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ABSTRACT

Visual tracking is one of the most challenging computer
vision problems. In order to achieve high performance vi-
sual tracking in various negative scenarios, a novel cascaded
Siamese network is proposed and developed based on two
different deep learning networks: a matching subnetwork
and a classification subnetwork. The matching subnetwork
is a fully convolutional Siamese network. According to the
similarity score between the exemplar image and the candi-
date image, it aims to search possible object positions and
crop scaled candidate patches. The classification subnet-
work is designed to further evaluate the cropped candidate
patches and determine the optimal tracking results based on
the classification score. The matching subnetwork is trained
offline and fixed online, while the classification subnetwork
performs stochastic gradient descent online to learn more
target-specific information. To improve the tracking perfor-
mance further, an effective classification subnetwork update
method based on both similarity and classification scores is
utilized for updating the classification subnetwork. Extensive
experimental results demonstrate that our proposed approach
achieves state-of-the-art performance in recent benchmarks.

Index Terms— Visual tracking, object detection, Siamese
networks, cascaded learning

1. INTRODUCTION

Visual tracking is a most fundamental research issue in the
field of computer vision, and it is widely developed in nu-
merous applications, such as video surveillance, drone track-
ing, self-driving vehicle, human-computer interaction, auxil-
iary medical diagnosis, and many others 2. Normally,
tracking task is to estimate the trajectory of an arbitrary tar-
get in an image sequence, given only its initial location at the
first frame. Despite the excellent results achieved by numer-
ous tracking approaches [3, 4[5, [6} 7, [8]] in the past decades,
visual tracking is still a challenging problem owing to com-
plicated factors like fast motions, background clutters, motion
blurs, deformations, illumination variations, low resolution,
occlusions, out of views, scale variations, etc.

Fig. 1. Comparison of our proposed tracking approach
with three state-of-the-art CNN based trackers: MLCFT [9],
SiamFC [[6] and MDNet [[3]] on three example sequences from
OTB2015 benchmark [10], respectively. We also present the
ground-truth bounding boxes of these example sequences.
Best viewed in color.

In recent years, with the tremendous development of deep
learning technology [[11}12,[13}[14]], convolutional neural net-
works (CNN) have attracted increasing attention in the track-
ing community. Compared with the conventional handcrafted
features based trackers [3, 4], [T7], CNN based track-
ers [18, 20l [3, 211, 22]] can easily obtain more compet-
itive tracking performance in multiple benchmarks [23] [T0]
[24]). In general, existing CNN based tracking approaches can
be divided into two categories, i.e., matching based trackers
and classification based trackers. The former is always pre-
trained offline on the video object detection dataset of the Im-
ageNet [23]. During tracking, it matches the candidates with
the exemplar by correlating deep features and does not need
online updating. In contrast, the classification based track-
ing approach transfers a pre-trained network as the classifier
and then performs online updating by adding some particular
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Fig. 2. The overall framework of our proposed approach.

layers [5]. Although all the CNN based trackers above men-
tioned have obtained impressive tracking results, there is still
great potential to enhance performance further.

In this paper, we propose a novel cascaded Siamese net-
work for high performance visual tracking by integrating both
the matching and classification networks. First, a matching
subnetwork is exploited to measure the similarity between
candidate image and exemplar image and crop scaled can-
didate patches based on the similarity score. Then, a clas-
sification subnetwork which is cascaded with the matching
subnetwork learns a target-specific classification scheme on-
line to further determine the optimal tracking results among
all scaled candidate patches based on the classification score.
Finally, both similarity and classification scores are combined
together to indicate whether the classification subnetwork
should be updated online or not.

Our main contributions are three folds and summarized as
follows:

e We propose a novel cascaded Siamese network for
high performance visual tracking, which consists of a
matching subnetwork and a classification subnetwork.

e We utilize an effective model update method to deter-
mine the necessity for classification subnetwork online
updating.

e We conduct extensive experiments on several recent
tracking benchmarks, our proposed approach achieves
surprisingly good performance both in terms of accu-
racy and robustness, as shown in Fig.[I]

2. ALGORITHMIC OVERVIEW

The overall framework of our proposed approach is shown in
Fig.[2} The proposed approach consists of a matching sub-
network for target localization and scaled candidate patches
creation and a classification subnetwork for optimal tracking
results determination. During the tracking process, an exem-
plar image x of size 127 x 127 and a candidate image z of size
255 x 255 both centered around the previous position of the
target are first fed into the matching subnetwork. The match-
ing subnetwork imitates the fully-convolutional Siamese ar-

chitecture [6], and the similarity between the exemplar im-
age and the candidate image is estimated by calculating the
cross-correlation based on their deep features. Then, the pos-
sible target positions are chosen by searching the maximum
similarity scores, and scaled candidate patches centered at all
possible target positions are cropped on the candidate im-
age. Here, the scaling method is similar to that of DSST
tracker [[16]. Next, the scaled candidate patches are resize
to 107 x 107 and classified into foreground or background by
the classification subnetwork, and the patch with the highest
foreground score will be determined as the optimal tracking
result. Finally, we update the classification subnetwork online
based on the combination of both similarity and classification
score corresponding to the optimal tracking result.

3. THE PROPOSED APPROACH

3.1. Matching Subnetwork

In our matching subnetwork, we adopt a fully-convolutional
Siamese network which is pre-trained offline with a large
video object detection dataset [25] in an end-to-end manner
as the deep feature extractor [6]. Our aim is to learn a func-
tion f(z,x) = g(v(z), (X)) to compare the exemplar image
x with the candidate image z of the same size, where ¢(z)
and o(x) represent the deep feature maps and ¢ is a similarity
metric. We utilize a cross-correlation layer to measure the
similarity between the output deep features,

f(2,%) = ¢(z) x p(x) +b- 1 (1)

where * denotes the cross-correlation operation, and b- 1 indi-
cates the bias. Thus, the output f(z,x) indicates a similarity
score map corresponding to the exemplar image compared to
the candidate image.

The localization of the target can be estimated at the high-
est peak on the similarity score map. However, since a video
stream always undergoes variations such as fast motion, illu-
mination variation and occlusion, the similarity measurement
may be disturbed by similar objects or background noises in
the candidate image as shown in Fig. 2] and there possibly
exist multiple peaks on the similarity score map and the tar-
get may locate at one of them. If we estimate the target at
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Fig. 3. Ablation studies plot on OTB-2015 [10]. In the leg-
end, M denotes the choice of matching subnetwork and C
denotes the choice of classification subnetwork.

wrong peaks, it will leads to inaccurate localization and track-
ing drift. To solve this problem, we use the classification sub-
network to further determine both the optimal target position
and size among all the peaks.

3.2. Classification Subnetwork

In Section we obtain a similarity score map by cross-
correlating the output deep features of the feature extractor.
Since the similarity score map may not be reliable enough,
we treat peaks whose ratio between its score and that of the
highest peak exceeding a certain threshold -y, as possible tar-
get positions, and the corresponding patches centered at these
positions are cropped and scaled as mentioned in Section
After that, a series of scaled candidate patches can be ob-
tained. Thus, we exploit a classification subnetwork for opti-
mal tracking results determination.

The classification subnetwork architecture is similar to
that of MDNet [S]] which has three convolutional layers, two
fully connected layers and a binary classification layer with
softmax cross-entropy loss to output the probabilities of tar-
get and background classes, as shown in Fig.[2]

Finally, the candidate patch with the highest classification
score in the target class will be selected as the optimal track-
ing result.

3.3. Updating Method

During tracking, the parameter of the matching subnetwork
are fixed, and all the classification layer and the fully con-
nected layers of the classification subnetwork are fine-tuning
online to adapt to variations based on optimal tracking results
in the current frame. However, the optimal tracking results
are not always reliable for classification subnetwork updates.
Inappropriate updates may break down the classification sub-
network due to the ambiguous tracking results.

In order to alleviate this issue, we utilize a simple but ef-
fective method for classification subnetwork updating. As-
sume the similarity and classification scores of current opti-
mal tracking results are S%, and S% respectively, and the his-

torical scores of previous n frames are Sy = L S0 54T
and Sc = 237, S5 If there are no other peaks on the
similarity score map that exceed a ratio ,, of the highest peak
value, the classification subnetwork will be updated directly
based on the current optimal tracking result. In contrast, if
there has one or more peaks exceeds the ratio -, of the high-
est peak value, we compare both similarity and classification
scores with the historical scores. Only when these two scores
St, and S are great than ~,, and 7. of their corresponding
historical score Sy; and S¢ respectively, we update the last
three layers of our classification subnetwork.

4. EXPERIMENTS

In this section, we conduct extensive experiments to validate
the effectiveness of our proposed cascaded Siamese network.
We first detail the implementation of our approach. Then, we
investigate the impact of the architecture of the matching and
classification subnetworks as well the update method. Finally,
we compare our approach with nine state-of-the-art trackers
including ECO [[7], CCOT [20]], MLCFT [9], CACT [4], Sta-
ple [[17], MDNet [5], SiamFC [6], KCF [3] and DSST [16] on
three tracking benchmarks: OTB-2013 [23], OTB-2015 [10]
and VOT-2016 [24]. The experiments on OTB benchmarks
are exploiting two metrics: distance precision and overlap
success rate, while the expected average overlap (EAO) is ex-
ploited in the VOT dataset.

4.1. Implementation Details

Network Architecture. In the matching subnetwork, we ex-
ploit ResNet [[13] for deep feature extraction, which followed
by a cross-correlation layer. The convolutional layers of the
classification network are identical to the corresponding parts
of VGG-M [12], the fully connected layers have 512 output
units and the classification layer output 2 scores as described
in MDNet [55]].

Offline Training. For the training process of both matching
and classification subnetworks, sample pairs are selected from
the ImageNet video object detection dataset [25[] with ran-
dom interval. The exemplar and candidate images are picked
from the same video. We first load the pre-trained networks
to initialize our approach. Then, we apply stochastic gradient
descent (SGD) with the learning rate set from 1073 to 10~4
and the momentum of 0.9 to train the networks end-to-end,
respectively. More details about the training methods can be
found in [6] and [5]].

Online Tracking. During the tracking process, we only up-
date the parameters of the last three layers of the classifica-
tion subnetwork, and others are fixed. The candidate image is
cropped approximately four times the target size centered at
the previous position. The certain thresholds v, v, and 7.
are set to 0.75, 0.8 and 0.6, respectively. The number of his-
torical frames n is set to 6. Moreover, we exploit three scales
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Fig. 4. Success rate-Precision ranking plots of our approach
and nine state-of-the-art trackers on OTB-2013 [23]] (top) and
OTB-2015 [[10] (bottom). The better performance a tracker
achieves, the closer to the top-right corner of the graph.

1.028=1.91} to crop candidate pathes at each possible target
position.

Our approach is implemented using MXNet [26] on an
Amazon EC2 instance with an Intel Xeon E5 CPU, 61GB
RAM and a NVIDIA K80 GPU, 12GB VRAM. It is worth to
mention that we retrained MDNet [5] on ImageNet [[25] since
the original MDNet is training with tracking videos that may
cause unfair performance over other tracking approaches.

4.2. Ablation Studies

To verify the effectiveness of our designed matching and clas-
sification subnetwork as well the update method in our cas-
caded Siamese network, we conduct ablation studies on OTB-
2015 benchmark. The result is shown in Fig. [3]

It is clear that the performances of all the variations which
are implemented using the components indicated in the plot
legend are not as good as our full approach, and each com-
ponent in our tracking framework is helpful to improve per-
formance. A noteworthy is only our final implementation,
denoted by Ours, employs the update method.

4.3. Results on OTB

We show the success rate-precision ranking plots on OTB-
2013 and OTB-2015 benchmarks [23} [10] in Fig. E} It il-
lustrates that the proposed tracker performs better than other
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Fig. 5. EAO graph of our approach and nine state-of-the-art
trackers on VOT-2016 [24]. The better performance a tracker
achieves, the closer to the right of the graph.

re-detection trackers MLCFT and CACT, but is less effective

than ECO which exploits continuous convolutional filters.
Overall, our approach attains surprisingly excellent per-

formance both in terms of accuracy and robustness.

4.4. Results on VOT

We also evaluate our proposed approach on the VOT-2016
dataset [24] as shown in Fig.[5] The horizontal grey line in-
dicates the state-of-the-art bound according to the VOT com-
mittee. Our tracker ranks second in overall performance eval-
uations based on the EAO measure. Specifically, the perfor-
mance of our approach excels the CCOT [20] tracker which
achieves the best results in the original VOT-2016 challenge.

SiamFC [6] and MDNet [3] are the baselines of the pro-
posed approach. Compared to them, our tracker not only
learns a matching subnetwork to search the possible target po-
sitions, but also benefits from the classification subnetwork to
determine the optimal tracking results. What is more, the ef-
fective classification subnetwork updating method ensure the
robustness of the tracker. Therefore, our cascaded Siamese
network outperforms them with a large margin.

5. CONCLUSION

In this paper, we propose a cascaded Siamese network for
high performance visual tracking. Our proposed approach
consists of the matching subnetwork for similarity learning
and the classification subnetwork for optimal target result de-
termination. Extensive experiments on three recent tracking
benchmarks demonstrate competing performance of the pro-
posed tracker over a number of state-of-the-art approaches.
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