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Abstract—A representation theorem relates different mathemat-
ical structures by providing an isomorphism between them: that
is, a one-to-one correspondence preserving their original proper-
ties. Establishing that the two structures substantially behave in
the same way, representation theorems typically provide insight
and generate powerful techniques to study the involved structures,
by cross-fertilising between the methodologies existing for each
of the respective branches of mathematics. When the related
structures have no obvious a priori connection, however, such
results can be, by their own nature, elusive. Here, we show how
data-mining across distinct web sources (including the Online
Encyclopedia of Integer Sequences, OEIS), was crucial in the
discovery of two original representation theorems relating event
structures (mathematical structures commonly used to represent
concurrent discrete systems) to families of sets (endowed with
elementary disjointness and subset relations) and to full graphs,
respectively. The latter originally emerged in the apparently
unrelated field of bioinformatics. As expected, our representation
theorems are powerful, allowing to capitalise on existing theorems
about full graphs to immediately conclude new facts about event
structures. Our contribution is twofold: on one hand, we illustrate
our novel method to mine the web, resulting in thousands of
candidate connections between distinct mathematical realms;
on the other hand, we explore one of these connections to
obtain our new representation theorems. We hope this paper
can encourage people with relevant expertise to scrutinize these
candidate connections. We anticipate that, building on the ideas
presented here, further connections can be unearthed, by refining
the mining techniques and by extending the mined repositories.

Index Terms—models of computation, algebraic and categor-
ical methods, representation theorems, concurrency, intelligent
mathematics, AI-aided mathematical discovery, semantics, event
structures, full graphs

I. INTRODUCTION

In automated mathematical discovery and experimental

mathematics, a machine can be involved in any of the stages

leading to the formulation of new mathematical conjectures.

Usually, the interestingness and correctness of such conjectures

are important criteria in informing how the machine performs its

tasks. Within this quite general framework, there is considerable

variability as to the machine’s role: it can, for example,

generate conjectures [1]–[3], attach to them a measure of

interestingness [4], search given input for plausible hints of

conjectures [5], or compute results suggesting patterns that
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can inspire a mathematician [6], [7]. Correspondingly, the

degree of the machine’s awareness of the involved mathematical

objects varies from it applying a formal reasoning system on

such objects to it merely examining examples of (possibly

yet to be stated) conjectures. We will focus on the latter

end of this spectrum, sitting at the intersection between

automated mathematical discovery and data mining. One

obvious advantage of this choice is the extensive amount of data

it grants: any conjecture involving finite objects (for example,

graphs) leaves a trace obtained by counting the size of instances

(for example, the number of vertices in graphs satisfying the

hypotheses of a conjecture) of these objects. These counts

have a universal representation as decimal integers written

in plain text, and therefore interesting matches between such

counts can potentially be found over the vast range of all

digitised documents. As a consequence, another advantage of

this approach is that it is domain-agnostic and potentially able

to link finite mathematical objects not apparently related (as

long as one can count them), which we will see to be crucial

in obtaining the results in this paper.

The idea is, therefore, to mine existing integer datasets

for interesting relationships between them, possibly signaling

deeper connections. This idea is by no means new [5], [8], [9].

However, we believe that this paper will provide evidence that

some aspects of it are worth more attention: the possibility of

mining across distinct datasets and of exploiting datasets and

tools less specific to mathematics.

Section II details how we put the above mining ideas

into practice, and the resulting outcomes. In the rest of the

paper, we focus on one of these outcomes in particular, on

the original mathematical results it hinted us to formulate,

and on their proofs. Section III gives more specific, yet

informal context about the family of theorems these results

belong to and about their importance and methodological

usefulness. Section IV introduces the definitions and notations

to express these results. Section V illustrates a representation

theorem for event structures (a computational model for discrete

concurrent systems), Section VI introduces a theorem linking

event structures to full graphs, and explains how both this

result and that of Section V were crucially suggested by the

findings from Section II. Section VIII concludes.
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II. MINING INTEGER SEQUENCES ACROSS SOURCES

The Online Encyclopedia of Integer Sequences (OEIS) [10]

is a searchable online database containing the first terms (at

least 4, in decimal representation) of over 340, 000 integer

sequences. Together with the field containing the terms, there

are several meta-data fields: an unique ID, name, comments,

references, keywords or flags (marking, for example, whether

a sequence is finite), etc. The OEIS has already been profitably

used for research in automated mathematical discovery [5],

[11], [12]. However, all the efforts we are aware of limit

their discovery domain to the OEIS alone, potentially missing

integer sequences not featured there. This observation naturally

leads one to investigate what can be found by looking up

OEIS sequences (or fragments thereof) on the largest available

repository of scientific literature, and Google Search (or

Google, for short) is an obvious candidate: it indexes a huge

number of web pages and documents and it subsumes Google

Scholar, hosting an especially relevant subset of documents (i.e.,

scientific papers). For our purposes, one particular attractiveness

of Google Scholar is its own text extraction program [13],

making analog scans of older papers searchable: papers older

than OEIS are particularly at risk of having being omitted from

it, and therefore worth being explored.

In 2019, Google Scholar was estimated, with 389 million

records, to be the largest bibliographic database [14]; by

querying Google, we will have access to those records and many

more. The price to pay for such a breadth of information is the

inconvenience in accessing and processing it: while searching

within the OEIS, one can automate numerical transformations

on the sequences in order to facilitate matching between them.

This can happen either on the server side (typically through

the Superseeker service [10]) or on the user side [5], [9],

[11], [12]. Under our approach, this possibility is largely gone,

because any numerical transformation should happen before

querying Google, leading to a multiplication of queries for every

transformation: this is clearly impractical. The transformations

applied by Google on the queried terms are largely non-

numerical (e.g., expanding a word into its English synonyms, or

correcting possible mis-spellings) and hence immaterial in our

case, except for possible formatting issues (e.g., matching the

numerical representations 16000 and 16, 000). Furthermore, a

bulk of noise results is to be expected, deriving from irrelevant

occurrences of the searched numbers (e.g., in serial numbers,

catalogs, etc.).

For these reasons, and since we have no control on how

Google processes the input information it is passed, we need to

carefully craft the format of that information beforehand. The

main guiding idea in this task is simple: we want interesting

matches between OEIS and Google, and complexity is a

convenient measure of interestingness [8]. Since the decimal

representation length of an integer has a good correlation with

its complexity (assuming non-significant figures are omitted,

which is the case for the OEIS), we should ideally pass long

integers from the OEIS to Google. This is especially true in our

case where we need to treat, due to the limitations explained

above, numbers as plain text, hence we do not have much

else than length alone on which to base our assessment of the

complexity (and therefore, of the interestingness) of a number.

However, we do not want too long numbers, because these are

usually hard to compute, thereby potentially reducing too much

the range of documents Google will return. Therefore, we need

to strike a balance with respect to the length of the numbers

we pass to Google: we would like the minimal length leading

to the exclusion of non-mathematical occurrences (such as

dates, page numbers, catalog numbers, etc.) among the search

results from Google. Empirically, we found that six digits do

a reasonable job in that respect.

We downloaded all OEIS entries into a 16Gb SQLite

database using [15], removed all the sequences not having

the “hard” keyword (meaning the sequence is not considered

hard to compute), or having the field “formula” non empty

(meaning that some mathematical property of the sequence is

already known), or having no entries with more than five digits.

From the remaining entries, we sorted the terms according to

their length, picked the smallest term with at least six digits and

either the next one or (if there was no next one) the previous

one. This scheme allowed us to produce, for 4123 sequences,

two distinct terms which were passed to Google, together with

the directive -site:oeis.org, to exclude matches within

the OEIS.

The text snippets generated by Google in response, and

describing the first matches among the documents indexed

by it, were parsed as follows: first, the sequences with no

matches were discarded, which left us with 3591 sequences, all

potentially interesting. At this point, given the high number of

matches to be manually examined, we decided to give priority

for consideration to some matches, as follows. We grepped

each result for a set of arbitrary mathematical terms (including

for example the words “graph”, “group”, “ring”). If there was a

match not occurring in the sequence OEIS name, that sequence

was given priority. Among those, the authors started from the

ones pertaining fields where they felt most knowledgeable,

and soon found an interesting pair: 41099, 3528258, occurring

both in OEIS A284276 and in [16, Section 4]. This match

was decisive in suggesting the results we illustrate in the rest

of this paper: it is an instance of Corollary VI-.3, which, in

turn, suggested us Theorems VI-.2 and V-.2 as dependencies.

Without that numeric cue, none of these results would have

materialised: the theorems arose to explain why this match

was not a coincidence. The remaining matches need further

human examination.

III. REPRESENTATION THEOREMS

A fundamental and extremely fruitful pattern in mathematics

is to observe how some operations and correspondences

between objects behave, and then to capture this behaviour

via axioms, obtaining an abstract structure. Together with the

original meaning of the operations and correspondences one

has thereby an abstract level: the structure axioms are formulas

describing the formal relationship between objects, operations

and correspondences, and can be manipulated, studied, and

http://oeis.org/


generalised algebraically without caring what their original

meaning was. One can hence talk of two levels of thinking of

the given mathematical objects: the original one (also called

the concrete level), and the abstract one.

Examples of this way of obtaining abstract structures from

concrete interpretations abound in mathematics: just to provide

two well-known instances, from studying how permutations

behave one obtains the group axioms; and from studying how

∪ and ∩ behave one obtains the (distributive) lattice axioms.

A natural question is how and to what extent one can go

back from the abstract level to the concrete level: in other

words, can any abstract structure be represented via a suitable

concrete implementation of it?

For many important structures, this question is answered

positively by representation theorems, providing the existence

of a suitable isomorphism allowing to go back and forth

between these two levels;1 returning to the examples above,

Cayley’s representation theorem provides a representation of

any group in terms of a permutation group [17, Section II.7],

and Birkhoff’s representation theorem provides a representation

of any finite distributive lattice in terms of a lattice of down-

sets [18, Theorem 5.12].

The fruitfulness of this two-level approach has many facets,

including the ability of algebraically manipulating the concrete

objects forgetting about their nature, thus seeing to what

extent their known properties or relations are generalisable; or,

oppositely, the reasoning aid given by a concrete setting as an

inspiration to explore further consequences or generalisations

of the abstract axioms given by properties of the concrete

objects obeying them. This fruitfulness is testified by the

existence of dedicated fields using representations to study

properties of given structures: e.g., representation theory studies

the properties of groups using their representations as linear

transformations of vector spaces.

In typical cases (such as the two just mentioned), the fact

that the abstract level originated right from the start from the

study of the concrete level makes such theorems quite natural

to express and to prove: such results are, in these typical cases,

attractively simple and elegant.2

However, other mathematical structures could well have

a more tortuous birth. For example, prime event structures

(formally introduced in Section IV) historically and con-

ceptually developed in stages: elementary event structures

were expanded into prime event structures to accommodate

nondeterminism [19, Section 2].

As we will see in this paper, this tortuous birth led to miss,

up to now, a remarkably simple representation theorem (V-.2)

for prime event structures; whose simplicity, however, does

not restrain the typical fertility of representation theorems,

allowing us to immediately unearth unforeseen links between

prime event structures and full graphs (the further representation

1In a more general acceptation, a representation theorem provides an
isomorphism between an abstract structure and another structure, possibly
itself abstract.

2One should note that this simplicity is a boon with respect to the fruitfulness
just mentioned.

theorem VI-.2) and cross fertilisation results (Corollaries VI-.3

and VI-.4). Another possible reason for this accident could

be that the original purpose of prime event structures is to

model computations of undetermined duration, which led to

put less attention into the finite case, where our theorems

are particularly simple; as briefly argued in Section VIII, we

believe that Theorem V-.2, besides its own importance, can

serve as a fundamental stepping stone towards a generalisation

to the infinite case. To give a final reason: given the original

role of the elements in prime event structures as representatives

of computational events, it is not natural to associate to

them sets (as Theorem V-.2 does); or, at least, it is less

natural than in cases, such as lattices, where a concrete level

consisting of sets was historically a starting point to formulate

the abstract level definitions. The oversight of Theorem V-.2

is made even more surprising by the fact that other, more

complicated representation theorems were formulated for prime

event structures since their inception [19, Theorems 2.10 and

3.8].

IV. PRELIMINARIES AND EVENT STRUCTURES

Set membership, inclusion, union, intersection, set-theoretical

difference, cartesian product are denoted by the infix symbols

∈, ⊆, ∪, ∩, \, ×, respectively; arbitrary union and intersection

over a set of sets are denoted by the prefix symbols
⋃

and
⋂

. A set R satisfying R ⊆ X × Y for some X , Y (i.e., any

set R containing only ordered pairs) is called a binary relation

or simply a relation. The minimal X and Y satisfying the

previous inclusion are the domain (dom) and range (ran) of

R, respectively, while its converse R−1 is the set obtained

by flipping the elements of each the pairs in R; the field of

R is fieR := domR ∪ ranR. Given a set X , the restriction

of R to X is defined as R|X := (X × ranR) ∩ R, while

the image of X through R is R∗ (X) := ran R|X . The

product or composition of relations R and S is defined as

R;S := {(x, z) . ∃y. (x, y) ∈ R ∧ (y, z) ∈ S} . R is right-

unique if, for any x, R∗ ({x}) contains at most one element,

while it is left-unique if R−1 is right-unique. A right-unique

relation is more commonly called a function or a map. In

this case, there are special notations in use: 1) R (x), or even

only R x, indicates the unique element of R∗ ({x}), when

x ∈ domR; 2) R : X → Y indicates that domR = X and that

ranR ⊆ Y ; 3) X ∋ x
R
7→ y in lieu of R = {(x, y) .x ∈ X},

with ”X ∋“ or the superscript in
R
7→ possibly dropped when

the context permits; 4) S ◦R in lieu of R;S. A first example

of a function is card, associating to each set X of a given

family its unique cardinality cardX (also denoted |X|). A

left-unique function is called injective, or an injection. 2X is

the set of all subsets of X , while 2
X

:= 2X ∩
(

card−1
)∗

(N)
denotes the finite subsets of X . Note that, for any relation R,

R∗ is always a function. When all the elements of ranR
are sets,3 there is an additional function one can derive

from R: R∪ := domR ∋ x 7→
⋃

R∗ ({x}) ⊆
⋃

ranR,

3This is always the case in some foundations: e.g., ZF, in which anything
is a set.



associating to each x the union of all the sets in relation with

x; if, furthermore, R is a function, then R and R∪ coincide.

fxR := fie (R ∩ I) = dom (R ∩ I) = ran (R ∩ I) is the set

of fixed points of R, where I is the identity function. A relation

R is said to be: 1) reflexive if fieR ⊆ fxR; 2) irreflexive

if R ∩ I = ∅; 3) transitive if R;R ⊆ R; 4) symmetric if

R−1 ⊆ R; 5) antisymmetric if R ∩R−1 ⊆ I; 6) a preorder if

it is both reflexive and transitive; 7) a partial order if it is an

antisymmetric preorder. A bijection between sets X and Y is

an injection f with dom f = X and ran f = Y .

A prime event structure (or just event structure, ES) [19]

models a concurrent computation by specifying which computa-

tional events are causally dependent and which events mutually

exclude. This is attained by two relations ≤ (causality), and

# (conflict) as from the following definition.

Definition IV-.1. An event structure is a pair of relations

(≤,#) where ≤ is a partial order, # is irreflexive and

symmetric, (fie ≤) ⊇ (fie#) is called the set of events, and

for any three events x0, x1, y: x0#y ∧ x0 ≤ x1 → x1#y.

The last condition is referred to as conflict propagation. The

standard infix notation in Definition IV-.1 can get cumbersome,

therefore we will often use the set theoretical notation and

denote these relations with letters, for example writing (x, y) ∈
D in lieu of x ≤ y and (x, y) ∈ U in lieu of x#y.

x1

x2 x3

x4

x5

x7x6

x8

Fig. 1. An example event structure, with eight events related by causality
(denoted by an arrow standing for ≤) and conflict (denoted by a dashed line).

V. A REPRESENTATION THEOREM FOR ESS

The main result of this section is Theorem V-.2, establishing

that elements of any finite ES can be represented as finite sets,

in such a way that ≤ corresponds to ⊇ and # to disjointness.

Formally, this means that it is always possible to find a function

f associating a set to each event of a finite ES subject to

the constraints given by Definition V-.1. We will call such a

function a representation for the given ES.

Definition V-.1. Given two binary relations D and U , the

set-valued function f is a representation for (D,U) if

∀x y ∈ dom f. ((x, y) ∈ D ↔ f (x) ⊇ f (y)) ∧ (1)

∀x y ∈ dom f. ((x, y) ∈ U ↔ f (x) ∩ f (y) = ∅) . (2)

We are now ready to state our representation theorem.

Theorem V-.2 (Representation theorem). Consider two binary

relations D and U , with D finite and fieU ⊆ fieD. Then

(D,U) is an event structure if and only if there is an injective

representation f : fieD → 2
N
\ {∅} for (D,U).

That is, a sufficient and necessary condition for a given finite

number of events to form an event structure is the possibility

of associating to each of them a set in such a way that ⊇
corresponds to →∗ and # corresponds to disjointness. In the

theorem, the associated sets are all subsets of N; however,

any other infinite superset would do: the choice of N is only

dictated by technical convenience.

Figure 2 shows a representation for the ES of Figure 1.

{1,2,4,5,7,9}

{2,3,4,5,6,7,8,9} {2,4,5,7,9}

{3,8}

{3,6}

{2,7}{4,7}

{4,5,9}

Fig. 2. A representation for the event structure of Figure 1. Now, the arrows
represent ⊇ and the dashed lines the disjointness relation. Theorem V-.2 states
that any set of events is an event structure if and only if such a representation
is constructible. .

The two implications composing the logical equivalence

(“if and only if”) in Theorem V-.2 are proved separately in

Sections V-A and V-B.

A. Having a Representation Implies Being an ES

The first step is proving that condition (1) is strong enough

to impose the partial order properties of ⊇ onto D. This can be

done directly but, instead, we will break down the proof into

more general results, which we will gather in Lemma V-A.2.

Formula (1) closely resembles the definition of f being an

order embedding [18], except for the fact that here D is not

assumed to be a partial order (because this is what we need to

prove), while the standard definition of an order embedding

takes that as a pre-condition. Therefore, we take the chance

to study what can be proven about two relations linked by

an order embedding when we drop basic assumptions. In this

section, we reason about generic relations P and Q, rather

than the specific ones, D and ⊇, appearing in (1). We start by

stating the standard definitions of order-preserving and order-

embedding, only with the order assumptions dropped, together

with some additional definitions.

Definition V-A.1. Given two relations P and Q,

a map f is said to be 1) (P,Q)-preserving if

∀x0, x1 ∈ dom f. (x0, x1) ∈ P → (f (x0) , f (x1)) ∈ Q;

2) (P,Q)-converse-preserving if ∀x0, x1 ∈ dom f.
(f (x0) , f (x1)) ∈ Q → (x0, x1) ∈ P ; 3) a



(P,Q)-embedding if it is both (P,Q)-preserving and

(P,Q)-converse-preserving. The prefix “(P,Q)-” can be

dropped when no ambiguity arises. We also introduce the map

ιf := (y0, y1) 7→
(

f−1
)∗

{y0} ×
(

f−1
)∗

{y1}.

Lemma V-A.2. Let P , Q be relations, f a function.

1) f is converse-preserving iff
⋃

ι∗f Q ⊆ P ;

2)
(

f−1
)∗

(fxQ) ⊆ fx
(

⋃

ι∗f Q
)

. 3) fieP ⊆ dom f →.
(

f is preserving iff P ⊆
⋃

ι∗f Q
)

. 4) If Q is

transitive, then
⋃

ι∗f Q is. 5) If Q is reflexive, then

fie
(

⋃

ι∗f Q
)

⊆
(

f−1
)∗

(fxQ).

Proof. Theses (1) and (3) are easy rephrasings of, respec-

tively, (2) and (1) in Definition V-A.1. Now set P ′ :=
⋃

ι∗f Q. Proof of (2): if (y0, y0) ∈ Q and x0 ∈
(

f−1
)∗

{y0}, then, in particular, (x0, x0) ∈
(

f−1
)∗

{y0} ×
(

f−1
)∗

{y0} ⊆ P ′. Proof of (4): consider (x0, x1) , (x1, x2) ∈
P ′; {(f x0, f x1), (f x1, f x2)} ⊆ Q, so that (f x0, f x2) ∈
Q by transitivity, and (x0, x2) ∈

(

f−1
)∗

{f x0} ×
(

f−1
)∗

{f x2} ⊆ P ′. Proof of (5): by construction of P ′,

x0 ∈ fieP ′ implies the existence of y0 ∈ fieQ such

that x0 ∈
(

f−1
)∗

{y0}. Now, by reflexivity of Q: P ′ ⊇
(

f−1
)∗

{y0} ×
(

f−1
)∗

{y0} ∋ (x0, x0) .

Corollary V-A.3. Assume f is a (P,Q)-embedding, fieP ⊆
dom f . If Q is a preorder, then P is. Moreover, if f is injective

and defined over fieP , and Q is a partial order, then P is.

Proof. P ′ :=
⋃

ι∗f Q inherits Q’s transitivity by virtue of (4)

in Lemma V-A.2, and Q’s reflexivity by chaining (5) and (2)

of Lemma V-A.2. Using (1) and (3) in Lemma V-A.2, the

embedding property of f implies P = P ′, and we just saw

that P ′ is a preorder. Assume {(x, y) , (y, x)} ⊆ P . Then

f x = f y by antisymmetry of Q, so that the antisymmetry

of P is satisfied by injectivity.

Lemma V-A.4. Assume f is an injective representation f :

fieD → 2
N
\ {∅} for (D,U). Then (D,U) is an ES.

Proof. (1) means that f is a (D,⊇)-embedding, and the latter

is a partial order, so that D also is by virtue of Corollary V-A.3.

Consider events x0, x1, y, and assume (x0, y) ∈ U∧(x0, x1) ∈
D. Then f x0 ∩ f y = ∅ ∧ f x0 ⊇ f x1, giving conflict

propagation. The symmetry of U is immediate from that of ∩,

and the irreflexivity of U uses ∅ /∈ ran f .

B. Any ES Has a Representation

The proof of this direction (the “only if” part of Theo-

rem V-.2) is more elaborate than the other one (Lemma V-A.4),

because we now need to construct a representation f given

any finite event structure. We will do that recursively: we

will remove one suitable element of the given event structure,

thus lowering its cardinality and obtaining a representation for

this reduced event structure, and we will show how to extend

this representation so as its property of being a representation

still holds with respect to the original event structure. The

aforementioned operations of removing one element from a

relation and of extension of a function are formally introduced,

in forms suitable for our goals, in Definition V-B.1.

Definition V-B.1. The subtraction of sets X , Y from the

relation R is defined as R − (X,Y ) := R\((X × ranR) ∪
(domR × Y )). We will use the shorthand notation R − s to

indicate R − ({s} , {s}). The pointwise union of relations

R0 and R1 is the function R +0 R1 := (R0 ∪R1)
∪

. By

associativity, one extends this notion to multiple relations in

the obvious way, writing
∑

i Ri. For singleton relations, we

can write, e.g., R+ (x, y) in lieu of R+ {(x, y)}.

The following lemma gives conditions under which we can

extend a representation into one having a larger domain.

Lemma V-B.2. Let g be a representation for (D − s, U − s).
Assume that D∗{s} = {s} 6⊆ U∗ {s} ∪ dom g, and that

∀x ∈ dom g. (x, s) ∈ U ↔ (s, x) ∈ U. If, for any x ∈ dom g,

the non empty set Y satisfies all the following properties:

1) g x 6⊆ Y , 2) Y ⊆ g x ↔ x ∈
(

D−1
)∗

{s} \ {s},

3) g x ∩ Y = ∅ ↔ x ∈
(

U−1
)∗

{s} , then g + (s, Y ) is a

representation for (D,U).

Proof. f := g + (s, Y ) extends g, therefore we only need to

check conditions (1) and (2) of Definition V-.1 in the case

s ∈ {x, y}. What is more, the first of these conditions is

trivial when x = s, so that we only need to check the case

y = s, x 6= s, which immediately gives, using hypothesis 2:

(x, s) ∈ D ↔ x ∈
(

D−1
)∗

{s} \ {s} ↔ f s = Y ⊆ g x =
f x. To check formula (2) of Definition V-.1 in the same case

we use hypothesis 3: (x, s) ∈ U ↔ x ∈
(

U−1
)∗

{s} ↔
g x ∩ Y = ∅ ↔ f x ∩ f s = ∅, where the last step employed

hypothesis 1. A symmetric argument concludes the proof by

showing the same formula in the case x = s, y 6= s.

While condition (1) in Lemma V-B.2 merely requires that

Y is “fresh”, and is therefore usually easy to meet, not

every representation f admits a Y satisfying the remaining

conditions (2) and (3). However, it is always possible to

augment a representation f to make this happen, where by

“augmenting” we mean the action of enlarging the sets in ran f .

This is detailed by Lemma V-B.3.

Lemma V-B.3. Consider two relations D, U , with
(

(

D−1
)∗

{s} \ {s}
)

∩
(

U−1
)∗

{s} = ∅ for some

fixed s, a set-valued function f , and a finite list

gi := Xi×{yi} , i = 1, . . . , n of constant, non-empty functions.

Let g := f +
∑

gi +
((

(

D−1
)∗

{s} \ {s}
)

× {y}
)

and Y :=

y ∪
⋃n

i=1 yi, where y is a set not included in
⋃

yi ∪
⋃

ran f .

Assume 1) U−1 {s}∩
⋃

Xi = ∅; 2)
(

D−1
)∗

{s} \ {s} ⊆
⋂

Xi;

3) dom g\
(

(

D−1
)∗

{s} ∪
(

U−1
)∗

{s}
)

⊆
⋃n

i=1 Xi;

4) s /∈ dom g; 5) Y ∩ ({∅} ∪
⋃

ran f) = ∅. Then one

has, for any x ∈ dom g: Y ⊆ g x ↔ x ∈
(

D−1
)∗

{s} \ {s},

and g x ∩ Y = ∅ ↔ x ∈
(

U−1
)∗

{s} .

Proof. Let S :=
(

D−1
)∗

{s} \ {s} and fix x ∈ dom g. Assume

Y ⊆ g x. Then, in particular, y ⊆ g x and, since y is fresh,

it must be x ∈ S by construction of g. Conversely, assume



x ∈ S. By hypothesis (2), then, each yi must be included in

g x, as is y, finishing the proof of the first thesis. Now assume

g x∩ Y = ∅. Then x /∈ S ∪
⋃

Xi by construction of g and Y ,

which yields x ∈
(

U−1
)∗

{s} by (3) and (4). Finally, assume

x ∈
(

U−1
)∗

{s}. From (1) and (2), one draws g x = f x,

completing the proof by virtue of (5).

We note that the requirements on D, U , and f in the last

lemma are weaker than what we will need: for example, f is

not required to be a representation, or D to be a partial order.

To obtain the final result in this section, we now just need

to pipe Lemma V-B.3 into Lemma V-B.2; to do so, we want

to make sure that, referring to Lemma V-B.3, when f is a

representation, so g is. The next result gives guidance in picking

the Xi’s in Lemma V-B.3 to attain this, after which we will

be in a position to give the proof of Theorem V-.2, including

in particular the result that any finite ES has a representation.

Lemma V-B.4. Let f be a representation for

(D,U), and f ′ be a map with dom f ′ ⊆ dom f
and (

⋃

ran f) ∩
⋃

ran f ′ = ∅. Assume that, for

any x ∈ dom f : 1) ∀y ∈ dom f. (x, y) ∈ U →
(x 6= y ∧ card (dom f ′ ∩ {x, y} ≤ 1)) and

2) ∀y ∈ dom f ′. (x, y) ∈ D → (x ∈ dom f ′ ∧ f ′ x ⊇ f ′ y) .
Then f + f ′ is also a representation for (D,U).

Proof. Let g := f+f ′ and fix x, y ∈ dom g = dom f . Assume

(x, y) ∈ D and g x 6⊇ g y. Then, by construction of g and by

hypothesis 2, using the monotonicity of ∪, one concludes

y ∈ dom f ′ and x ∈ dom f\ dom f ′, which contradicts

hypothesis 2. Viceversa, assume g x ⊇ g y; then f x ⊇ f y
using (

⋃

ran f) ∩
⋃

ran f ′ = ∅, so that (x, y) ∈ D by

representativity of f . Now assume (x, y) ∈ U . Then g x∩g y =
(f x ∪X) ∩ (f y ∪ Y ) where at least one among X and Y
is empty, thanks to hypothesis 1. Since X ∪ Y ⊆

⋃

ran f ′,

which is disjoint from
⋃

ran f ⊇ (f x ∪ f y), one obtains

g x ∩ g y = f x ∩ f y = ∅ by representativity of f . Finally,

assume g x ∩ g y = ∅; in particular, f x ∩ f y = ∅, yielding

(x, y) ∈ U again by representativity of f .

Proof of Theorem V-.2. One direction is given by

Lemma V-A.4. For the converse, assume the existence of

finite event structures not admitting an injective representation

fieD → 2
N
\ {∅}. Among such counterexamples, we can

take one (let us denote it (D,U), with fieU ⊆ fieD) whose

causality relation D has minimal cardinality. It is immediate

to check that D cannot be empty: one consequence of this is

that we can fix a D-maximal element s of it (due to D being

finite); another consequence is that card (D − s) < card D.

Moreover, (d := D − s, u := U − s) is still an event structure,

and fieu ⊆ fie d, so that we can obtain a representation for

it: f : fie d → 2
N
\ {∅}. We now need to apply Lemma V-B.4

to f , in order to obtain another representation over the

same domain to which to apply Lemma V-B.3. To this

end, let us consider the set of events concurrent to s:

C = fieD − D−1 {s} − U−1 {s}, together with a list of

non-empty sets {Zi. i = 1, . . . , n} being conflict-free and

downward-closed, and covering C. This is always possible,

for example by taking
{

D−1 {c} . c ∈ C
}

. Finally, define

Xi := Zi ∪ D−1 {s} \ {s}. Note that each Xi is still

conflict-free, which implies, together with the irreflexivity of

U , hypothesis (1) of Lemma V-B.4. Now we construct the

constant functions gi := Xi × {m+ i}, where m is any fixed

natural > max
⋃

ran f . The fact that each Xi is still, as is

Zi, downward-closed, together with the way we constructed

gi, allows each gi to satisfy hypothesis (2) of Lemma V-B.4.

Therefore, f + g1 is also a representation for (d, u) and,

iterating this reasoning, so is f +
∑

gi. The same reasoning

can now be applied to D−1 {s} − {s} × {m+ n+ 1}, so

that g := f +
∑

gi +D−1 {s}− {s}× {m+ n+ 1} is still a

representation for (d, u). Setting Y := {m, . . . ,m+ n+ 1},

it is easy to check that D, U , f , g, Y and the

Xi’s satisfy all of Lemma V-B.3’s hypotheses, so

that Y ⊆ g x ↔ x ∈
(

D−1
)∗

{s} \ {s} and

g x ∩ Y = ∅ ↔ x ∈
(

U−1
)∗

{s} . Moreover, since

Y is fresh and ∅ /∈ ran f , we also have g x 6⊆ Y for

every x ∈ dom g = dom f . Therefore, by Lemma V-B.2,

h := g ∪ {(s, Y )} is a representation for (D,U). Finally, it is

straightforward to see, since Y ∩
⋃

ran f = ∅, that g inherits

the injectivity of f and, therefore, that g ∪ {(s, Y )} is also

injective. It is also immediate to see that ∅ /∈
⋃

ranh, due to

Y 6= ∅. We thus reached a contradiction with our assumption

that (D,U) admitted no such injective representation.

VI. FULL GRAPHS

Given a family of sets, one can construct a graph where

each vertex corresponds to a set, a directed edge links superset

to subsets, and an undirected one connects overlapping sets.

Such a construction arises when computationally facing the

question of whether subelements of genes are linked together

in a linear order [20]. Definition VI-.1 formally specify the

graphs which can be built in this manner.

Definition VI-.1. A full graph is a mixed, unweighted,

simple graph over vertices V , of directed edges D,

and undirected edges T such that there is an injec-

tive function f on V , yielding non-empty sets, and with

the property ∀x, y ∈ V. ((x, y) ∈ D ↔ f x ⊇ f y )∧
((x, y) ∈ T ↔ f x and f y overlap) , where we say that two

sets A and B overlap (written A ≬ B) when A∩B /∈ {A,B, ∅}.

We call f a fg-representation of the full graph (D,T ). Alter-

natively, we will say that T makes a full graph of D (through

f ) when such an fg-representation f exists. Similarly, we will

say that a relation U is admissible for D (through f ) when

fieU ⊆ fieD and there is a similar f being a representation

(as from Definition V-.1) for (D,U).

Note that an undirected edge linking x and y is represented

by two pairs (x, y) and (y, x) in T . While redundant, this

representation allows us to formally consider T a (symmetric)

relation, so that any full graph can be adequately represented

by a pair (D,T ) of relations, also thanks to the fact that

it is simple (e.g., without multiple edges). We can omit V



because any full graph must have a loop on every vertex, so

that V = fieD is redundant.

Theorem VI-.2 is our second representation theorem for

event structures, providing a bijective construction relating

them to full graphs.

Theorem VI-.2. Consider a finite relation D and FD :=
R 7→ (fieD × fieD) \

(

D ∪D−1
)

\R. A bijection be-

tween X := {T |T makes a full graph of D} and Y :=
{U |U is admissible for D} is given by FD|X .

Figure 3 shows the application of Theorem VI-.2 to the

event structure of Figures 1 and 2.

{1,2,4,5,7,9}

{2,3,4,5,6,7,8,9} {2,4,5,7,9}

{3,8}

{3,6}

{2,7}{4,7}

{4,5,9}

Fig. 3. By applying the inverse of FD appearing in Theorem VI-.2 to the event
structure of Figures 1 and 2, one obtains the full graph example originally
featured in Section 3 of [20]. Here, the arrows represent ⊇, and the dashed
lines the overlapping relation.

Proof. Writing just F for FD, it suffices to show four

claims: F |X is injective, F |Y is injective, F ∗ X ⊆ Y
and F ∗ Y ⊆ X . The injectivity claims follow from the

general fact that (v 7→ w\v)|2w is always injective, and from

X ∪ Y ⊆ 2(fieD×fieD)\(D∪D−1). In turn, the last inclusion

follows from the fact that a relation admissible for D is

necessarily disjoint from D ∪ D−1 and similarly for one

making a full graph of D. For the third claim: consider T
making a full graph of D through f , and vertices x, y; now

f x∩ f y = ∅ ↔ f x�⊇f y ∧ f y�⊇f x∧ f x✁✁≬f y ↔ (x, y) /∈
D ∪D−1 ∪ T ↔ (x, y) ∈ F T, so that F T is admissible for

D through the same f (with the part fie (F T ) ⊆ fieD being

straightforward). Similarly for the last claim.

Corollary VI-.3. Consider a finite set V , and the set P of par-

tial orders having field V . The sets E (V ) and F (V ) of event

structures over V and of full graphs over V , respectively, are

given by E (V ) =
⋃

D∈P {D}×{U | U is admissible for D} ,
F (V ) =

⋃

D∈P {D} × {T | T makes a full graph of D} .
They have the same cardinality.

Proof. The first equality follows from Theorem V-.2, while the

second is a rephrasing of Definition VI-.1. Both feature disjoint

unions, so that the cardinality claim follows from VI-.2.

Corollary VI-.3 reveals why the match between

OEIS A284276 and the countings in the paper [16],

found by querying Google with OEIS minings, is not a

coincidence: the former counts event structures over sets

of given cardinalities, and the latter does the same for full

graphs. This correspondence between two previously detached

world immediately yields new results by translating existing

theorems previously applied to only one world. The next

corollary lists only two, among the easiest, of them.

Corollary VI-.4. • Exactly 561658287 full graphs are con-

structable on seven vertices, including isomorphic ones.

• lim|V |→∞
log

2
|E(V )|

|V |2
= 1

2 , where E is defined as in VI-.3.

Proof. Immediate by applying VI-.3 to OEIS A284276 and to

the main result of [21], respectively.

VII. RELATED WORK

Data mining is used for a variety of purposes: from discover-

ing relationships among attributes in big databases [22], to the

classification of knowledge contained in heterogeneous data

streams [23], to modeling customers’ loyalty from purchasing

behaviour [24], to newsworthy event anticipation from social

medial posting patterns [25], to fake profiles detection in social

media [26]. While knowledge discovery is one of the main

goals of data mining, the latter has been very scarcely used

for the more specific goal of discovering new mathematics.

The only effort in this direction we are aware of is in [5],

[8], where only the OEIS was mined. In our work, the crucial

difference is the combined mining of both the OEIS and the

huge Google and Google Scholar data sets. On one hand, this

makes the potential set of interesting relationship between

mathematical entities order of magnitudes bigger; on the other

hand, relying only on textual comparison, our approach requires

bigger human intervention to examine and prove the discovered

potential relationships.

VIII. CONCLUSIONS

Cued by a match obtained by web-searching data mined from

the OEIS, we showed that there is a one-to-one correspondence

between event structures and full graphs: see Theorem VI-.2

and Corollary VI-.3, derived from Theorem V-.2.

The latter is an original addition to a family of fundamental

theorems relating basic algebraic structures to elementary

mathematical constructions by establishing that the two entities

exhibit the same behaviour, and commonly referred to as

representation theorems. Among the best known instances are

Birkhoff’s representation theorem [18] characterizing finite dis-

tributive lattices through set-theoretical union and intersection,

Stone’s and Birkhoff’s theorems offering related representations

for Boolean algebras [27], Cayley’s theorem implementing

groups as permutations [28]. Many fundamental abstract

structures historically arose from abstracting the properties

of some operations on more concrete objects (e.g., join and

meet in distributive lattice incarnate union and intersection),

which can therefore be regarded as prototypical examples for

the relevant structures. Typically, a representation theorem

closes the circle and goes back from the abstract structure

to the prototypical example, showing that it can be used to

represent any instance of the abstract structure. In the case



of Theorem V-.2, however, one certainly cannot say that ⊇
and disjoint intersection are prototypical examples for the

relations of causality and conflict of an ES, mainly because,

historically, ES developed in the setting of concurrency theory,

largely detached from set-theoretical notions. It is probably

this fortuity which prevented that theorem, and consequently

results VI-.2 and VI-.3 linking ESs and full graphs, from being

stated earlier.4 It is likely that similar unfavourable, historical

circumstances prevent further discoveries linking seemingly

mutually unrelated mathematical theories: we believe that data

mining and AI approaches are worth being further pursued in

such cases, and this paper is a proof of concept supporting

this claim. Given the way our theorems were obtained, the

point of making sure, and of convincing the community of

their correctness is of particular importance. For this reason,

we produced a formal proof of our results, and successfully

checked its correctness with the Isabelle/HOL proof assistant.

A separate paper is being written to describe this formalisation

effort, the corresponding challenges, ideas and solutions, and

will be posed to the automated reasoning community to gauge

the interest in a potentially fruitful, novel intersection between

subdomains of AI.

We conclude with some cues for future work. One limitation

needing attention is the human role in parsing the matches

obtained in Section II: while we believe that, to find interesting

theorems, human intervention is key, there is space for

improvement in pruning the irrelevant matches and better

leveraging the huge amount of knowledge available through

web searches. For example, NLP techniques could improve

the crude keyword-based approach of Section II to single out

mathematical concepts. Another, more technical, limitation in

need to be mitigated is the difficulty of inserting mathematical

manipulations in the web search process; this is related to the

plain-text interface used in web search queries, and to the fact

that we have no control on the transformations applied by the

web searching platform over the set of indexed documents

(which would probably be too big to transform even if there

were some form of control).

More specifically to the original theorems introduced in this

paper, one obvious direction of development is the extension of

Theorem V-.2 to the infinite case, in a way analogous to how

Priestley’s representation theorem generalises Birkhoff’s [18,

Theorem 11.23]. Using this generalisation as a guidance, this

will probably require non-trivial conceptual leaps (of a scale

analogous to the interpretation of Stone’s theorem Priestley

devised to obtain her result).
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