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ABSTRACT

Deep Neural Networks (DNNs) are widely used for decision
making in a myriad of critical applications, ranging from med-
ical to societal and even judicial. Given the importance of
these decisions, it is crucial for us to be able to interpret these
models. We introduce a new method for interpreting image
segmentation models by learning regions of images in which
noise can be applied without hindering downstream model
performance. We apply this method to segmentation of the
pancreas in CT scans, and qualitatively compare the quality
of the method to existing explainability techniques, such as
Grad-CAM and occlusion sensitivity. Additionally we show
that, unlike other methods, our interpretability model can be
quantitatively evaluated based on the downstream performance
over obscured images.

Index Terms— Segmentation, Interpretability, Medical
Imaging

1. INTRODUCTION

The ability to interpret the decisions made by predictive models
helps to understand and evaluate model performance and has
been a useful tool for identifying algorithmic biases [1]. In
recent years, several methods for interpreting neural networks,
which have typically been considered "black boxes", have been
developed [2, 3].

Most of the recent advancements have prioritized inter-
pretability in image classification tasks, with little develop-
ment in other important tasks like image segmentation. Image
segmentation is an active area of research in medical domains,
for tumor and disease identification [4, 5]. However, if these
tools are to be used in practice by medical professionals to
drive complex and life-changing decisions, it is necessary to be
able to explain and understand how segmentations are made.

Motivated by these applications, we introduce U-Noise, a
novel method to interpret segmentation models through noisy
image occlusion 1. U-Noise learns to develop interpretability
maps from training images, which makes it an extensible and
easily deployable interpretation method; once trained, U-Noise
is quick to generate interpretability maps for new images.

1The code for this work can be found at https://github.com/
teddykoker/u-noise

U-Noise interprets an already trained segmentation model
(we name it the Utility model), whose parameters are frozen,
and finds the context that it uses to semantically segment an
image to find a target through a systematic process of adding
noise. For example, in the case of pancreas segmentation in
CT-scans, U-Noise finds the context organs used by the model
to identify where the pancreas is.

U-Noise builds on the intuition that if the model is resilient
to the addition of noise with high scale (standard deviation) to a
pixel, then that pixel is not important with respect to the model
we are trying to interpret. We train a small neural network
called an interpretability model, to directly parameterize the
noise distribution (noise mask) for each pixel in an input image,
such that the segmentation accuracy is not harmed. Once the
training is finished, we can generate an "importance map" for
each input image by feeding it to the interpretability model.
Pixels that would have received noise with a higher scale are
less important and vice-versa. Figure 1 shows the workflow of
U-noise for training the interpretability model.

There are only a few previous works that focus on segmen-
tation interpretability [6, 7]. These works solve the problem
in a lower resolution setup, and then up-sample to get pixel
level explanation. They either return explanations for a part of
the image [6, 7], a single pixel [6], or for the whole class [6].
Our method on the other hand, seamlessly returns the relative
importance of each pixel, with respect to the entire input.

2. RELATED WORK

Since our work is on the interpretability of image segmentation,
and our proposed method trains noise distributions directly, we
divide the related work into two sections: DNN interpretability
methods for vision tasks and probability distribution training
methods for neural networks.

Interpretability. CAM [8], Grad-CAM [9], occlusion sen-
sitivity [10] and T-CAV [11] are the state-of-the-art methods
for classification interpretation using CNNs. Grad-CAM uses
the gradients of target concepts to measure sensitivity and
offer explanations. However, this is done for intermediate
activations and upsampled to match the original image, which
causes some loss in interpretation power. Occlusion sensi-
tivity covers parts of the input to find important regions and
is therefore computationally intensive. Hoyer et al. [7] use

ar
X

iv
:2

10
1.

05
79

1v
3 

 [
cs

.C
V

] 
 2

5 
N

ov
 2

02
2

https://github.com/teddykoker/u-noise
https://github.com/teddykoker/u-noise


Input Image

Interpretability 
Model (N)

Element-wise 
Multiplication (⨀)

Random Noise 
Tensor 𝓝(𝟎, 𝟏)

Element-wise 
Addition (⨁)

Utility Model 
(U)

Noise Mask Noisy Image

F F

64F 64F

128F 128F

256F 256F

1024F

512 512

F F

16F 16F

32F 32F

64F

Fig. 1: The components and the training process of our proposed U-Noise method. The model we are trying to interpret (utility
model, U ) is frozen, and the interpretability model is being trained. The interpretability model’s output is the standard deviation
of the noise tolerated by each pixel of the input. It is then multiplied by random noise and fed to U , to measure its utility for the
loss function, and update the interpretability model accordingly.

perturbations for interpreting segmentation models, however,
they do not train the noise parameters as we do, and they also
use upsampling for getting pixel-level explanations, unlike
our framework which offers importance levels for each pixel
directly.

Distribution Training. Mireshghallah et al. introduced
Cloak [12], a method that trains distributions to obscure parts
of the image for privacy purposes. Our work is also related
to a method called Bayes by backprop [13], which trains dis-
tribution parameters using backpropagation, for weights of
Bayesian neural networks. U-Noise builds upon these meth-
ods to directly train dynamic noise maps, where the noise
parameters can change based on the input image, unlike previ-
ous work which offers static distributions.

Segmentation. U-Net [14] is a powerful image segmen-
tation architecture which is used extensively in medical do-
mains [5]. The model consists of a contracting path of con-
volutions to capture context from the image, followed by an
expanding path of deconvolutions to allow precise object local-
ization. The architecture is fast and produces high-resolution
segmentations.

3. U-NOISE

We build on the intuition that if a pixel is important for the
decision making of a trained model that is supposed to run a
task, in our case segmentation, then adding noise with high
scale to this pixel would harm that model’s utility. As such,
we define a utility model U (with parameters θU ), which is
the model whose decisions we want to interpret, and an in-
terpretability model N (with parameters θN , whose purpose
is to compute the scale of noise to be applied to each pixel,
while simultaneously maximizing utility model performance,
as well as the total scale of noise applied. In the segmentation
task explored in this work, both the U and N have a U-Net
architecture. Figure 1 shows the components of U-Noise and

how they interact.
Given an image x ∈ RC×H×W with C channels, and a

height and width of H and W pixels respectively, the noise
model produces a mask B ∈ RH×W = N(x; θN ) contained
in the range [0, 1] by the sigmoid function. B is then linearly
scaled to range [σmin, σmax] (hyperparameters) to determine
the scale of noise applied to each pixel. The noised image, x′,
is then produced:

x′ij = xij +Bij(σmax − σmin)ε+ σmin (1)

Where ε ∼ N (0, 1) is sampled from the standard normal
distribution. The predicted segmentation mask, ŷ = U(x′; θU )
is then computed using the frozen utility model. The goal of
the training process for the interpretability model is:

min
θN

− log Pr(ŷ|y; θU , θN )− λ logB

Where θN and θU are the parameters of the interpretability
and utility model, respectively. The first term is the utility
loss, which is the cross-entropy loss that incentivizes N to
orchestrate the noise such that the utility of the main model is
unharmed. The second term is− logB, which incentivizes the
growth of the scale (standard deviation) of the noise standard
deviation for each pixel so that we can find the unimportant
ones. Algorithm 1 shows the training process in U-Noise. The
trade-off between the two terms is governed by λ, the noise
ratio hyperparameter.

Training of the interpretability model only takes place
once, after which one only needs to run inference on the inter-
pretability model to interpret a new image.

4. RESULTS

4.1. Experimental Setup

We apply the U-Noise framework to a pancreas segmentation
task on a dataset from [15]. This publicly available dataset



Algorithm 1: Train U-Noise
Input: Input images X , segmentation masks Y ,

learning rate η, noise model N with
parameters θN , trained utility model U with
parameters θU , learning rate η, min/max noise
scale σmin and σmax

Output: Trained noise model parameters θN
while not converged do

for x ∈ X, y ∈ Y do
B ← N(θN , x) ;
ε ∼ N (0, 1) ;
x′ ← x+B(σmax − σmin)ε+ σmin ;
ŷ ← U(x′; θU ) ;
Lutility ← CrossEntropy(y, ŷ) ;
L ← Lutility − λ logB;
θN ← θN + η dL

dθN
;

end
end

contains CT scans of the pancreatic region and associated
masks outlining the pancreas. For all experiments, we use
a pre-trained U-Net model as the Utility model. We train
various sizes of U-Noise interpretability models, outlined in
Table 1. Each model is trained with a minibatch size of 8 for
100 epochs.

Model name Depth Channels Parameter count
Utility 5 26 34M

U-Noise Small 2 24 10K
U-Noise Medium 3 24 130K

U-Noise Large 4 24 537K

Table 1: Details of the Utility and U-Noise models used in
experiments. Depth denotes the number of downsample and
upsample layers; Channels denotes the number of output chan-
nels of the first layer.

4.2. Method Comparison

Fig. 2 plots a random selection of images from the Pancreas-
CT validation set, interpreted by different methods: U-Noise
Large, occlusion sensitivity, and Grad-CAM. For U-Noise, we
visualize the positive values retrieved prior to the sigmoid layer
in the noise model. For occlusion sensitivity, we convolve a
15x15 pixel window through the image with a stride of 2 pixels.
At each position, we report the dice coefficient relative to the
unoccluded image. Finally, for Grad-CAM, we follow [6, 11]
and obtain a heatmap with respect to the convolutional layer
at the bottleneck of the Utility model.

Qualitatively, it can be seen that, unlike the other methods,
U-Noise places the highest importance on the pancreas itself.
Logically, this can be interpreted as a pixel being labeled as

Image + Mask U-Noise Large Occlusion Grad-CAM

Fig. 2: Comparison of U-Noise Large model to Occlusion
Sensitivity and Grad-CAM interpretation techniques.

part of the pancreas increases the probability of neighboring
pixels also being labeled as the pancreas. Other pixels of im-
portance tend to be on the borders of organs near the pancreas
and the outside edges of the body, demonstrating what the
model might be using to signpost towards the pancreas. In
comparison, it is not clear how to interpret the heatmaps from
the other techniques.

Fig. 3b shows pixels at each decile of importance, as
ranked by the interpretability model, for an example image by
setting a threshold for occlusion map value below which pixels
were zeroed. The first pixels to be un-zeroed (the most impor-
tant) relate to the pancreas. Next are the edges of the body
and nearby organs, suggesting that these are used to identify
pancreas location and extent.

4.3. Utility Tradeoff

Fig. 3a plots the dice coefficient of U-Noise against the per-
centage of zeroed pixels in an image. The dice coefficient
decreases minimally until less than 90% of the image is vis-
ible, after which the model utility decreases steadily. This
suggests that the utility model requires context from a large
number of pixels in the image to make the segmentation.

The differences in utility response of the models when up
to 50% of the image is visible suggests that the pixel priority
learned by the large model is sub-optimal.

We analyze the importance assigned to each pixel by the
occlusion map by zeroing pixels with an occlusion map value
above a certain threshold. Fig. 3a plots the impact on dice
coefficient against the zero threshold and the corresponding
percentage pixels in the image which have been zeroed.
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Fig. 3: Effect of thresholding images to the percentage of
the image visible, and the accuracy of the downstream utility
model. Models marked Pretrained were first trained on the
pancreas segmentation task before the noise task. Intuitively,
we observe a direct relationship between the percent of the
image visible and the ability of the utility model to segment
the image.

4.4. Model Pretraining

Fig. 4 plots the dice coefficient of U-Noise when 50% of the
image is visible, both when the interpretability model was and
was not initialized with the trained Utility model parameters.
Unsurprisingly, U-Noise performs better with a pre-trained
interpretability model as it takes advantage of the pancreas
identification learned by the Utility model. The inverse re-
lationship between interpretability model size and U-Noise
utility suggests that the interpretability model struggles to si-
multaneously learn the implicit tasks of pancreas identification
and pixel importance ranking.

Although the absolute differences in dice coefficient are
small, taken to its extreme this may suggest that large inter-
pretability models must be pre-trained in order for U-Noise
interpretations to work well. In non-segmentation tasks, where
the interpretability and Utility models may not share an archi-
tecture and therefore cannot easily share parameters, it may
not be possible to use large interpretability models.

4.5. Run-time Analysis

Table 2 compares the computational cost of U-Noise to Grad-
CAM and Occlusion Sensitivity. Once trained, our method
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Fig. 4: Effect of model size and pretraining. We observe that
the Small model shows the least improvement to pretraining
on the original task, while it seems necessary for the Large
model.

Method Inference Time (seconds) Training Time Parameters
U-Noise Large 0.0031 4 hours 56 min. 30 sec. 537K

Grad-CAM 0.046 NA 34M
Occlusion Sensitivity 201.37 NA 34M

Table 2: Compute requirements of different interpretability
methods. Average over 10 trials. Methods compared using an
NVIDIA 2070 Super GPU.

is orders of magnitude quicker to infer than the others, mak-
ing it more applicable for use at scale. In situations where
specialized, high-performance compute is not easily available
(for example in hospitals, for use-cases explored in this work),
U-Noise remains a useful interpretation method.

5. CONCLUSION AND FUTURE WORK

In this paper, we present U-Noise, a noise-based framework for
interpreting image segmentation models. U-Noise discovers
the pixels on which the segmentation model relies to makes its
decision, by applying additive noise and observing how sensi-
tive the model utility is to changes in the value of each pixel.
While this work has only considered U-Noise in segmentation
tasks, the method can in principle be applied to other tasks.

Additionally, the architecture presented in this work offers
a lightweight method for occluding sections of an image with-
out severely compromising task utility. Therefore, U-Noise
could be utilized to obscure user data on-device in a more
directed way than existing privacy methods, such as local dif-
ferential privacy [16]. The efficacy of U-Noise for the purpose
of user privacy should be explored in detail.

Ethical Considerations. We have made sure that the data
we used was collected under HIPAA provenance and that the
privacy of the patients who have contributed to the dataset is
not violated.
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