therefore it supports
several communication networks, e.g. IP Multimedia
Subsystem or Peer-to-Peer SIP. The Service Creation
Environment contains a GUI, permitting a developer to
orchestrate Service Components and to integrate external
services easily without having to develop low-level software
code. The Service Execution Environment establishes a layer
where created Services Components are deployed and
activated.

Figure 1. TeamCom Architecture

In order to support Next Generation Networks that are
based on IP, different software architectures for the Service
Execution Environment have been evaluated. The following
requirements for a Service Execution Environment have
been defined: independence from the operating system,
service orchestration based on components, comfortable
component deployment, support for SIP, extensibility for
other protocols and possibility for co-operation between
numerous application servers. To fulfil these requirements
the architecture makes use of the JAIN SLEE standard [12].

The JAIN SLEE standard defines a component, event
and transaction based architecture. The architecture is written
in the Java language and standardised by a Java Community
Process. It is part of the JAIN (Java API for Integrated
Networks) Initiative consisting of several telecommunication
companies. JAIN SLEE is designed for ensuring low latency
and providing high throughput to accomplish the
requirements for communication services. It uses a
distributed component model similar to Enterprise Java
Beans (EJB) [13]. Therefore it is often referred as “EJB for
Communications”.

 In the standard so called Resource Adaptors (RA) are
defined abstracting the underlying infrastructure. These
Resource Adaptors provide a common Java API which hides
the communication protocol underneath. In detail when a
communication protocol message is received the
corresponding RA translates this message into a Java event
class. Afterwards the event and an activity class both
together are passed to the JAIN SLEE event router. A JAIN
SLEE activity represents a session of a communication
protocol e.g. a SIP dialog. The event router utilizes these
objects to look up the services which requested to receive the
specific event. Accordingly the service itself is able to react
on the event and to create an answer by using defined Java
Interfaces. The answer is translated to a communication
protocol response by the RA. The JAIN SLEE standard pre-
defines (among others) the interface for a SIP Resource
Adaptor. Additional Resource Adaptors can be added
manually. In TeamCom several Resource Adaptors for email

communication (Mail RA), for evolved Web Service access
(Web Service RA), for security mechanisms based on TLS
(Transport Layer Security) (TLS RA) and IMS extensions
for SIP (IMS RA) have been developed. Hence a service
based on JAIN SLEE is able to support heterogeneous
networks.

The service itself is composed of one or more Service
Building Blocks (SBB). These SBBs contain the
application/service execution logic and are deployed on a
JAIN SLEE Application Server such as Mobicents [14]. The
SBB component model includes a lifecycle, registration and
security management. In addition, SBBs are able to access
timer, trace, alarm and profile facilities which are also
provided by a JAIN SLEE server.

III. SERVICE CREATION ENVIRONMENT
As depicted in the last chapter the Service Creation

Environment includes service orchestration on the basis of
reusable Service Components and existing services. In
addition to the components a service logic, similar to “if
then” statements, is required for describing the workflow
properly. The following two sections explain both.

A. Reusable Service Components
Several elementary Service Components are derived

from the requirements for telecommunication services. By
combining these elementary components it should be
possible to describe and generate other valuable services.
These elementary Service Components comprise audio,
video, text, file, conference, data input, data output and data
trigger components. This chapter discusses the abstract
Service Components in detail.

Audio: The Audio Component handles all kind of audio
communication including the establishment of a call,
answering calls, manipulation of audio streams (e.g. mixing,
transcoding) and sending and receiving DTMF tones.

Video: The Video Component is responsible for playing
and recording of video streams. It enables to create and close
video calls and to combine different video signals for
merging a new video stream.

Text: This component exchanges messages between two
partners and has the capabilities of handling strings, e.g.
search for a specific word in a text, replace alphabetic
characters or change the encoding of a text.

File: The File Component handles creation, deletion,
sending and receiving of binary files. Another task of File is
to write and read any kind of data from and to any position in
a file. Finally this component is able to rename files or
directories.

Data Input: All kind of data queries are processed by the
Data Input component. This includes database queries as
well as reading data from a sensor.

Data Output: The counterpart of Data Input is Data
Output being concerned with writing data to a destination
e.g. to a database or to control an actuator.

Conference: This is a special kind of communication
component because it re-uses internal functions of the
previously described components, e.g. audio stream mixing.
On top of this, the Conference Component provides

functionalities for creating and deleting conference “rooms”,
adding and removing users to/from a room.

Data Trigger: The Data Trigger is closely related to an
event generator. If a specific data trespasses a value an event
is triggered. This data can be a sensor value, a timestamp or
periodical dates.

B. Service Logic
Business workflows within and in between enterprises

usually follow defined processes, the so called business
processes. This resulted in the definition of the BPEL
(Business Process Execution Language) standard [15], an
XML [16] based process description language, building
completely on web services.

Most often BPEL is used to orchestrate web services but
the language is protocol independent. It is possible to create
so called bindings which could specify the usage of BPEL
for other protocols than SOAP (Simple Object Access
Protocol) [17]. In BPEL it is possible to define synchronous
and asynchronous processes. Thus it fits very well to be used
in combination with JAIN SLEE. For a structured process
different BPEL tags are defined, e.g. sequence, if, while.
Moreover forked processes can be created, allowing for
execution in parallel and synchronisation afterwards. As
depicted in Fig. 2 the BPEL process has the ability to
‘invoke’ other services asynchronously after having received
a request from a client. The ‘reply’ BPEL element is used to
send an answer to the client.

Figure 2. BPEL Process Example

C. Service Creation
To orchestrate value added services easily a graphically

interface is provided by the TeamCom Service Creation
Environment. It is possible to drag and drop Service
Components to the workspace where the BPEL process is
designed. Additionally BPEL elements can be dragged into
the workspace and be connected to the Service Components.
TeamCom employs BPEL to compose and control the
sequence of the Service Components. All defined Service
Components are provided as partner links in BPEL. Partner
links define the communication partners and their roles in a
process. Our Service Creation Environment only relies on a
subset of all BPEL commands and doesn’t require a BPEL
engine. So it could be possible to choose another language
for the TeamCom SCE to describe a service then BPEL
because it is only used to define the service logic. Literature
has shown that other service description languages are often

to protocol specific and/or not extendable (e.g. Call
Processing Language) [18] [19] or they were withdrawn (e.g.
Service Control Markup Language) [20].

After configuring all elements and components it is
possible to create a service which can be deployed on an
Application Server.

The Service Components are described in the Web
Services Description Language (WSDL) [21] which is also
based on XML. Therefore all components provide an
interface independent of a communication protocol. In
WSDL the methods of the Service Components are defined
e.g. the ‘onCall’ method of the Audio Component. It is
possible to support different implementations of Service
Components, depending on the desired communication
system. If a service should be deployed in an IMS network it
is necessary to implement an Audio Component which is
capable of the IMS SIP extensions. Thus every
implementation has to create a WSDL binding, which
describes the mapping between the abstract WSDL operation
and the implementation.

The interfaces of a BPEL process itself are also described
by WSDL. Therefore it is possible to include an external
BPEL process in a newly created BPEL process. As a result
small, simple and more generic services could be created
which are reusable in other services. Both the integration of
external services and Service Components is carried out in
the same way.

IV. SERVICE LIFE CYCLE
The ability to manage the lifecycle of B2B services is

fundamental for achieving success within mobile service
platforms. The service life cycle can be subdivided into a
succession of operations that include service creation,
deployment and execution. The following section introduces
the selected Service Execution Environment before deriving
the associated creation and deployment process.

A. Service Execution Engine
The B2B services require a Service Execution Engine

that can conduct the business processes on top of the
telecommunications infrastructure. The question rises how
these two worlds can be combined.

In telecommunications a plethora of protocols and
standards have to be supported (here in particular SIP and
IMS). In such a heterogeneous environment, the services
should be decoupled from the various underlying
communication networks. The JAIN SLEE standard
provides resource adaptors that abstract from the various
underlying networks.

Complementary BPEL engines allow executing BPEL
process instances. For this the BPEL processes are deployed
on the BPEL engine using engine specific deployment
information.

Four different approaches were analysed for accessing
the BPEL information within the JAIN SLEE, which are
depicted in Fig. 3:

1. Master SBB reads an XML file (e.g. BPEL).
2. Access of BPEL engine over resource adaptor.
3. Access of BPEL engine over J2EE connector.

4. Translation of BPEL into JAIN SLEE logic
The direct use of XML files is quite static. Also the files

must be parsed during the execution time which means lower
performance. In contrast alternative two and three would
keep the BPEL engine allowing to run the workflows as
BPEL processes. In alternative two BPEL would be treated
like a protocol and invoke an event over the resource adaptor
[22]-[24]. Alternative three employs the J2EE Connector
Architecture (JCA) [25] providing via EJB (Enterprise Java
Beans) an interface to the Java based BPEL engine operating
in a J2EE environment. However, both alternatives with
external BPEL engines limit the real time capabilities of the
service. Also the usage of a BPEL engine will not fit to a
P2P model, because the peers can not benefit by the BPEL
engine.

Figure 3. Integration of BPEL and JAIN SLEE

Therefore the fourth alternative was chosen, that
translates the resulting BPEL files into a JAIN SLEE service.
This means that the service which will be created is designed
with a graphical editor based on BPEL elements. Within this
solution no BPEL engine is used during the execution of the
service, which will fasten up the execution time and also
support P2P networks. Please note that in this case the
Service Components can be integrated with the control
information in only one (or a few) SBB, providing the
service. This approach is detailed in the next section.

The SEE may provide different services, i. e. specific
business processes, in parallel. Moreover, the B2B service
may use external service parts that are distributed over
different Application Servers.

B. Service Creation and Deployment
Service creation and deployment can be realised in five

steps: writing a non-technical description of the service,
converting this description to a service description language,
analysing the description language, generating Service
Building Blocks from the description language and
deploying the service. First a business description has to be
verbalised. The description could be e.g. a text, depending on
the process and the involved people. Afterwards a service
developer is able to create a BPEL based description

graphically via the service creation Graphical User Interface
(GUI). In this step the service developer utilizes the
TeamCom Service Components which are included in BPEL
as partner links and configures their input variables e.g.
video sender address. After finishing the BPEL process
description the generation of the service will start (see Fig.
4).

The service designed by the service developer shall not
be executed on a BPEL process engine. Instead the service
shall run on a JAIN SLEE application server. So the BPEL
process has to be converted in a form to be executable as a
JAIN SLEE service. The code generator analyses the BPEL
process and parses the workflow step by step. The result
from each individual step is saved in a XML service
document that could be described as an intermediate
language for a JAIN SLEE service. Finally the goal of the
code generator is the creation of the Java classes and the
necessary descriptor files needed for a JAIN SLEE service.

While the code generator parses the BPEL process, it
analyses the BPEL activities. Pending on the BPEL activity
the code generator adds pre-defined XML fragments to the
XML service document. Process activities which initiate
events for the partners or waiting for events from them must
be examined to figure out which Service Component is
affected by this event. For each method which can be
invoked on a partner a pre-defined XML fragment in a XML
fragment pool exists. If the Service Component is identified,
an appropriate XML fragment which represents the used
method from the BPEL process can be chosen from the
XML pool and inserted into the XML service document.
Other workflow activities perhaps need variables or data
structures which are defined in BPEL. These structures are
represented in XML schemata and have to be transformed
into Java code also.

Figure 4. Code Generation

In Table I some examples for BPEL activities and their
correspondent part in Java are shown. Now the XML service
document contains all information necessary to generate the
Java code, the service descriptor files and the build file.

The code generator will not create an intermediate
language in future versions which will result in better
performance. Instead of the XML fragments Java templates
will be used and the necessary Java classes, a build file for
the deployment and the descriptor files will be generated
immediately.

TABLE I. COUNTERPARTS OF BPEL ACTIVITIES AND JAVA

BPEL Activity Java
if if()
while while()
forEach for(;;)
repeatUntil do{}while()
wait SLEE timer
sequence sequential flow
flow parallel flow
invoke bidirectional method
receive listener, getter method
reply setter method
assign operations e.g. String operations

.

C. Evaluation of Service Creation
The described service creation process has to be

evaluated to validate the code generator. Therefore different
scenarios were estimated. Those scenarios cover a
maximised set of telecommunication services. The following
enumeration is a subset of services to be evaluated:

• Session based services (e.g. active, passive, parallel
or sequential sessions)

• Conferences (e.g. audio and/or video)
• Call-control (e.g. forwarding, blocking, forking)
 These scenarios will be designed with the BPEL editor

and generated as described before. The resulting Java source
code has to be verified. So the evaluation will be an
empirical process.

V. EXAMPLE
To demonstrate the TeamCom Architecture an exemplary

and simple wake-up service has been developed. The Text
Component is used to receive messages from a SIP client.
These messages contain the date when the user will be
woken and a text phrase the user wanted to receive. The
application processes the incoming messages and passes the
date to the Data Trigger Component. The timer will trigger
the service at the reached date and finally our service creates
a wake-up SIP MESSAGE which will be sent back to the
user.

Fig. 5 depicts the creation of this wakeup service in the
TeamCom SCE workbench showing on both sides the
Service Components embedded in the service. The Text
Component is responsible for receiving and sending
messages. The Data Trigger Service Component is used for
generating a timer.

Figure 5. Wake-up Service Example

The main sequence contains the entire description of the
service. First the service is waiting for an incoming text
message from a client, which is handled by the ‘onMessage’
element of the Text Component. The received text message
contains the date and text for the wake-up call. In
‘getParameters’ the BPEL assign element is used to get the
necessary data for the timer. Afterwards the invoke element
‘doTimer’ is used to generate a timer via the Data Trigger
Component. The element ‘onTimer’ will start the service
again after the timer expired. The next element
‘setParameter’ is used to set the text phrase for the following
element ‘doMessage’. The reply element ‘doMessage’ is
used to generate the wake-up SIP MESSAGE which will be
sent back to the originating user.

VI. CONCLUSION
The development of new services for telecommunication

applications and other IT systems is the most important
means of innovation for telecommunication service
providers. In particular, B2B applications possess a high
potential to accelerate processes and workflows within and
between organisations. Competition demands for faster
innovation cycles to speed up time to market.

The presented SCE empowers small and medium sized
enterprises to develop their B2B services in a time and cost
efficient way. A graphical user interface supports even
inexperienced developers to orchestrate the reusable
components for value added B2B services, exploiting the full
power of nowadays multimedia networks through predefined
resource adaptors. The possibility for automated creation of
communication services without a detailed knowledge about
the used protocols and networks is given. The presented
example was already created and generated by the usage of
our SCE. Also different variations of this exemplary service
could be developed within minutes. Service creation could
be as easy as current website development and applicable for
more people. Vice versa the ease of service creation will
foster a better degree of utilisation of the telecom
munication’s multimedia networks. In the TeamCom
architecture elementary communication Service Components
are abstracted for a general use in possible Next Generation

Networks. The Service Component interface is extensible for
evolving protocols and networks.

ACKNOWLEDGMENT
This work has been supported by the German Federal

Ministry of Education and Research (BMBF) under grant
1704A07 and 1704B07 in the TeamCom project.

REFERENCES
[1] TeamCom project website: http://www.ecs.fh-osnabrueck.de/

teamcom.html
[2] O. Droegehorn et al.: “Professional and End-User driven

Service Creation in the SPICE platform”, IEEE WOWMOM
2008, New Port Beach, California, USA, 23-25 June 2008.

[3] J. C. Yelmo et al.: “A User-Centric service creation approach
for Next Generation Networks”, ITU-T Kaleidoscope Event:
Innovations in NGN - Future Network and Services, Geneva,
12-13 May 2008.

[4] J. Keiser, T. Kriengchaiyapruk. "Bringing Creation of

Context-Aware Mobile Services to the Masses". In: IEEE
SOA Industry Summit (SOAIS 2008), Hawaii, USA, July
2008.

[5] B. Freese, U. Staiger, H. Stein: "Multi-Access Modular-
Services Framework - Whitepaper", Deutsche Telekom
Laboratories, Berlin, June 2007.

[6] SPAGIC web site: http://spagic.org/ecm/faces/public/
guest/home/solutions/spagic

[7] L. Baresi, E. Di Nitto and C. Ghezzi, “Toward Open-World
Software: issues and challenges”, IEEE Computer, Volume
39, No. 10: 36-43, October 2006.

[8] M. Autili et al.: "A Development Process for Self-adapting
Service Oriented Applications", in proceeding of ICSOC
2007(442-448), Vienna, Austria, September 2007.

[9] TS 23.228: IP Multimedia Subsystem (IMS); Stage 2 (Release
5). 3GPP, June 2006.

[10] J. Rosenberg et al.: RFC 3261 - SIP: Session Initiation
Protocol. IETF, June 2002.

[11] Web site of IETF P2PSIP WG: http://www.p2psip.org/
[12] Sun Microsystems, Open Cloud, JSR-000240 Specification,

Final Release, "JAIN SLEE (JSLEE) 1.1", SUN, 2008.
[13] Sun Microsystems, Oracle Corporation, JSR-000220

Specification, Final Release, "Enterprise JavaBeans, Version
3.0", SUN, May 2006.

[14] Mobicents Open Source JAIN SLEE Server,
http://www.mobicents.org

[15] IBM, Microsoft, Specification V 2.0, "Web Services Business
Process Execution Language Version 2". OASIS, April 2007.

[16] W3C, "Extensible Markup Language (XML) 1.0 (Fith
Edition)", W3C Recommendation, November 2008.

[17] M. Gudgin, et al.: "SOAP Version 1.2 Part 1. Messaging
Framework (Second Edition)". W3C, April 2007.

[18] R.H. Glitho, A. Poulin: "A high level service creation
environment for Parlay in a SIP environment". IEEE
International Conference on Communications, 2002.

[19] R.H. Glitho et al.: "Creating value added services in Internet
telephony: an overview and case study on a high-level service
creation environment". IEEE Transaction on Systems, Man,
and Cybernetics, Part C, November 2003.

[20] J.-L. Bakker, R. Jain: "Next generation service creation using
XML scripting languages". IEEE International Conference on
Communications, 2002.

[21] E. Christensen et al.: "Web Services Description Language
(WSDL) 1.1". W3C, March 2001.

[22] S. Bessler et al.: "An Orchestrated Execution Environment for
Hybrid Services". Kommunikation in Verteilten Systemen,
vol.II, page.77-88, April 2007, Springer Berlin Heidelberg.

[23] G. Jie et al.: "A Template-based Orchestration Framework for
Hybrid Services". AICT '08, Telecommunications, June 2008.

[24] P. Falcarin, C. Venezia: "Communication Web Services and
JAIN-SLEE Integration Challenges". International Journal of
Web Services Research, Vol. 5, Issue 4, page. 59-78, 2008.

[25] Sun Microsystems, JSR-000112 Specification, Final Release,
"J2EE Connector Architecture 1.5", SUN, November 2003

