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ABSTRACT
Manipulation of biomedical images to misrepresent experi-
mental results has plagued the biomedical community for a
while. Recent interest in the problem led to the curation of
a dataset and associated tasks to promote the development of
biomedical forensic methods. Of these, the largest manipu-
lation detection task focuses on the detection of duplicated
regions between images. Traditional computer-vision based
forensic models trained on natural images are not designed
to overcome the challenges presented by biomedical images.
We propose a multi-scale overlap detection model to detect
duplicated image regions. Our model is structured to find du-
plication hierarchically, so as to reduce the number of patch
operations. It achieves state-of-the-art performance overall
and on multiple biomedical image categories.

Index Terms— Biomedical forensics, image forensics,
image manipulation, duplication detection

1. INTRODUCTION

Advancements in multimedia technology has enabled the pro-
liferation of digitally manipulated misinformation. Prevalent
manifestions of misinformation include fake news, digitally
manipulated images, deepfake videos and more. Efforts to-
wards the development of automated detection methods for
fake news [1, 2, 3], natural-image forensics [4, 5, 6] and deep-
fakes [7, 8, 9] have gained traction. However, an important
yet almost neglected field is that of biomedical image foren-
sics. Misrepresentation of experimental results by manipu-
lating biomedical images has been an issue of concern for a
while in the biomedical community [10]. Unlike natural im-
ages, biomedical images often contain arbitrary patterns with
no semantic context which allows for these manipulations to
go undetected during the peer review process. Investigative or
follow-up research can lead to the discovery of such manipu-
lations which consequently leads to retractions [11]. However
the entire discovery process is a loss of time and money [12].

Recently, a new biomedical image forensics dataset (Bio-
Fors) [13] was released to promote the development of au-
tomated detection methods. The dataset comprises images
belonging to four categories collected from biomedical re-
search documents. The paper also proposed three biomedical

Fig. 1: An image pair sample from the EDD task in BioFors.

forensic tasks to overcome the lack of structured problem
definitions in literature. There are three manipulation detec-
tion tasks described in [13] – external duplication detection
(EDD), internal duplication detection (IDD) and cut/sharp
transition detection (CSTD). These tasks together cover pop-
ular forms of semantic and digital manipulations found in
biomedical literature. Of these problems, we focus on the
largest task involving the detection of duplicated regions be-
tween images a.k.a the external duplication detection (EDD)
task. The provenace of manipulations in this task is not
known i.e. the images could be spliced, cropped with an
overlap from a larger image or simply reused. Figure 1 shows
a manipulated sample under the EDD task from [13].

Related research areas of image matching and splicing de-
tection are matured. However, as shown in [13], traditional
computer vision methods trained on natural images are not
suitable for biomedical forensics. Difficulties in detecting
keypoints from biomedical images limit keypoint-descriptor
based methods [14, 15, 16]. Use of coarse feature maps lim-
its the detail in deep-learning based splicing detection meth-
ods [17, 4] and dense matching of features is computationally
expensive [18]. To overcome these challenges, we propose
a multi-scale overlap detection network (MONet) that recur-
sively finds overlap between patches to locate duplicated im-
age regions. Recursive overlap detection is performed at mul-
tiple scales in an hierarchical manner from large to small im-
age patches. Our model increases the matching detail from
coarse to refined feature maps in a top-down approach, while
simultaneously reducing the computational burden by making
fewer patch-comparisons.

2. PROPOSED METHOD

The EDD task is structured to locate duplicated regions be-
tween image pairs. Given two input images I1, I2 ∈ RH×W×3

the objective of the EDD task is to predict two binary masks
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Fig. 2: Illustration of MONet. The top shows details of overlap score module (OSM) and the bottom shows overall architecture.

M1,M2 ∈ RH×W×1, highlighting the duplicated image
region as shown in Figure 1. Our model comprises convo-
lutional encoding and decoding operations at multiple patch
scales as shown in Figure 2. The overlap-score module
(OSM) performs overlap detection at each scale. The search
for overlapping image regions is structured hierarchically
across scales by linked OSMs.

2.1. Architecture Overview

The general structure of our model resembles a U-Net [19]
with a series of convolutional encoders at multiple scales s ∈
{1, 2, 3, 4, 5} that produce feature maps F ∈ RNh×Nw×Cs .
For notational convenience we consider that images are
square with N × N × 3 dimension. Consequently, the di-
mension of encoder feature maps at each scale is N

2s ×
N
2s .

The upsampling involves a series of convolutional decoders
that produce feature maps at corresponding scales to that of
the encoder. The final output of the decoder produces a pair
of binary prediction masks. To find duplicated regions be-
tween images, we measure overlap between patches of two
images at each scale within overlap-score modules (OSMs)
in a top-down hierarchy. The maximum overlap score of a
patch indicates the confidence with which all or a part of it
is considered to have been repeated in the other image. A
higher score indicates full or substantial repetition, while a
low score represents negligible or no repetition. To minimize
the number of patch comparisons, patch pairs in I1 and I2
with maximum overlap at the current scale s are used to guide
the search among sub-patches at the lower scale s− 1.

Scale Patch Naive OursDimension Comparisons
1 2x2 ∼ 268.43M ∼ 131K
2 4x4 ∼ 16.77M 32,768
3 8x8 ∼ 1.04M 8,192
4 16x16 65,536 2,048
5 32x32 4,096 4,096

Table 1: Number of patch comparisons at each scale.

2.2. Overlap-Score Module (OSM)

The purpose of the OSM module is to predict two overlap
score maps at each scale corresponding to the feature maps.
Deconvolution layers upsample the overlap score maps se-
quentially to produce binary output masks. Score maps from
previous and current scale are concatenated for upsampling.
Overlap scores are produced by an overlap detection network
D which takes as input two patch feature vectors (one from
each image). It is trained on patch feature triplets (anchor,
overlapping and non-overlapping patches) generated from
synthetic data at each scale. We consider a feature map F
at scale s, to be composed of a grid of patch feature vec-
tors f ∈ R1×1×Cs , such that each feature vector represents a
patch of dimension ds×ds in the input image, where ds = N

2s .
While the convolutional receptive field of a feature vector f
is larger than the patch dimension ds at any given scale, we
implicitly limit the scope of each feature vector to its patch
dimensions when measuring overlap. The overlap score map,
is indexed similar to a feature map F . The score at each index
represents the maximum overlap found for that patch feature
vector when compared to vectors from the other image.



Method
Microscopy Blot/Gel Macroscopy FACS Combined

Image Pixel Image Pixel Image Pixel Image Pixel Image Pixel

SIFT [14] 0.180 0.146 0.113 0.148 0.130 0.194 0.11 0.073 0.142 0.132
ORB [15] 0.319 0.342 0.087 0.127 0.126 0.226 0.269 0.187 0.207 0.252
BRIEF [16] 0.275 0.277 0.058 0.102 0.135 0.169 0.244 0.188 0.180 0.202
DF - ZM [18] 0.422 0.425 0.161 0.192 0.285 0.256 0.540 0.504 0.278 0.324
DMVN [17] 0.242 0.342 0.261 0.430 0.185 0.238 0.164 0.282 0.244 0.310

Ours - regular margin loss 0.398 0.435 0.507 0.520 0.221 0.262 0.313 0.356 0.410 0.438
Ours - flexible margin loss 0.346 0.386 0.520 0.520 0.309 0.281 0.256 0.336 0.398 0.410

Table 2: MCC scores on external duplication detection (EDD) task in BioFors across image categories.

2.3. Structured Hierarchical Search

The OSMs are structurally linked from higher to lower scale
such that patch comparisons can be made hierarchically.Sub-
patches of a patch with maximum overlap at a higher scale,
are candidate patches for overlap detection at a lower scale.
Since, the spatial dimension of each feature map gets halved
at each scale, a feature vector f at a higher scale overlaps with
four feature vectors at the immediate lower scale. This obser-
vation is useful in limiting the number of patch comparisons
to to be made at a lower scale. For two patches with maxi-
mum overlap at a higher scale, each of their four sub-patches
are compared only with each other. At the largest scale (low-
est resolution feature map), with no prior scoring, overlap o
is measured between all possible pairs to predict an overlap
score map ON×N×1. Table 1 shows the reduction in patch
comparisons at each scale for 256x256 image pairs.

2.4. Loss

We pretrain the endoder and overlap detection network jointly
using the margin ranking loss function Lo. The model is
then trained end-to-end with mask output using binary cross-
entropy loss. For two feature vectors x1 and x2 the regu-
lar margin ranking loss function is calculated as (1), where
m is the margin hyper-parameter. In our experiments for an
anchor, positive and negative patch triplet < a, a+, a− >,
x1 and x2 represent the overlap scores between patch pairs
< a, a+ > and < a, a− > respectively. Therefore the differ-
ence between x1 and x2 represents the difference in overlap
between positive and negative patch pairs. As a result, we
also experiment with a flexible margin that is measured as a
function of overlap difference. Specifically, if the true over-
lap in pixels for < a, a+ > and < a, a− > is o+ and o−, the
flexible margin mflex is shown in (2), where d is the patch
dimension. Then the flexible margin ranking loss Lflex is
calculated as (3).

Lo = max(0, (x2 − x1) +m) (1)

mflex =
o+ − o−

d2
(2)

Lflex = max(0, (x2 − x1) +mflex) (3)

2.5. Implementation and Training Details

We resize all input images to 256× 256× 3 dimension. The
largest scale has 8x8x256 dimension feature map for 32x32
dimensional patches. The channel dimension is halved at each
scale (256 at scale 5 and 16 at scale 1). The overlap detection
layer is a two layer feed-forward network. We pretrain our
model for 25 epochs with the margin ranking loss on overlap-
ping and non-overlapping patch triplets generated from syn-
thetic data. The model is trained end-to-end for 50 epochs
after that with binary cross-entropy and margin ranking loss.
We use the adam optimizer with a learning rate of 1e-4.

3. EXPERIMENTS

Method Image Pixel

Ours w/o gating 0.340 0.398
Ours w/ dot product overlap 0.076 0.052
Ours - normalized margin 0.398 0.410

Ours - flexible margin 0.410 0.438

Table 3: Ablation of gates or using dot-product for overlap.

3.1. Dataset and Metrics

We use the BioFors dataset introduced in [13]. The EDD
task has 1,547 manipulated images. Train and test splits have
30,536 and 17,269 images respectively, divided into four
image categories – Microscopy, Blot/Gel, Macroscopy and
FACS. Each category has a different origin or semantic mean-
ing, which leads to diverse image properties and challenges.
We evaluate at the image and pixel level, according to the
protocol described in [13]. Image level evaluation assigns bi-
nary labels to images. Pixel level evaluation is performed on
aggregated pixel statistics across images. We use matthews
correlation coefficient (MCC) metric as reported in [13].

3.2. Synthetic Data Generation

BioFors dataset does not provide any manipulated samples
for training. Hence, we train our model using synthetically
generated samples similar to the process described in [13].
However, our model additionally requires joint pre-training



Fig. 3: Input images, ground truth masks, predicted masks and intermediate score maps from MONet.

Fig. 4: False positive samples on Microscopy images.

of encoders and overlap scoring modules (OSMs). This re-
quires extensive hierarchical annotation of patch overlap at
each pixel i.e. patch pairs and their overlap scores at each
scale. Generating such extensive annotation on the fly is com-
putationally expensive. As a workaround, we generate prede-
fined annotation templates, which can be used with random
image-pairs on the fly to generate unique synthetic samples.

3.3. Results

Table 2 shows the performance of our model. Baseline results
are presented as reported in [13]. Image and pixel columns
denote corresponding evaluation protocol. We highlight two
versions of our model – with regular margin ranking loss and
with a flexible margin ranking loss. Our model achieves a new
state-of-the art on blot/gel, microscopy, macroscopy image
categories and also on the combined evaluation.

3.4. Analysis

As shown in Table 2, our model achieves state-of-the art result
across multiple categories. However, the performance fluctu-
ates across image categories. Additionally, a single model
does not hold top-performance across categories. We believe
that the unique characteristics of each category make it dif-
ficult to train a single outperforming model. Figure 3 shows

sample predictions from our model. Overlap score maps from
each scale show the progression of patch overlap detection.
Figure 4 also shows that our method generates false positives.
As described in [13], these duplicated regions are not consid-
ered manipulations due to the semantics of experiments that
produced them, such as image overlay or chemical staining.
Overcoming these false positives requires either additional se-
mantic information from source documents or the definition
of manipulation needs rethinking.
Ablation: We perform an ablation analysis of our model
in Table 3. The model performance degrades if we remove
the gating operation when concatenating overlap score maps
across scales. Additionally, performance drops drastically if
we use feature dot products from literature [17, 4] instead of
one hidden layer overlap detection network.

4. CONCLUSION

Duplication of images across biomedical experiments is a
concerning issue. Our proposed model achieves state-of-art-
performance on the EDD task for some image categories.
Further investigation with dedicated model for each image
category is required.
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