
Depth-First K-Nearest Neighbor Finding Using the MaxNearestDist Estimator�

Hanan Samet
Computer Science Department

Center for Automation Research
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

�����������	��

��������	�������

Abstract

A description is given of how to use an estimate of the
maximum possible distance at which a nearest neighbor can
be found to prune the search process in a depth-first branch
and bound k-nearest neighbor finding algorithm.

1 Introduction

Similarity searching is an important task when trying to
find patterns in applications involving mining different types
of data such as images, video, time series, text documents,
DNA sequences, etc. Similarity searching often reduces to
finding the k nearest neighbors to a query object. The most
common strategy for nearest neighbor finding employs the
depth-first branch and bound method (e.g., [5]). Nearest
neighbor finding algorithms that incorporate this strategy
can be easily extended to find the k-nearest neighbors and
this is how we describe them here. These algorithms are
generally applicable to any index based on hierarchical clus-
tering. They partition the data into clusters which are aggre-
gated to form other clusters, with the total aggregation being
represented as a tree. The search hierarchies used by these
algorithms are partly specific to vector data [3], but they can
be easily adapted to non-vector data (e.g., [1, 2, 11]), and
this is how we present them here.

An alternative strategy is the best-first method (e.g., [4,
6]) which explores the nonobject elements of the search hi-
erarchy in increasing order of their distance from the query
object q (hence the name “best-first”). This is achieved by
storing the nonobject elements of the search hierarchy in a
priority queue in this order. In addition, some of the algo-

�This work was supported in part by the National Science Foundation
under grants EIA-99-00268, EIA-99-01636, IIS-00-86162, and EIA-00-
91474.

rithms (e.g., [4, 6]) also store the objects in a priority queue
thereby enabling the algorithms to report the neighbors 1-
by-1, and thus there is no need for k to be known in advance.

In contrast, in the depth-first method, the order in which
the elements of the search hierarchy are explored is a result
of performing a depth-first traversal of the hierarchy using
the distance Dk from q to the current kth-nearest object to
prune the search. The advantage of this approach over the
best-first method is that the amount of storage is bounded
by k in contrast to possibly having to keep track of all of
the nonobjects (and thus of all of the objects) if all of their
distances from q are approximately the same. On the other
hand, the advantage of the best-first approach is avoiding to
visit nonobject elements that will eventually be determined
to be too far from q due to poor initial estimates of Dk.

Implementations of both the depth-first (e.g., [3, 7]) and
best-first (e.g., [4, 6]) methods have traditionally used the
estimate of the minimum distance at which a nearest neigh-
bor can be found to prune the search. In this paper, we de-
scribe the use of an estimate of the maximum possible dis-
tance at which a nearest neighbor must be found to prune the
search for finding the k nearest neighbors. The main focus
is on the depth-first method although we do point out that
this estimate can also be used with the best-first method.

The rest of this paper is organized as follows. Section 2
reviews the basic depth-first k-nearest neighbor algorithm.
Section 3 describes an estimator of the maximum possible
distance at which the nearest neighbor is found, while Sec-
tion 4 shows how to incorporate it in a depth-first k-nearest
neighbor algorithm to eliminate some elements from further
consideration. Concluding remarks are made in Section 5.

2 Basic Algorithm

The depth-first k-nearest neighbor algorithm makes use
of a list L, initially empty, containing the k current candi-

1

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

date nearest neighbors sorted by their distance from query
object q. Variable Dk indicates the distance of the current
kth-nearest neighbor of q and is initialized to ∞ as we have
no candidate neighbors initially. The algorithm is realized
by the recursive procedure DFTRAV which is invoked with
parameter e initialized to the root of the search hierarchy.
In DFTRAV, if the nonobject element e being visited is at
the deepest level of the search hierarchy (usually referred to
as a leaf or leaf element), then every object o in e that is
nearer to q than the current kth-nearest neighbor of q (i.e.,
d�q�o�� Dk) is inserted into L, with its associated distance
from q (i.e., d�q�o�), using procedure INSERTL(not given
here) which also resets Dk if necessary. Otherwise (i.e., e
is not a leaf), DFTRAV generates the immediate successors
of e, places them in a list A�e�, known as the active list of
child elements of e, and then proceeds to process them one-
by-one by calling itself recursively.

1 recursive procedure DFTRAV�e�
2 if ISLEAF�e� then /* e is a leaf with objects */
3 foreach object child element o of e do
4 Compute d�q�o�
5 if d�q�o�� Dk then INSERTL�o�d�q�o��
6 endif
7 enddo
8 else
9 Generate active list A containing child elements of e

10 foreach element ep of A do DFTRAV�ep�
11 enddo
12 endif

DFTRAV visits every element of the search hierarchy.
Clearly, better performance could be obtained by not vis-
iting every element and its objects when we can show that it
is impossible for an element to contain any of the k nearest
neighbors of q [3]. For example, letting d be a distance func-
tion, this is true if we know that for every nonobject element
e of the search hierarchy, d�q�e�� d�q�e0� for every object
e0 in e and that the relation d�q�e� � Dk is satisfied1. This
can be achieved if we define d�q�e� as the minimum possi-
ble distance from q to any object e0 in nonobject e (referred
to as MINDIST).

Furthermore, given that d�q�e� � d�q�e0� for every ob-
ject e0 in e for all nonobject elements e, if we process the
elements ep of the active list A�e� in order of increasing val-
ues of d�q�ep� (i.e., a MINDIST ordering), then once we
have found one element ei in A�e� such that d�q�ei� � Dk,
then d�q�e j� � Dk for all remaining elements e j of A�e�.
This means that none of these remaining elements need to
be processed, and we exit the loop and backtrack to the par-
ent of e, or terminate if e is the root of the search hierarchy.

1This stopping condition ensures that all objects at the distance of the
kth nearest neighbor are examined. Of course, if the size of L is limited to k
and if there are two or more objects at distance Dk, then some of them may
not be reported in the set of q’s k nearest neighbors.

3 The MaxNearestDist Estimator

The modifications to the basic algorithm described in
Section 2 use estimates of the minimum possible distance
at which a nearest neighbor can be found (i.e., MINDIST)
to prune the search process. Fukunaga and Narendra [3]
proposed another modification which was to use the maxi-
mum possible distance from q to an object in e (referred to
as MAXDIST) to tighten the value of the estimate of the dis-
tance to the nearest neighbor (i.e., D1). Larsen and Kanal [8]
point out that a better estimate is to use the maximum pos-
sible distance from q to its nearest neighbor in e (referred to
as MAXNEARESTDIST).

To see the distinction between MINDIST, MAXDIST,
and MAXNEARESTDIST, suppose that the search hierarchy
consists of minimum bounding hyperspheres. In this case,
let rmax be the radius of the minimum bounding hypersphere
of the objects in e whose center has been determined to be
M. It is easy to see that the maximum possible distance
from the query object q to an object o in e which serves
as the nearest neighbor of q arises when o lies in one of
two antipodal positions a and b located diametrically oppo-
site each other on the surface of the hypersphere so that the
�d� 1�-dimensional hyperplane passing through a, b, and
M is perpendicular to the line joining M and q. Observe that
a and b are equidistant from q and that the distance from q
to either of them is

�
d�q�M�2 � r2

max, the value of MAX-
NEARESTDIST, which is clearly � d�q�M�� rmax (e.g., by
the triangle inequality), the value of MAXDIST (Figure 1).

rmax

M

a

b

c d
q

MAXNEARESTDIST

MAXDIST

MINDIST

������ �� �	
��
� �� �������� �
	�����
�� �
	��

�
�������� ���
 ������� �������� �����������

��������
� � ���� �
���� ����
�� ����� ����� ��

4 Algorithm Using MaxNearestDist

Using MAXNEARESTDIST to tighten the estimate Dk

when finding the k nearest neighbors instead of just the
nearest neighbor (i.e., k � 1) is not a simple matter, al-
though neither Fukunaga and Narendra [3] nor Larsen and
Kanal [8] give it any mention. Note that we cannot sim-
ply reset Dk to MAXNEARESTDIST�q�e� whenever MAX-

2

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

NEARESTDIST�q�e� � Dk. The problem is that the dis-
tance s from q to some of its k nearest neighbors may lie
within MAXNEARESTDIST�q�e� � s � Dk, and thus reset-
ting Dk to MAXNEARESTDIST�q�e� may cause them to be
missed, especially if child element e contains just one ob-
ject. In other words, we must also examine the values of Di

(1� i � k).
An alternative solution is that whenever we find that

MAXNEARESTDIST�q�e� � Dk, we reset Dk to MAX-
NEARESTDIST�q�e� if Dk�1 �MAXNEARESTDIST�q�e�;
otherwise, we reset Dk to Dk�1. Nevertheless, this solu-
tion is problematic when Dk�1 �MAXNEARESTDIST�q�e�
since at this point both Dk and Dk�1 are the same (i.e.,
Dk � Dk�1), and from now on we will never be able to
obtain a lower bound on Dk than Dk�1. The remedy is to
add another explicit check to determine if Dk�2 �MAX-
NEARESTDIST�q�ep�, in which case we reset Dk�1 to
MAXNEARESTDIST�q�ep�; otherwise, we reset Dk�1 to
Dk�2. Nevertheless, this remedy is only temporary as it will
break down again if Dk�2 �MAXNEARESTDIST�q�ep�.
However, we can repeatedly apply the same method until
we find the smallest i � 1 such that Di �MAXNEAREST-
DIST�q�ep�. Once we locate this value of i, we set Di

to MAXNEARESTDIST�q�ep� after resetting D j to D j�1

(k� j � i).
Unfortunately, the above solution does not guarantee that

objects associated with the different D j�1 � j � k� val-
ues are unique. The problem is that the same object o
may be responsible for the MAXNEARESTDIST value as-
sociated with both elements ep and ea of the search hi-
erarchy that caused MAXNEARESTDIST�q�ep� � Dk and
MAXNEARESTDIST�q�ea� � Dk, respectively, at different
instances of time. Of course, this situation can only occur
when ep is an ancestor of ea. However, it must be taken into
account as otherwise the results of the algorithm are wrong.

Another problem is the way the MAXNEARESTDIST es-
timator is presented, its primary role is to set an upper bound
on the distance from the query object to its nearest neigh-
bor in a particular nonobject element. It is important to
observe that this is not the same as saying that the upper
bound computed by using the MAXNEARESTDIST estima-
tor is the minimum of the maximum possible distances to
the k-nearest neighbor of the query object, which is not true.
Instead, the way in which the MAXNEARESTDIST estima-
tor should be used in k-nearest neighbor finding is to pro-
vide bounds for a number of different clusters. Only once
we have obtained k distinct such bounds, do we have an es-
timate on the distance to the kth nearest neighbor.

In order to avoid these problems, and to be able to make
use of the MAXNEARESTDIST estimator, we expand the
role played by the list L of the k nearest neighbors encoun-
tered so far so that it also contains nonobject elements cor-
responding to the elements of the active list along with their

corresponding MAXNEARESTDIST values, as well as ob-
jects with their distance values from q. In particular, each
time we process a nonobject element e of the search hierar-
chy, we insert in L all of e’s child elements that comprise e’s
active list along with their corresponding MAXNEAREST-
DIST values. Moreover, in order to ensure that no ancestor-
descendent relationship could possibly hold for any pair of
items in L, before we process a nonobject element ep of the
search hierarchy (line 10 in procedure DFTRAV), we re-
move ep’s corresponding element from L using procedure
REMOVEQUEUE (not given here). Therefore, the object o
associated with the nonobject element u of L at a distance
of MAXNEARESTDIST is guaranteed to be unique. In other
words, o is not already in L nor is o associated with any
other nonobject element in L. It is also important to note
that each of the entries u in L ensures that there is at least
one object in the data set whose maximum possible distance
from q is the one associated with u.

The new algorithm is given by procedures OPTDFTRAV

and OPTINSERTL, which replace DFTRAV and INSERTL,
respectively. It lies somewhere between the depth-first and
best-first approaches, and thus we call it a maxnearest depth-
first k-nearest neighbor algorithm. Notice that OPTDF-
TRAV processes the elements of the active list in increasing
order with respect to q using MINDIST. An alternative is
to order these elements using MAXNEARESTDIST. How-
ever, this ordering has been shown to be not as good as the
MINDIST ordering [6, 9, 10], and thus we do not use it.

L is implemented using a priority queue so that accessing
the farthest of the k nearest neighbors as well as updating
(i.e., inserting and deleting the k nearest neighbor) can be
performed without needless exchange operations as would
be the case if L was implemented using an array. Each ele-
ment e in L has two data fields E and D corresponding to the
item i (object or nonobject) that e contains and i’s distance
from q (i.e., d�q� i�), respectively, and fields corresponding
to control information specific to the data structure used
to implement the priority queue (e.g., a binary heap, etc.).
If there are k candidate nearest neighbors (determined by
SIZE, not given here), then OPTINSERTL precedes the in-
sertion, which is performed by ENQUEUE (not given here),
by first dequeueing the current farthest member (i.e., the kth-
nearest member) from L using DEQUEUE (not given here).
Next, if there are k candidate nearest neighbors after the in-
sertion, then OPTINSERTL resets Dk to the distance of the
current farthest nearest neighbor, accessed by MAXL (not
given here).

1 recursive procedure OPTDFTRAV�e�
2 if ISLEAF�e� then /* e is a leaf with objects */
3 foreach object child element o of e do
4 Compute d�q�o�
5 if d�q�o�� Dk or
6 �d�q�o� � Dk and SIZE�L�� k� then

3

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

7 OPTINSERTL�o�d�q�o��
8 endif
9 enddo

10 else
11 Generate active list A with child elements ep of e
12 /* A is sorted in increasing order with respect to q

using MINDIST and processed in this order */
13 foreach element ep of A do
14 /* Attempt to apply MAXNEARESTDIST */
15 if MAXNEARESTDIST�q�ep�� Dk then
16 OPTINSERTL�ep�MAXNEARESTDIST�q�ep��
17 endif
18 enddo
19 foreach element ep of A do
20 /*Process A in increasing order */
21 if MINDIST�q�ep�� Dk then
22 exit for loop /* Prune ep */
23 else
24 if MAXNEARESTDIST�q�ep��Dk or
25 �MAXNEARESTDIST�q�ep� �Dk and
26 D�MAXL�L�� � Dk and
27 not ISOBJECT�E�MAXL�L���� then
28 REMOVEQUEUE�ep�L�
29 endif
30 OPTDFTRAV�ep�
31 endif
32 enddo
33 endif

1 procedure OPTINSERTL�e�s�
2 /* Insert element (object or nonobject) e at distance s

from query object q into the priority queue L using
ENQUEUE which assumes that objects have prece-
dence over nonobjects at the same distance. */

3 if SIZE�L� � k then
4 h�DEQUEUE�L�
5 if not ISOBJECT�E�h�� then
6 while not ISEMPTY�L�
7 and not ISOBJECT�E�MAXL�L���
8 and D�MAXL�L�� � D�h� do
9 DEQUEUE�L�

10 enddo
11 endif
12 endif
13 ENQUEUE�e�s�L�
14 if SIZE�L� � k then
15 if D�MAXL�L��� Dk then
16 Dk�D�MAXL�L��
17 endif
18 endif

Dk keeps track of the minimum of the distances that have
been associated with the entry in L corresponding to q’s kth-
nearest neighbor. Note that Dk is not necessarily the same

as the value currently associated with the entry in L corre-
sponding to q’s kth-nearest neighbor, which we denote by
D�Lk� (i.e., D�MAXL�L��). The reason is that we cannot
guarantee that the MAXNEARESTDIST values of all of e’s
immediate descendents (i.e., the elements of the active list of
e) are smaller than the MAXNEARESTDIST value of e. All
we know for sure is that the distance from q to the nearest
object in e and its descendents is bounded from above by the
MAXNEARESTDIST value of e. In other words, Dk is non-
increasing, while D�Lk� can increase and decrease as items
are added and removed from L. For example, we see that
D�Lk� must increase when element E�Lk� has just two sons
ea and eb both of whose MAXNEARESTDIST values are
greater than D�Lk� (see Figure 2 with donut-like nonobjects
ei where MAXNEARESTDIST�q�ei� � d�q�Mi�� ri�min).

ra,min
Ma

Mb

Mp

rp,min

rp,max

q

rb,max

rb,min

ra,max

������ �� �	
��
� �

����
���� ��� ����� �����
���
���� ��� �
	��
�������� �

��� �� ��� �� � ���� ��

�� �� �� ��
�� ���
��� ��
� ��� ������� �

�� ��

������ ����� �� ��� �
	��
�������� �

�� �� ���

We incorporate the MAXNEARESTDIST estimator by re-
setting Dk to D�Lk� whenever upon insertion of a nonobject
element ep into L, with its corresponding MAXNEAREST-
DIST value, we find that L has at least k entries and that
D�Lk� is less than Dk as this corresponds to the situation
that MAXNEARESTDIST�q�ep� � Dk. Note that Dk is also
reset in procedures DFTRAV and INSERTL upon insertion
of an object into L when L has k entries by noting that MAX-
NEARESTDIST of an object o is just d�q�o�. Thus the unex-
plored nonobject elements of the active list can be used for
pruning in the sense that the distances from q of the farthest
objects within them that can serve as the nearest neighbors
enable us to calculate an upper bound Dk on the distance of
the kth-nearest neighbor. It is important to distinguish be-
tween Dk which is used when pruning with MINDIST and
D�Lk� which serves as the basis of the MAXNEARESTDIST

estimator. In particular, we see that defining Dk in terms of
the minimum of Dk and D�Lk� ensures that there are k dis-
tinct objects (even though they may not all have been iden-
tified) whose maximum distance from q is �Dk. Of course,
we do not reset Dk upon explicitly removing a nonobject el-

4

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

ement from L as Dk is already a minimum and thus cannot
decrease further as a result of the removal of a nonobject
element although it may decrease upon the subsequent in-
sertion of an object or nonobject.

Note that nonobjects can only be pruned on the basis of
their MINDIST values, in which case they should also be
removed from L. Moreover, the fact that we are using the
MINDIST ordering means that once we prune one of the
child elements of nonobject element e in the active list A�e�,
we can prune all remaining elements in A�e� since they all
have larger MINDIST values as A�e� is sorted in increasing
MINDIST order. Therefore, all of these elements should be
removed from L as well since each of their MAXNEAREST-
DIST values is greater than its corresponding MINDIST

value and hence also greater than Dk. However, there is re-
ally no harm in not removing any of the pruned nonobjects
from L as neither the pruned nonobjects nor their descen-
dents will ever be examined again. Nevertheless, the pruned
nonobjects take up space in L, which is why it may be de-
sirable to remove them anyway.

The drawback of the solution that we have described is
that the maximum size of L has grown considerably since
it is no longer k. Instead, assuming that pruned nonobjects
have been removed from L, the maximum size of L is k plus
the maximum number of possible active list elements over
all levels of the search hierarchy. For example, assuming
N data items and that the clustering method makes use of
a tree-like search hierarchy with m as the branching factor,
then the maximum size of L is O�k �m � logN� and is at-
tained when the depth-first search algorithm first encounters
an object at the maximum depth, which is O�logN�. Actu-
ally, it is interesting to note that the cost of increasing the
size of L to include the maximum number of possible ac-
tive list elements is not such a drawback as this amount of
storage is needed by the recursion anyway due to the unex-
plored paths that remain at each level while descending to
the deepest level of the search hierarchy.

Nevertheless, the facts that only nonobject elements with
MINDIST values � Dk are ever processed by the algorithm
and that all of these nonobject elements have the same
or larger corresponding MAXNEARESTDIST values, mean
that any nonobject element e whose MAXNEARESTDIST

value is greater than the current value of Dk should not be
inserted in L as Dk is nonincreasing, and thus were e to be in-
serted in L it would never be examined subsequently thereby
implying that there will never be an explicit attempt to re-
move it. In fact, there is also no need to insert e in L when
its MAXNEARESTDIST value is equal to the current value
of Dk, regardless of how many elements are currently in L,
as such an insertion won’t enable us to lower the known
value of Dk so that more pruning will be possible in the fu-
ture. Otherwise, there is no reason to use L to keep track of
the MAXNEARESTDIST values of the nonobjects.

Moreover, the fact that only the first k elements of L are
ever examined by the algorithm (i.e., retrieved from L) when
updating Dk in the case of an insertion into L means that
there is no need for L to ever contain more than k elements.
This simplifies the algorithm considerably. However, it does
mean that when we need to explicitly remove a nonobject
element e from L just before inserting in L all of e’s child
elements that comprise e’s active list along with their corre-
sponding MAXNEARESTDIST values, it could be the case
that e is no longer in L. This is because e may have been
implicitly removed as a byproduct of the insertion of closer
objects or nonobject elements whose corresponding MAX-
NEARESTDIST values are lower than that of e and thereby
resulted in resetting Dk.

The only tricky case is ensuring that a nonobject e is ac-
tually in L when we are about to attempt to explicitly re-
move e from L. In other words, we want to ensure that e
has not already been removed implicitly. Of course, if e’s
MAXNEARESTDIST value is � Dk, then there is no need
for action as it is impossible for e to be in L, and thus
we are guaranteed that e was implicitly removed from L.
However, when e’s MAXNEARESTDIST value is � Dk, and
there are several elements in L with distance Dk, we do not
want to needlessly search for e as may be the case if e had
already been implicitly removed from L by virtue of the
insertion of a closer object or a nonobject with a smaller
MAXNEARESTDIST value. This needless search can be
avoided by adopting some convention as to which element
of L at distance Dk should be removed when there are sev-
eral nonobjects in L with Dk as their MAXNEARESTDIST

value as well as objects at distance Dk.

We adopt the convention that objects have priority over
nonobjects in the sense that in terms of nearness, objects
have precedence over nonobjects in L. This means that
when nonobjects and objects have the same distance, the
nonobjects appear closer to the maximum entry in the pri-
ority queue L (i.e., MAXL�L�). In particular, we stipulate
that whenever insertion into a full priority queue results in
dequeueing a nonobject element b, we check if the new
MAXL�L� entry c corresponds to a nonobject with the same
MAXNEARESTDIST value d in which case c is also de-
queued. This loop continues until the new MAXL�L� en-
try corresponds to an object at any distance including d, or
corresponds to a nonobject at any other distance d�, or L is
empty. Note that Dk is only reset if exactly one entry has
been dequeued and the distance of the new MAXL�L� entry
is less than Dk. Otherwise, if we dequeue more than one
entry, then even though the distance of the new MAXL�L�
entry may now be less than Dk, it cannot be used to reset
Dk as L now contains fewer than k entries. In fact, it should
be clear that Dk should not be reset as Dk has not been de-
creased since the only reason for the removal of the multiple
nonobject entries is to avoid subsequent possibly needless

5

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

searches when explicitly removing nonobject elements with
MAXNEARESTDIST value Dk.

Following this convention, when a nonobject e is to be re-
moved explicitly from L and e’s MAXNEARESTDIST value
is�Dk, then e has to be in L as it is impossible for e to have
been removed implicitly as Dk is nonincreasing. Therefore,
we remove e and decrement the size of L. On the other hand,
the situation is more complicated when e’s MAXNEAREST-
DIST value is equal to Dk. First, if the maximum value in
L (i.e., MAXL�L�) is less than Dk, then e cannot be in L,
and we do not attempt to remove e. Such a situation arises,
for example, when we dequeue more than one nonobject
due to having several nonobjects at distance Dk. Second,
if the maximum value in L (i.e., MAXL�L�) is equal to Dk,
then there are two cases depending on whether the entry c
in MAXL�L� corresponds to an object or a nonobject. If c
corresponds to an object, then nonobject e cannot be in L as
we have given precedence to objects, and all nonobjects at
the same distance are either in L or they are all not in L. If
c corresponds to a nonobject then nonobject e has to be in L
as all of the nonobjects at the same distance have been either
removed implicitly together or retained, and, in this case, by
virtue of the presence of c in L we know that they have been
retained in L. Note that when we explicitly remove a nonob-
ject at distance Dk from L, we do not remove all remaining
nonobjects at the same distance from L as this needlessly
complicates the algorithm with no additional benefit as they
will all be removed implicitly together later if at least one of
them must be implicitly removed due to a subsequent inser-
tion into a full priority queue.

The advantage of expanding the role of L to contain
nonobjects as well, instead of just containing objects, is that
without this expanded role, when L contains h (h � k) ob-
jects, then all remaining entries in L (i.e., Li (h� i� k) are
∞. Therefore, as long as the remaining k� h entries in L
correspond to some nonobjects, we have a lower bound Dk

than ∞. Moreover, the nonobjects in L often enable us to
provide a lower bound Dk than if all entries in L were ob-
jects. In particular, this is the case when we have nonobjects
with smaller MAXNEARESTDIST values than the k objects
with the k smallest distance values encountered so far.

Observe that the way in which we incorporated the
MAXNEARESTDIST estimator in OPTDFTRAV enables the
use of its result at a deeper level than the one at which it
is calculated. In particular, the use of L to store the MAX-
NEARESTDIST values of some active nonobject elements
means that a MAXNEARESTDIST value of an unexplored
nonobject at depth i can be used to help in pruning objects
and nonobjects at depth j � i. This is a significant improve-
ment over the depth-first algorithm in DFTRAV where the
MAXNEARESTDIST value of a nonobject element at depth
i could only be used to tighten the distance to the nearest
neighbor (i.e., for k � 1), and to prune nonobject elements

at larger MINDIST values at the same depth i.

5 Concluding Remarks

Using the MAXNEARESTDIST estimator in the depth-
first k-nearest neighbor algorithm provides a middle ground
between a pure depth-first and a best-first k-nearest neighbor
algorithm. In particular, assuming N data items, the priority
queue implementation of L in the maxnearest depth-first al-
gorithm behaves similarly to the priority queue Queue in the
best-first k-nearest neighbor algorithm except that the upper
bound on L’s size is k, while the upper bound on Queueś size
is O�N�. In contrast, in both the pure and the maxnearest
depth-first algorithms, the worst-case storage requirements
only depend on the nature of the search hierarchy (i.e., the
maximum height of the search hierarchy which is O�logN�),
instead of on the size of the data set, as is the case for the
best-first algorithm. The best-first algorithm can also be
adapted to use MAXNEARESTDIST [10].

References

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquín.
Searching in metric spaces. ACM Comp. Surv., 33(3):273–
322, 2001.

[2] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proc.
23rd Int. Conf. on Very Large Data Bases (VLDB), pages
426–435, Athens, Greece, Aug. 1997.

[3] K. Fukunaga and P. M. Narendra. A branch and bound al-
gorithm for computing k-nearest neighbors. IEEE Trans.
Comp., 24(7):750–753, 1975.

[4] A. Henrich. A distance-scan algorithm for spatial access
structures. In Proc. 2nd ACM Workshop on Geog. Inf. Sys.,
pages 136–143, Gaithersburg, MD, Dec. 1994.

[5] F. S. Hillier and G. J. Lieberman. Introduction to Operations
Research. Holden-Day, San Francisco, 1967.

[6] G. R. Hjaltason and H. Samet. Distance browsing in spa-
tial databases. ACM Trans. Database Sys., 24(2):265–318,
1999. Initial version in Advances in Spatial Databases —
4th Int. Symp. SSD’95, pages 83–95, Portland, ME, August
1995 and also Springer-Verlag Lecture Notes in Computer
Science 951.

[7] B. Kamgar-Parsi and L. N. Kanal. An improved branch and
bound algorithm for computing k-nearest neighbors. Pat.
Rec. Ltrs., 3(1):7–12, 1985.

[8] S. Larsen and L. N. Kanal. Analysis of k-nearest neighbor
branch and bound rules. Pat. Rec. Ltrs., 4(2):71–77, 1986.

[9] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
bor queries. In Proc. ACM SIGMOD Conf., pages 71–79,
San Jose, CA, May 1995.

[10] H. Samet. Foundations of Multidimensional Data Structures.
To appear.

[11] J. K. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Inf. Proc. Ltrs., 40(4):175–179,
1991.

6

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)

0-7695-1948-2/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

