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Abstract

In low rate motion-compensated video coding, the
rate required to encode the motion field can become
a stgnificant portion of the overall rate budget. This
motivates us to investigate methods to efficiently, and
losslessly, encode the motion field. Reductions in the
required motion field bitrate allow increasing the rate
for the residue images or may permit a higher den-
sity motion field to be used. In this paper, we consider
adaptive context modeling techniques, such as those re-
cently proposed in image coding applications, and ex-
plore their effectiveness for coding the motion data.
We rely on various forward/backward context selec-
tion algorithms, and demonstrate how forward adap-
tation, based on alphabet partitioning approaches, can
result in performance improvements over purely back-
ward adaptive methods. We observe substantial reduc-
tions in rate, especially for dense motion fields, when
comparing with popular differential coding schemes us-
ing VLC tables, such as those in the H.263 standard.

1 Introduction

While at high rates, such as those used for MPEG-
1 and MPEG-2 video coding, the proportion of bits
devoted to coding the motion field is small, at low
rates (e.g., H.261,H.263), this overhead can become
significant. This motivates us to investigate efficient
techniques for coding of the motion field. We concen-
trate on the lossless case and assume that the motion
field has been already computed. Clearly, additional
gains can be achieved by trading off the accuracy of
the motion field (e.g. using variable sized blocks) with
the cost of transmitting it [1, 2]. However we do not
consider these trade-offs here, although they could be
incorporated into our framework, and we concentrate
on the constant block size case.

A common approach for motion field coding is dif-
ferential coding, where each motion vector value is pre-
dicted from previously transmitted adjacent vectors
and the prediction error is coded by a variable length
codes (VLC) table [1]. Median, rather than linear,
predictors tend to be favored and in general the scalar
components of the prediction error vector are coded
separately. Numerous approaches have been proposed

to improve the performance of the motion field cod-
ing. For example, vector coding of the prediction error
using a 2D VLC table and combined with magnitude-
based classification of the error has been proposed in
[3]. Improvements can also be achieved by optimizing
the choice of variable block size, through joint opti-
mization of the block size and the motion vector as
in [2], where dynamic programming and hierarchical
tree-pruning techniques are used. In [4], the block
matching motion estimation algorithm is construed
as a vector quantization problem and an iterative de-
sign algorithm is proposed. The temporal redundancy
of the motion field data is exploited in [5], where a
scheme for motion compensation of motion vectors is
proposed.

A common point of all these algorithms is that they
employ a fixed entropy coder to code the prediction er-
ror and are thus limited by the zeroth-order entropy
(i.e. memoryless entropy) of the prediction error. Fur-
ther reductions in bit rate can be achieved by taking
advantage of local correlations in the source, through
the use of higher-order entropy coders, for example.
However, a large alphabet size input, such as that re-
quired by a motion vector field with dynamic range
[-16,15.5] or a continuous-tone image, precludes this
approach due to its complexity. As an alternative
one can resort to the context adaptive techniques we
outline in this paper. In context adaptive methods
lower order entropy coders are used, but the proba-
bility model used in the entropy coding depends on
the neighboring vectors. This allows capturing of lo-
cal correlation while maintaining reasonable complex-
ity. Our paper is organized as follows. A general in-
troduction to available context adaptive methods is
presented in Section 2. In Section 3 we present the
proposed algorithms and compare their performance.
Finally, we discuss the results and derive some conclu-
sions in Section 4.

2 Context Adaptive Coding

We start by giving a general overview of available
context adaptive techniques which have recently been
shown to be a very effective tool in still image coding
[6, 7]. The principle of context adaptive coding is to



attempt to model the conditional probability of sym-
bols based on their surrounding neighborhood. This
can be seen as a generalized form of prediction where
each context determines a complete probability model
for the new data (as opposed to only a predicted value,
which would be the mean of the conditional distribu-
tion).

Our goal is to, given a neighborhood N (z;) of the
current symbol z;, model the probability distribution
of the symbol, p(z;|N (z;)). The number of different
values for the neighborhood can be quite large, espe-
cially for large alphabet sources, and thus it is normal
practice to partition the possible neighborhoods into
a smaller set of classes. The appropriate number of
classes has to be kept small based on complexity con-
siderations but also to avoid “context dilution” situa-
tions. For each class the probability model can be ob-
tained off-line, based on some modeling assumptions,
or can be learned on the fly as input symbols are being
transmitted.

There are two general approaches for context adap-
tive coding, namely, backward and forward meth-
ods. If backward adaptation is used then A (z;) com-
prises only symbols that have already been transmit-
ted. Thus A(z;) is known to the decoder and no
overhead has to be sent. Most likely there will be a
rule @, which maps all possible A (z;) into a smaller
set of contexts and thus the coding will be based on
p(z:|Qs(N (25))) (see for example [6, 7]).

Alternatively, a forward adaptive scheme will use
a non-causal neighborhood, comprising data that has
not yet been transmitted. Obviously, information has
to be sent to the decoder so that it can adjust its
coding parameters, and thus the number of classes
will determine the necessary overhead. In this case
a different function @ is used to reduce the num-
ber of possible neighborhoods considered in the mod-
eling process As above, the data will be coded based
on p(z|Qs(N(z;))). A popular approach has been to
group the input symbols into segments or blocks and
to assign to each segment a label which corresponds to
the probability distribution that best matches it. An
example of this approach can be found in [8], where
blocks within image subbands are modeled as being
Laplacian distributed, with the Laplacian parameter
chosen to be one among a discrete set of values known
to the decoder. The classification map itself (i.e. the
labels assigned to each block) can then be sent using
efficient methods, including backward adaptive ones.
A different forward adaptive approach is set partition-
ing [9, 10], where each groups of inputs (for example
image blocks) is assigned to a class (for example ac-
cording to the largest element in the set [10]) without
requiring an explicit probability model to be intro-
duced.

While backward adaptive approaches may suffer
from inaccurate classification, forward classification
methods require that extra overhead information be
sent. This motivates us to consider also alphabet par-
titioning [10] as an alternative method for forward
adaptation. Alphabet partitioning methods are based
on sending a coarse version of the symbol itself. For
example a coarsely quantized symbol is sent first and

then the residue information is transmitted. It can be
shown that for an i.i.d. source the entropy is the same
whether the source is coded directly, or the combina-
tion of partitioning information and residue informa-
tion is coded instead [10]. Thus, this form of parti-
tioning carries no overhead. Alphabet partitioning is
also useful as a method to reduce the complexity of
the coding process (without loss in compression) be-
cause it allows lower order entropy coders to be used
within each partition. In order for alphabet partition-
ing to result in a lower overall rate we need to find
partitioning rules such that (i) the classification map
can be encoded with few bits (e.g., it exhibits high
spatial correlation) and (ii) the set information can be
used to improve the encoding of the elements within
the set. We will consider these issues in the context of
coding of motion field. Effective combinations of al-
phabet partitioning and backward adaptation are thus
our objective.

3 Motion Vector Field Coding

We use four standard QCIF sequences to compare
the performance of the various algorithms: MissAmer-
tca, Claire, Foreman, and Carphone. The first two
are representative of videoconferencing applications,
and thus do not contain much motion, the latter two
have much stronger motion. We use block sizes of
16x16, 8x8 and 4x4, and the motion field data is es-
timated by exhaustive block matching, while skipping
every two frames in the original sequence (i.e., we use
0,3,6,9,---,150). The search range is [—16, 15. 5] with
half plxel accuracy. The intra/still/motion ‘decision is
made by comparing the original block variance vy with
the minimum compensated error variance vy. If vg is
smaller than v; the block is tagged as intra block and
no motion information needs to be sent. If classified
as inter block, vy is then compared with the error vari-
ance vg of the zero motion compensation with a favor
to zero motion. If vy < (v + 1.0), then this block is
classified as a still block with zero motion vector. Oth-
erwise, full motion information has to be sent. The re-
sults of different methods tested in our experiment are
listed in the tables and are given in terms of average
bits per frame to code the motion field.

We will refer to Fig.1, which summarizes the data
flows in the various algorithms we discuss. The ellipses
represent data processed in each stage and labels over
the arrowhead lines connecting these ellipses indicate
the specific coding modules used for this transition.

3.1 Baseline algorithm

A typical lossless coding system for motion vectors
is depicted in Fig.1(a). The motion vector data is first
classified as an intra (no motion compensation), still
motion compensation with zero vector), or motion
nonzero vector) block. An arithmetic coder (AC) is
used to code this classification map. A median pre-
dictor (MP) is then used to remove the local mean
and the prediction error is coded using the VLC table
from [1]. We will call this algorithm Method A and
its performance should be similar to that of the H.263
standard.

Note that the classification information is coded in
a memoryless manner even though there exists sub-



stantial spatial correlation (e.g. “still” areas may oc-
cupy several consecutive blocks). Thus it is beneficial
to use context adaptive entropy coding to transmit the
classification map. We denote this approach Method
B. B uses an arithmetic coder, instead of VLCs, to
code the prediction error. Note that the classifica-
tion used in A and B is a simple version alphabet
partitioning as described in the previous section. As
noted above every time alphabet partitioning is per-
formed gains can be achieved by efficient encoding of
the classification map and by taking advantage of the
set information. Thus the gain in going from A to B is
an example of alphabet partitioning gain. Other par-
titioning methods will be considered in the next two
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Figure 1: Coding flow of the proposed algorithms.
a) Method A encodes the initial classification map
still/motion/intra) using an arithmetic coder. The
motion field is encoded using VLCs after prediction.
Method B incorporates context adaptive coding for the
classification map, Method C uses context adaptive
techniques for both the classification map and the pre-
diction error. (b) Method D uses alphabet partitioning
combined with context adaptive techniques to encode
the prediction error. (c¢) Method E also uses alphabet
partitioning to separate vectors in to large and small
before context adaptive predictive coding.
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3.2 Prediction Error Coding

We first consider coding of the prediction residue
with a context adaptive entropy coder. We select a
backward adaptive approach, where an energy pre-
dictor € is calculated by taking the average predic-
tion error magnitude from the current (causal) con-
text neighborhood. Typically, large prediction errors
tend to be clustered, and thus larger values of € gen-

erally indicate a higher probability that the current
symbol will have a large prediction error value, thus
the conditional density function is expected to have
high variance. We use four classes which are deter-
mined by optimal quantization of the distribution of
the €, which is assumed to be Laplacian. We call this
approach Method C. As can be seen from the results,
Method C does not improve on Method B. Thus back-
ward adaptive systems do not always guarantee signif-
icant bit rate reduction and the choice of classification
is in fact critical to determine potential gains.

Although methods for optimal classification by
training or probability modeling have been proposed
[11, 7], we consider here a simple hybrid approach
based on alphabet partitioning and backward adap-
tive classification (See Fig.1(b)). We focus on the
most likely prediction error which, for a good predic-
tion mechanism, will tend to be zero. Moreover a pre-
diction error of zero is likely to be both frequent and
spatially correlated, as regions of smooth motion will
give consistently prediction error equal to zero. We
thus consider the zero prediction error as a separate
case and use alphabet partitioning to separate the zero
and non-zero prediction error cases. For the non-zero
case we then proceed as before, i.e. use a backward
context based entropy coder and use the same classifi-
cation rule as that in Method C. We call this approach
Method D, and we observe that it outperforms Method
C.

3.3 Class Adaptive Prediction

We have thus far considered a simple (mo-
tion/still/intra) classification accompanied with adap-
tive methods to encode the prediction error. We now
present alternative forms of classification of the mo-
tion vectors. As a motivation, consider Fig.2(a) which
depicts the histogram of motion vector values from 4
QCIF sequences (Foreman, Carphone, MissAmerica
and Claire). Tt can be seen that most of the vectors
have relatively small magnitude. We also notice that a
single fixed predictor is not efficient, especially at the
boundaries between regions of large and small motion.
Thus, we propose to further classify the motion blocks
into another two new classes, namely, those with small
magnitudes and those with large magnitudes. This
additional level of classification has the well known
advantage that each set in the partition can have its
own entropy coder with different alphabet size. This
approach is called Method E and is shown in Fig.1(c).

Given this classification we can introduce a class
adaptive predictor (CAP) to replace the fixed predic-
tion scheme. Assume a predictor is being used which
computes the predicted value based on the immediate
neighbors of the current vector. Then, if information
about the magnitude of the current vector is avail-
able, clearly we can eliminate any immediate neigh-
bors which do not belong to the same magnitude class.
Thus if any of the immediate neighbors does not be-
long to the same class it can be replaced in the pre-
diction process by the latest transmitted vector with
same class as the current vector. In other words, we
can come up with a better predictor for the next sym-
bol given that we know the partition to which this
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Figure 2: (a) Motion vector data distribution. Dis-
tribution of vector magnitudes for the four sequences.
(b) Motion field classification maps (block size 8x8).
Code 0-Small Motion, 1-Large Motion, 2-Still, 3-Intra.
between frames 69 and 72 from Carphone.

symbol belongs. To encode the classification map we
resort to a context adaptive arithmetic coder, since
there exists strong correlation between the classes of
adjacent blocks, as can be seen in Fig.2(b)

Method | Foreman | Carphone | MissAm | Claire
A 736 525 366 146
B 699 493 307 123
C 707 501 321 129
D 676 488 305 122
E 700 509 317 121

Table 1: Motion Vector Encoding Comparison(16x16)

Method | Foreman | Carphone | MissAm | Claire
A 3050 2175 1400 1033
B 2778 1948 1150 570
C 2723 1934 1151 556
D 2610 1874 1109 502
E 2608 1952 1138 492

Table 2: Motion Vector Encoding Comparison(8x8)

4 Discussion

As a summary of the results we can first see that
context adaptive coding of the classification maps (in-
tra/still/motion) is very efficient compared to the ze-
roth order entropy coder. This is reflected in the rate
reduction from A to B. The comparison between C
and D has served to illustrate the shortcomings of
backward classification and the benefits of selective
applying forward classification. This leads to inter-
esting issues in trade-offs in determining the choice
between backward and forward classification. Except
for the Carphone sequence, E has an average better
performance than C. This indicates that forward clas-
sification of original motion vector data is more suit-
able for small motion sequences.

Method | Foreman | Carphone | MissAm | Claire
A 16428 11397 8923 3838
B 13438 9265 7036 2533
C 13272 9190 7018 2489
D 13021 9050 6902 2416
E 12863 9253 6854 2377

Table 3: Motion Vector Encoding Comparison(4x4).

Although context adaptive coding, both forward
and backward, has been shown to be effective to code
the motion field data, complexity issues have to be
solved first to make it a practical alternative method.
We further notice that in terms of overall bit rate, the
motion field rates given here is still too high for low bi-
trate coding applications. More effort is necessary to
make such a dense motion field possible in the future,
in particular by improving classification methods and
taking into account temporal dependencies.

References

[1] International Telecommunication Union,
RECOMMENDATION H.263, July 1995.

[2] M. C. Chen and A. N. Willson, “Design and opti-
mization of a differentially coded variable block size
motion compensation system,” in Proc. of ICIP’96,
1996.

[3] G. Y. Yu and C. T. Chen, “Two-dimentional mo-
tion vector coding for low-bit rate videophone appli-
cations,” in Proc. of ICIP’95, 1995.

[4] Y. Y. Lee and J. W. Woods, “Motion vector quanti-
zation for video coding,” IFEF Trans. on IP, vol. 4,
pp. 379-382, Mar. 1995.

[5] J. Yeh, M. Vetterli, and M. Khansari, “Motion com-
pensation of motion vectors,” in Proc. of ICIP’95,
1995.

[6] M. J. Weinberger, J. J. Rissanen, and R. B. Arps,

“Applications of universal context modelling to loss-

1TU-T

less compression of gray-scale images,” IFEFE Trans.
on IP, vol. 5, pp. 575-586, Apr. 1996.

[7] C. Chrysafis and A. Ortega, “Efficient context-based
entropy coding for lossy wavelet image compression,”

in Proc. of DCC’97, (Snowbird, UT), Mar. 1997.

[8] R. L. Joshi, H. Jafarkhani, T. R. Fisher, N. Farvadin,
M. W. Marcellin, and R. H. Bamberger, “Comparison
of different methods of classification in subband image
coding,” Submitted to IEEE Trans. on IP, 1995.

[9] A. Said and W. A. Pearlman, “A new fast and efficient
codec based on set partitioning in hierarchical trees,”
IEEFE Trans. on CAS for Video Tech., vol. 6, pp. 243—
250, Jun. 1996.

[10] A. Said and W. A. Pearlman, “Low-complexity wave-
form coding via alphabet and sample-set partition-
ing,” in Proc. of VCIP’97, (San Jose, CA), Jan. 1997.

[11] X. Wu and N. Memon, “Calic-a context based adap-
tive lossless image codec,” in ICASSP’96, 1996.



