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Abstract

A wide variety of interactions on the Internet are char-
acterized by the availability of cheap pseudonyms, where
users can obtain new identities freely or at a low cost. Due
to the availability of cheap pseudonyms, incentive schemes
that are based on reward and punishment are vulnerable to
the whitewashing attack, where users continuously discard
their old identity and acquire a new one to escape the con-
sequences of their bad behavior. In this paper, we study the
implications of the whitewashing attack from an evolution-
ary perspective. Not surprisingly, the whitewashing attack
degrades the evolutionary stability of strategies that are oth-
erwise stable. In particular, the Tit-for-Tat strategy and
its variant, probabilistic TFT, are not stable against white-
washers, unless identity costs are sufficiently large. In addi-
tion, we extend the indirect reciprocity model and find that
discriminators can defeat whitewashers only if the proba-
bility to cooperate with strangers is small enough, which in
turn degrades social welfare.

1. Introduction

The performance of many distributed systems rely on
voluntary resource sharing between individual peers. Some
examples are contribution of files in file-sharing systems,
packet forwarding in wireless ad hoc networks or Inter-
net routing, and more. Alas, in many cases, the contrib-
utors may incur significant communication and computa-
tion costs without deriving any direct utility from contribut-
ing. Rational users, who attempt to maximize their own
welfare, may thus attempt to “free-ride” on the other users
– benefiting from the resources of others without offering
their own resources in exchange. The inherent tension be-
tween individual rationality and collective welfare threatens
to degrade the system’s performance. Hardin has coined the
phrase “the tragedy of the commons” [5] to refer to this phe-
nomenon.

The problem of free-riding has been extensively studied

via a game theoretic approach [13]. Perhaps one of the most
celebrated demonstrations of the social dilemma is the Pris-
oner’s Dilemma (PD) [7]. PD is a two-player game (See
Figure 1) in which each player chooses whether to cooper-
ate with, or defect on, the other. The dominant strategy of
each player is to defect, resulting in an outcome of mutual
defection, where both users yield lower payoffs than un-
der mutual cooperation. Since defection is the unique Nash
equilibrium (NE) in the one-shot PD game, defecting in all
periods is also the unique subgame perfect NE in the finitely
repeated game. It is only in the infinitely repeated game that
cooperation can be sustained in equilibrium.

Evolutionary game theory studies equilibria of games
played by a populations of players, where the ”fitness” of
the players is derived from their success in playing the
game. It provides a tool for describing and analyzing sit-
uations where a number of agents interact and change their
strategies at the end of any particular interaction. The Tit-
for-tat (tft) strategy has been proven to be an evolutionary
stable strategy (formal definition follows in Section 2) in
the PD game both analytically and through simulations [1].
tft bases its decision on the notion of direct reciprocity; it
always cooperates on the first move, and reciprocates what
the other player did on the previous move thereafter.

While tft performs well in environments with many re-
peated transactions, it does not perform as well if there is
only a small probability to interact repeatedly with the same
opponent. In these cases, defectors can exploit the generos-
ity of tft towards strangers. Nowak and Sigmund [12] have
introduced the Image strategy that is based on the notion of
indirect reciprocity. The Image strategy uses the experi-
ence of other players to discriminate between cooperators
and defectors, thereby can defeat defectors even in games
with large populations and few repeated transactions.

However, one of the main challenges in attempting to
transform strategies that are based on reciprocity (either di-
rect or indirect) into protocols in online computational en-
vironments is the problem of cheap pseudonyms [4]. The
availability of low-cost identities enables the whitewashing
attack [2], in which defecting nodes continuously change



identities to escape the consequences of their behavior.
In this paper, we examine the effect of the whitewash-

ing attack on the evolutionary stability of strategies that are
based on direct and indirect reciprocity. Not surprisingly,
we find that the stability of strategies degrades as a result of
the whitewashing attack. In particular, tft and probabilistic
tft can be defeated by whitewashers. Only by imposing a
sufficiently large identity cost can tft remain stable in the
presence of whitewashers. Furthermore, the image strategy
that is based on indirect reciprocity can defeat whitewashers
only if the probability to cooperate with a stranger is smaller
than 0.5, but setting a low probability necessarily degrades
social welfare in the residual whitewasher-free population.

The rest of this paper is organized as follows. Section 2
reviews the concepts of evolutionary stability and replica-
tion dynamics. In Section 3, we examine the evolutionary
stability of tft and probabilistic tft against whitewashers
in the prisoner’s dilemma, and Section 4 studies the evo-
lutionary stability of the image strategy against whitewash-
ers. We present related work in Section 5, and Section 6
concludes the paper.

2. Evolutionary Game Theory

In this section, we provide a brief background to evolu-
tionary game theory and review the notions of evolutionary
stable strategy (ESS) and replication dynamics. For more
details on evolutionary game theory, see [1, 6, 14]. In later
sections, we use the tools introduced in this section to study
the effect of cheap pseudonyms on the stability of coopera-
tive strategies.

2.1. Evolutionary Stable Strategies (ESS)

A strategy is a mapping from the game’s history into an
action in the current move. A strategy can be either pure or
mixed, where a mixed strategy consists of possible actions
and a probability distribution that corresponds to the weight
of each action.

In evolutionary games, the population consists of play-
ers playing various strategies. The score of a strategy in any
round determines the relative number of “offsprings” in the
next round. Thus, over time, the lower scored strategies de-
crese in number, and the higher scoring strategies increase.
The fitness of a strategy is the strategy’s expected score. Let
V (A|B) denote the fitness of strategy A when interacting
with strategy B.

Invasion Strategy A is said to invade a population of strat-
egy B players if V (A|B) > V (B|B). If no strategy can
invade a population of strategy B players, B is said to be
collectively stable, or an evolutionary stable strategy (ESS).

Formally, in order for strategy B to be stable, it must hold
that for all A,

V (B|B) > V (A|B)

or

V (B|B) = V (A|B) and V (B|A) > V (A|A)

Invasion in clusters The above notion of invasion refers
to invasion by individuals. A different kind of invasion is
invasion by clusters. Invasion by clusters refers to scenarios
in which the invaders can control to some extent whom they
interact with. Strategy A is said to invade strategy B in
clusters if the A’s (invaders) can provide a significant part
of each other’s environment, but a negligible part of the B’s
(natives) environment. An x-cluster of A is said to invade
B if

xV (A|A) + (1 − x)V (A|B) > V (B|B)

This definition assumes that pairing in the interactions is
not random. x is the proportion of A’s interactions with an-
other A, whereas interactions of B’s with A’s are negligible.
Some of the collectively stable strategies, while cannot be
invaded by individuals, are invadeable by clusters.

Random mixing With random mixing, the proportion
needed for newcomers to invade natives is q, such that:

qV (A|A)+(1−q)V (A|B) > qV (B|A)+(1−q)V (B|B)

We also denote the discount factor by w. Scores are dis-
counted by w as time passes. An equivalent interpretation
of w is the probability to have an additional round in the
repeated game with uncertain number of rounds.

2.2. Replication dynamics

According to replication dynamics, the initial popula-
tion is represented by a set of pairs (s1, p1), . . . , (sn, pn),
where si and pi denote the strategies and their respective
proportion in the population. The score of a strategy in each
round determines the relative number of offsprings in the
next round. Under the assumption that the number of enti-
ties in the population is fixed over time, the proportion pi of
each strategy si in the successor round is given by

pt+1
i = pt

i

V t
i

V t

where V t
i is the score of strategy si in round t and V t is the

average score in the population. Thus, strategies that score
above the average increase over time, and those that score
below the average decrease over time.



3. Direct Reciprocity

Direct reciprocity suggests that agent i should base his
choice of action toward agent j on j’s previous behavior to
i. Tit-for-tat (tft) is based on the idea of direct reciprocity,
where agent i reciprocates to j what j has done to i in the
last round. In the remainder of this section, we focus on
the PD game, whose payoff matrix is presented in Figure 1.
As illustrated in the matrix, mutual cooperation results in
payoff R (Reward) to both players, mutual defection results
in P (Punishment) to both players, and if only one of the
agents cooperates, he gets S (Sucker) while his opponent
gets T (Temptation). The payoffs satisfy the relation

S < P < R < T (1)

A strategy in the one-shot PD game is a decision whether
to cooperate or defect (and can be also probabilistic), and
a strategy in the repeated PD game is a mapping from ev-
ery possible history of the game into a probability of coop-
eration. Defection is the unique dominant strategy in the
one-shot PD. That is, no matter what the other player does,
defection always yields a higher payoff than cooperation.
As such, cooperation cannot be sustained in the finitely re-
peated PD, no matter how many rounds it is repeated and
how patient agents are. However, based on the Folk the-
orem [9], cooperation can be sustained in equilibrium in
the infinitely repeated PD (or equivalently, if there is un-
certainty about the number of rounds).

It has been demonstrated by Axelrod in [1] that tft is
evolutionary stable in the PD game if identities are perma-
nent. In Section 3.1 we review Axelrod’s results about the
stability of tft in PD, and in Section 3.2 we show the ef-
fect of the whitewashing attack on the stability of tft and
its variant, probabilistic tft.
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Figure 1. Payoff matrix for the Prisoner’s
Dilemma. The condition S < P < R < T must
be met to satisfy the social dilemma.

3.1. Tit-for-Tat in Environments with Permanent
Identities

Axelrod [1] has taken an evolutionary approach to the
study of the PD game. He has found that if the discount
factor, w, is sufficiently large, there is no strategy that is
best independent of the strategy used by the other players.
However, if everybody in the population plays tft, then no
one can do better by switching to any other strategy. The
fitness (score) of strategy A when playing against strategy
B in the infinitely repeated game is

V (A|B) =

t=∞
∑

t=0

V (A|B)tw
t

where V (A|B)t is the payoff of A when playing against B
at time t , and w is the discount factor.

Proposition 3.1 (Axelrod [1]) tft is collectively stable in
the PD game if and only if

w ≥ max(
T − R

T − P
,
T − R

R − S
)

The proof of this proposition is presented in [1].

As mentioned in section 2.1, some of the collectively sta-
ble strategies, while cannot be invaded by individuals, are
invadeable by clusters. A nice strategy is a strategy that is
never the first to defect. It is shown in [1] that if a nice
strategy cannot be invaded by a single individual, it can-
not be invaded by any cluster of individuals either. tft is
obviously a nice strategy. Therefore, unlike allD, tft is
uninvadeable even by clusters.

3.2. Tit-for-Tat in the Presence of Whitewashers

The above findings demonstrate the stability of tft
against invasion of both individuals and clusters. However,
its stability relies on two conditions:

• permanent identities.
• traceable actions (both cooperation and defection).

If both conditions are satisfied, a player who defects in one
round can be punished in later rounds. However, both con-
ditions are challenged in online environments. Identities
may not be permanent due to cheap pseudonyms [4, 3], and
in many applications defection cannot be traced. In this pa-
per we focus on the first problem (lack of permanent iden-
tities) and leave the analysis of untraceable defections to
future work. We first define the whitewashing strategy and
then study its effect in situations where identities are com-
pletely free (Section 3.2.1) and in situations where identities
can be replaced, but at some positive cost (Section 3.2.2).



Whitewashing The whitewashing strategy is denoted by
ww. A ww player always defects, but changes identity after
each interaction.

3.2.1. Free Identities

It is easy to see that under free identities tft is not stable
against ww, since ww can always exploit the generosity of
tft to strangers. The fitness of ww against tft is:

V (ww|tft) =
T

1 − w

which is the maximal possible score in the game, and is
clearly greater than V (tft|tft) = R/(1 − w). Therefore,
tft is invadeable by ww, even individually, and is not an
ESS in the presence of whitewashing.

Probabilistic tft In an attempt to deal with whitewash-
ers, we consider a variant of tft, namely probabilistic tft,
or tftp. Like tft, tftp reciprocates to a player what he
did on the previous move. However, unlike tft that always
cooperates with a stranger, tftp cooperates with a stranger
randomly with probability p.

Proposition 3.2 ww invades tftp for all w and all p 6= 01.

Proof In order to prove this claim, we have to show that

V (ww|tftp) > V (tftp|tftp) ∀p, w

The fitness of ww and tftp against tftp is expressed as fol-
lows:

V (ww|tftp) =
pT + (1 − p)P

1 − w

V (tftp |tftp) = p2 R

1 − w
+ p(1 − p)

S + T

1 − w
+ (1 − p)2

P

1 − w

Therefore:

V (ww|tftp) > V (tftp|tftp)

⇔ p(p(R − T ) + (1 − p)(S − P )) < 0

but R − T < 0 and S − P < 0 for all S, P, T, R (by
inequation 1. Therefore, ww invades tftp for all w and
p 6= 0.

Proposition 3.3 tftp cannot invade ww with random mix-
ing.

Proof In order for tftp to invade ww with random mixing,
there need to exist p and q satisfying:

qV (tftp |tftp) + (1 − q)V (tftp |ww) >

qV (ww|tftp) + (1 − q)V (ww|ww)

but, as shown above:

V (tftp|tftp) < V (ww|tftp)

1if p = 0, V (i|i) = P/(1 − w) for i ∈ tft, ww.

and
V (tftp|ww) < V (ww|ww)

Therefore, tftp cannot invade ww with random mixing.

Proposition 3.4 An x-cluster of tftp invades ww if

x >
P − S

T − P + p(R − S − T + P )

Proof An x-cluster of tftp invades ww if

xV (tftp|tftp) + (1 − x)V (tftp|ww) > V (ww|ww)

⇔ x(p2 R

1 − w
+ p(1 − p)

S + T

1 − w
+ (1 − p)2

P

1 − w
)

+ (1 − x)(
pS + (1 − p)P

1 − w
) >

P

1 − w

⇔ x >
P − S

T − P + p(R − S − T + P )

Therefore, in order for an x-cluster of tftp to invade ww,
the following condition must hold:

P − S < T − P + p(R − S − T + P )

When the above condition holds, the effect of p on the nec-
essary cluster size depends on the proportions between the
intermediate (R, P ) and extreme (T, S) payoffs.

• If R+P > S+T , then as p increases, the denominator
increases, and the necessary cluster size decreases.

• If R+P < S+T , then as p increases, the denominator
decreases, and the necessary cluster size increases.

In summary, we find that ww invades tftp for all w and
p, and tftp cannot invade ww with random mixing, but can
invade ww with a large enough cluster.

3.2.2. Positive Identity Costs

So far, we have assumed that whitewashers can freely
acquire a new identity. However, in most cases, identities
are cheap, but not completely free. In addition, it would be
interesting to study the effect of a positive identity cost since
one may consider applying an artificial identity cost into the
system in order to discourage whitewashing behavior. In
what follows, we analyze the effect of positive identity costs
on the dynamics of the game. Let C denote the identity cost.
Then, the payoffs of the different interactions become:

• V (ww|tft) = T−C
1−w

• V (tft|tft) = R
1−w

− C

• V (tft|ww) = S
1−w

− C

• V (ww|ww) = P−C
1−w



If C is large enough, tft is stable against invasion of ww.
In particular, if C > T−R

w
, ww cannot invade tft2. Thus,

imposing a large identity cost helps in preventing invasion
by whitewashers.

Sophisticated whitewasher Once identities are costly, a
more sophisticated ww may change identity only every I
iterations instead of every single iteration. A wwI player
always defects and whitewashes every I iterations. Inter-
actions between wwI and tft players yield the following
scores:

• V (wwI |tft) = T + Pw
1−w

− PwI−1

1−wI + (T−C)wI−1

1−wI

• V (tft|tft) = R
1−w

Therefore, tft is stable against invasion by ww if

C > T − P +
1 − wI

wI−1
(

Pw

wI−1
−

R

1 − w
+ T )

A wwI player who plays against a tft player attempts to
maximize

V (wwI |tft) = T +
Pw

1 − w
+

wI−1

1− wI
(T − P − C)

What is the optimal number of iterations after which to
change identity? It is only the last element in the expres-
sion that depends on I . Since w < 1, the fraction wI−1

1−wI

decreases in I . Therefore:

• if C < T − P , V (wwI |tft) decreases in I and it is
optimal for wwI to whitewash every iteration. In this
case wwI is equivalent to ww and we have shown that
tft is stable against invasion by ww if w > T−R

C
.

Therefore, tft is stable against wwI if

w > max

(

T − R

C
,
T − R

T − P

)

• if C > T − P , V (wwI |tft) increases in I and it is
optimal for wwI to never whitewash. In this case, wwI

is equivalent to allD, and we have shown that tft is
stable against invasion of allD if

w >
T − R

T − P

2In the above analysis, we assumed that the initial identity is also costly.
However, the same condition holds if the initial identity is considered sunk
cost. In this case,

• V (ww|tft) = T + (T−C)w
1−w

• V (tft|tft) = R
1−w

• V (tft|ww) = S
1−w

• V (ww|ww) = P + (P−C)w
1−w

and the condition for the stability of tft against ww remains C > T−R
w

.

• if C = T − P , V (wwI |tft) is independent of I , thus
the choice of I has no effect on its payoff. In this case,
wwI invades tft if

w >
T − R

T − P

In summary, a sufficiently large identity cost may dis-
courage whitewashing behavior. If the identity cost is too
small, whitewashers defeat tft, and for intermediate costs,
whitewashing may still be worthwhile, but tft will defeat
the whitewashers.

4. Indirect Reciprocity

After illustrating that the stability of tft is limited in the
presence of whitewashers, we present the effect of white-
washers on strategies that are based on indirect reciprocity.
Indirect reciprocity means that agent x cares not only about
the last action of y toward x, but also the last action of y
toward a third agent, z.

Nowak and Sigmund [12] have proposed to alleviate the
problem of cooperation in environments with large popu-
lations by maintaining shared history that aggregates infor-
mation from all players. They present a model that uses
the replication dynamics evolutionary rule (see section 2) to
study the dynamics of systems with discriminators and de-
fectors. We extend their model to study the effect of white-
washers on the system.

4.1. Model

In the game, users are paired up at random in every round
such that one is the donor and the other is the recipient. The
donor has to decide whether to cooperate or to defect. If she
cooperates, the donor gets payoff of −c, the recipient gets
payoff of b (such that b > c; otherwise, the socially desired
outcome is one in which all players defect), and the image
score of the donor is 1. If she defects, they both get payoff
of 0, and the image score of the donor is 0.

The population consists of discriminators and white-
washers.

• Discriminators always cooperate with players with im-
age score 1, and with strangers with probability p. The
image score of discriminators is known with probabil-
ity q.

• Whitewashers never cooperate and continuously
change identity, such that the probability to know their
image score is zero.

We use the following notation:

• x: the fraction of discriminators in the population.



• y: the fraction of whitewashers in the population.

• x0, y0: the fraction of discriminators and whitewashers
with image 0, respectively.

• x1, y1: the fraction of discriminators and whitewashers
with image 1, respectively.

We assume that x is initially equally divided between x0

and x1, and the same for y.

4.2. Evolutionary Stability of Discriminators

In each round, the payoff to the individual types is:

P (x0) =
1

2
(−c)(qx1 + p((1 − q)x + y)) +

1

2
bx(1 − q)p

P (x1) =
1

2
(−c)(qx1+p((1−q)x+y))+

1

2
bx(q+(1−q)p)

P (y0) =
1

2
bxp

P (y1) =
1

2
bxp

The frequencies of players of image 0 and 1 change from
round to round according to the following difference equa-
tions:

x0(k + 1) =
x0(k)

2
+

x0(k)2q

2

+
x(k)

2
((1 − q)x(k) + y(k))(1 − p)

+
x1(k)x0(k)q

2
x1(k + 1) = x(k) − x0(k + 1)

y1(k + 1) =
y1(k)

2
y0(k + 1) = y(k) − y1(k + 1)

Solving the difference equations yields the fraction of the
different types of users as a function of the round number,
k, in closed forms:

x0(k) = x

[

(
xq + 1

2
)k(p −

1

2
) + 1 − p

]

x1(k) = x

[

p − (
xq + 1

2
)k(p −

1

2
)

]

y1(k) = y(
1

2
)k+1

y0(k) = y(1 − (
1

2
)k+1)

Using these expressions, we can express the expected pay-
offs of discriminators and whitewashers in the kth round:

Pdisc(k) =
x0(k)

x
p(x0) +

x1(k)

x
p(x1)

= (
xq + 1

2
)k 1

2
xq(

1

2
− p)(b − c) −

1

2
p(c − bx)

Pww(k) =
y0(k)

y
p(y0) +

y1(k)

y
p(y1)

=
1

2
bxp

Assuming that there exists a fixed probability w for a further
round3, the total payoffs to whitewashers and discriminators
are:

P (disc) =

∞
∑

k=1

wk−1Pdisc(k)

=
qx(c − b)(p − 1

2 )(xq + 1)

2(2 − w(xq + 1))
+

bxp

2(1 − w)
−

cp

2(1 − w)

P (ww) =

∞
∑

k=1

wk−1Pww(k)

=
pbx

2(1 − w)

Modeling the change in frequency of discriminators and
whitewashers from one generation to the next by replication
dynamics [6], discriminators win if and only if P (disc) >
P (ww). That is, discriminators are evolutionary stable
against whitewashers if and only if

P (disc)−P (ww) =
qx(c − b)(p − 1

2 )(xq + 1)

2(2 − w(xq + 1))
−

cp

2(1− w)
> 0

We make the following observations4:

• There exist parameter values for which discriminators
win. This is an important observation since one could
have thought that discriminators are hopeless when
confronting whitewashers.

• If p ≥ 1/2, then P (disc) − P (ww) < 0 and white-
washers win. That is, a necessary (but not sufficient)
condition for discriminators to win is that p < 1/2.
Note that in the absence of whitewashers (as in [12]),
if indirect reciprocity works at all, then discriminators
with large p outcompete the others.

3If w is the probability for another round, there are on average 1/(1 −
w) rounds per generation. An equivalent interpertation of w is as a dis-
count factor.

4While these results hold for an equal initial distribution of players with
image scores 0 and 1, the quantitative results are sensitive to the initial
distriubtion. For example, if all players are initially with image score 0,
whitewashers always win, and if all players are initially with image score
1, discriminators can win for a higher range of values. For example, dis-
criminators can win even if p > 1

2
.



• Moreover, if p = 0, P (disc) − P (ww) > 0 al-
ways. The interpretation of setting p to 0 is always
defecting on strangers. Since whitewashers are always
strangers, they do not gain any benefit and necessar-
ily lose. Indeed, defecting on strangers is an effective
method to handle whitewashers in evolutionary terms.
However, as demonstrated below, it incurs some social
loss (see [2, 3] for additional analysis of behavior to
strangers in the context of whitewashers).

• Smaller values of w increase the chances of discrimi-
nators to win. Thus, as the average number of rounds
increase, it is more likely that whitewashers will win.
This is, again, in contrast to the results in [12]. The
reason for the difference is that the number of defectors
with image score 1 decreases over time while that with
image score 0 increases over time, so defectors get
less and less cooperation over time, which increases
the chances of discriminators to win. In contrast, the
proportion of whitewashers with image scores 0 and 1
remains static over time since they are indistinguish-
able from one another.

4.3. The social cost of defecting on strangers

While it is important to keep the value of p low in order
for discriminators to be evolutionary stable against white-
washers, it has a social cost. To see this, consider the case
in which discriminators win and the resulting population is
“whitewashers-free”. The dynamics of discriminators with
image scores 0 and 1 over time is given by the difference
equation:

x0(k + 1) =
x0(k)

2
+

x0(k)2q

2

+
x(k)

2
((1 − q)x(k))(1 − p) +

x1(k)x0(k)q

2

Solving the difference equation, we get that the system
reaches a stationary state when:

x0 = x(1 − p) = 1 − p

x1 = xp = p

Substituting these values into the payoffs, p(x0) and p(x1),
we get:

p(x0) = −
1

2
cp +

1

2
b(p − pq)

p(x1) = −
1

2
cp +

1

2
b(q + p − pq)

and the average payoff in the population is:

E[P ] = x0P (x0) + x1P (x1)

= (1 − p)(−
1

2
cp +

1

2
b(p − pq))

+ p(−
1

2
cp +

1

2
b(q + p − pq))

=
1

2
p(b − c)

We find that the average payoff in the population, which is
actually the social welfare, increases linearly in p. Thus, the
tradeoff is apparent. On the one hand, if p is set too high,
whitewashers win and discriminators vanish. On the other
hand, setting p too low results in a low social welfare once
whitewashers are gone.

5. Related Work

Axelrod [1] has presented the iterative prisoner’s
dilemma model, and concluded that tft was the most
successful strategy, growing at a faster rate than other
strategies. A later simulation study, done by Nowak
and Sigmund [10], has used a different model that al-
lowed for new “mutant” to enter the game at any stage.
Their arrived at different results, where tft-like strate-
gies were necessary in order to eliminate the exploiters,
but the strategy generous tft (Gtft) gained the highest
profit. Gtft is more forgiving of defections that the orig-
inal tft and cooperates with defectors with probability
min (1 − (T − R)/(R − S), (R − P )/(T − P )). A later
series of simulations run by Nowak and Sigmund [11] has
led them to conclude that the best strategy in evolutionary
terms is a strategy that conditions the action on the previous
realized payoff; it cooperates after receiving R or T and
defects after receiving P or S.

To study the stability of strategies in large populations
that exhibit few repeated transaction, Nowak and Sig-
mund [12] have introduced the notion of indirect reci-
procity, and proposed the image strategy that bases its deci-
sion on the experiences of others. They have presented the
interaction between agents as a game, in which users coop-
erate with or defect on each other based on a globally ob-
served image score, characterizing their past contribution.
They conclude that indirect reciprocity helps in sustaining
cooperation in environments with large populations.

The problem of cheap pseudonyms was first studied by
Friedman and Resnick [4], where they study the effect of
cheap pseudonyms on the emerging cooperation and social
welfare. They have found that a large degree of cooperation
can be achieved by a convention in which newcomers ac-
cept poor treatment from high-reputable players. This iden-
tity model, where users can easily discard their identity and
acquire a new one is studied in other works in the context
of attacks on reputation systems [2, 8].

6. Conclusions

In this paper, we have analyzed the evolutionary stability
of strategies in the presence of whitewashers, and presented
results for strategies that are based on direct and indirect
reciprocity. We find that while tft is evolutionary stable in



the prisoner’s dilemma under permanent identities, it is no
longer stable in the presence of whitewashers. We further
find that whitewashers always invade probabilistic tft, but
probabilistic tft can only invade whitewashers in a suffi-
ciently large cluster. Yet, imposing a sufficiently large iden-
tity cost can turn tft into an evolutionary stable strategy and
may even discourage whitewashing behavior altogether. In
a game of whitewashers and discriminators, who base their
decisions on indirect reciprocity, a necessary (but not suf-
ficient) condition for discriminators to win is to cooperate
with strangers with a probability of less than 0.5. However,
setting this probability too low results in a social loss.

In future work, we intend to extend the models presented
in this paper to broaden our understanding of the effect
of cheap pseudonyms on the interactions between various
strategies in a population. In particular, we are interested
in learning the evolutionary stability of other strategies that
have been proposed in the literature and gaining better un-
derstanding of the dynamics in populations that consist of
more than two strategies. In addition, we wish to study the
effect of untraceable defections on the stability of strategies
that are based on direct and indirect reciprocity.
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