1809.04188v4 [cs.LG] 28 Sep 2018

arxXiv

Layerwise Perturbation-Based Adversarial Training
for Hard Drive Health Degree Prediction

Jianguo Zhang*, Ji Wang', Lifang He!, Zhao Li$, Philip S. Yu*9
*Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA; {jzhan51, psyu}@uic.edu
TCollege of Systems Engineering, National University of Defense Technology, Changsha, Hunan, China; wangji@nudt.edu.cn
fWeill Cornell Department of Healthcare Policy & Research, Cornell University, NY, USA; lifanghescut@gmail.com
§ Alibaba Group, Hangzhou, Zhejiang, China; lizhao.lz@alibaba-inc.com
9 Shanghai Institute for Advanced Communication and Data Science,
Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

Abstract—With the development of cloud computing and big
data, the reliability of data storage systems becomes increas-
ingly important. Previous researchers have shown that machine
learning algorithms based on SMART attributes are effective
methods to predict hard drive failures. In this paper, we use
SMART attributes to predict hard drive health degrees which
are helpful for taking different fault tolerant actions in advance.
Given the highly imbalanced SMART datasets, it is a nontrivial
work to predict the health degree precisely. The proposed model
would encounter overfitting and biased fitting problems if it
is trained by the traditional methods. In order to resolve this
problem, we propose two strategies to better utilize imbalanced
data and improve performance. Firstly, we design a layerwise
perturbation-based adversarial training method which can add
perturbations to any layers of a neural network to improve the
generalization of the network. Secondly, we extend the training
method to the semi-supervised settings. Then, it is possible
to utilize unlabeled data that have a potential of failure to
further improve the performance of the model. Our extensive
experiments on two real-world hard drive datasets demonstrate
the superiority of the proposed schemes for both supervised and
semi-supervised classification. The model trained by the proposed
method can correctly predict the hard drive health status 5 and 15
days in advance. Finally, we verify the generality of the proposed
training method in other similar anomaly detection tasks where
the dataset is imbalanced. The results argue that the proposed
methods are applicable to other domains.

Index Terms—Hard drive, SMART, deep neural network,
adversarial training

I. INTRODUCTION

Nowadays, increasing numbers of industrial and academic
institutes rely on data centers to store and process their
data. The crash of data centers may incur tremendous loss
or even catastrophic consequences. The reliability and the
availability of data centers are of the utmost importance to
data center administrators. However, the complex architecture
and functionality of data centers lead to a serious problem
of IT equipment failures, among which hard drives are the
most frequently failing components [[1], [2]. Hence, it is in
high demand to take measures to handle the hard drive failure
issue.

Jianguo Zhang and Ji Wang contributed equally to this work. Lifang He is
the corresponding author.

The self-monitoring, analysis and reporting technology
(SMART) [3] has been implemented in almost all hard drives
to monitor and analyze the internal attributes of hard drives.
The previous researches demonstrate that the impending hard
drives failure manifests itself through SMART statistics [4]. It
is feasible to predict the impending failures by using SMART
statistics. To improve failure prediction performance, many
efforts have been made based on SMART attributes, including
analyzing the failure behaviors of hard drives [S]], [2]], and
designing machine learning algorithms for predicting hard
drive failures [6]], [7], [8]]. Most of these works focused on
the proactive failure prediction, which forecasts hard drive
failures in advance and gives a binary result identifying the
hard drive as healthy or faulted. However, hard drives usually
fail gradually rather than abruptly. To harness the potential of
gradual change, it is necessary to develop a health prediction
model which can predict the heath status of hard drives rather
than merely providing a simple binary result.

Predicting the health status of hard drives is not a trivial
task. Most hard drives undergo a deterioration process before
they finally fail. The SMART statistics begin to accumulate
deviation from the normal state days before the final failure.
Hence, we need to extract the long-term temporal dependency
in the SMART statistics to make an accurate prediction of the
hard drive status. The most stubborn problem in the prediction
of health status is that the data to be used in the model is highly
imbalanced. Although hard drive failures occur frequently in
data centers, the failure records are much fewer than the
healthy records, merely accounting for less than 3% of the
total records [4]. Due to the overfitting and biased fitting
problems of most statistical and machine learning algorithms,
the prediction model trained by the imbalanced SAMRT data
is easy to be biased fitted to the healthy records and over
fitted to the failure records, which results in a poor predictive
performance. Some novel methods are desirable to tackle
imbalance issue and establish a high quality prediction model
by using the SMART statistics.

In order to extract the long-term temporal dependency
embedded in the SMART statistics, we build a deep neural
network based on the long short-term memory unit (LSTM)

[9] which specializes in processing sequential data [10], [L1].
Nonetheless, the deep neural networks (DNNs) are notorious
for the overfitting and biased fitting problems on the highly
imbalanced datasets like the hard drive records used in this
work. To solve this problem, we propose two strategies in this
paper.

Firstly, we introduce the adversarial training strategy. The
adversarial training [[12], [13]] is a strong regularization method
that injects the perturbations affecting the neural network’s
inference in the most sensitive way during the training phase.
The traditional adversarial training injects adversarial pertur-
bations into the inputs to force the networks to learn a better
distribution of the training data and avoid the overfitting prob-
lem [14], [15]. However, only injecting perturbations into the
inputs may restrict the effectiveness of the adversarial training.
In this paper, we enhance the adversarial training by enabling
layerwise perturbation where the adversarial perturbation can
be injected into any layer of the neural network rather than
just the input layer.

Another more effective approach to mitigate the overfitting
and biased fitting is to increase the number of positive samples,
i.e., the failure records. It is obvious that the anomaly of
SMART statistics is evident when hard drives are close to
failure. Therefore, we can label the records close to failure as
the failure records directly. But for the records dozens of days
ahead of the final failure, they may be less informative for the
failure or even demonstrate the same features as the healthy
records do. It is inappropriate to label these records as failure
records arbitrarily. Labeling these records is a time consuming
task and relies on the expert knowledge, which makes it
unfeasible in reality. Hence, in traditional supervised training,
these records are discarded in spite of the high probability
that they show fault features. To fully harness these potential
failure records, we extend the proposed adversarial training
into the semi-supervised setting where the records far before
the final failure are regarded as unlabeled data during the
training phase.

Based on the above two strategies, we propose a Layerwise
Perturbation-based Adversarial Training (LPAT) method to
train our hard drive status prediction model. Note that although
the LPAT is designed for predicting hard drive health status in
this work, it can be used in other similar anomaly detection
problems to mitigate the overfitting and biased fitting. The
main contributions are summarized as follows:

e We design a novel LPAT method for hard drive status
prediction tasks. Instead of only adding perturbation to
inputs of neural networks, LPAT can flexibly add pertur-
bation to a specific layer or all layers to better address the
overfitting and biased fitting problem. We further intro-
duce an approach based on Kullback-Leibler divergence
to utilize unlabeled data to improve the performance of
the prediction model.

o To the best of our knowledge, it is the first work to-
ward designing a layerwise perturbation-based adversarial
training with the semi-supervised setting for deep learn-
ing models. We use this model to predict hard drive status

in both supervised and semi-supervised settings.

o Thorough experiments on two hard drive datasets demon-
strate that LPAT can improve the prediction performance
in both supervised and semi-supervised settings. Specif-
ically, the model can predict hard drive health status
5 days and 15 days before failure by using sequential
SMART statistics, which is more useful in practice than
only predicting healthy or failed. In addition, we apply
the proposed methods to a image recognition task and a
sequential analysis task to verify their generality.

The rest of the paper is organized as follows. We define the
prediction problem in Section II. Then, Section III presents the
proposed methodology. In Section IV, we evaluate our meth-
ods thoroughly by conducting groups of experiments. Section
V summarizes related work. Finally, Section VI concludes this
paper and describes the future work.

II. PROBLEM DEFINITION

In this work, we aim to build a model trained by
LPAT to predict the status of hard drives based on their
SMART statistics. The training dataset is denoted as D =
{(z®,y0), ., (™) y™)), where 2() € RYX" is the
i'" training sample consisting of continuous SMART records
from the day ¢; to the day ¢; + w. Each day has a feature
vector of n SMART attributes, and y denotes health degrees
of the hard drive. We predict hard drives by three different
health degreesﬂ ie., y €{0,1,2}. ‘0’ represents a “red alert”
which means the residual life of the hard drive is less than 5
days; ‘1’ represents that the drive is “going to fail” in 5 — 15
days; 2’ means “healthy”. Our goal is to learn a function
f:+X —{0,1,2} that minimizes the negative log-likelihood
ﬁ(@) on the training dataset, where © is the model parameters
learned during the training. Intuitively, we try to train a model
that correctly predicts the health degree of a hard drive. ﬁ(@)
can be formulated as:

N

A 1 .)

L£(O) == > _log p(y"|21"; 0), (1)
=1

III. METHODOLOGY
A. LSTM Based Neural Network

The proposed prediction model includes two dense (fully
connected) layers, followed by a LSTM layer and a dense
layer. LSTM is the basic building block used to extract
the long-term temporal dependency in sequential SMART
statistics. Fig. [T] is an illustration of the component in the
LSTM layer. It is formulated as:

&y = Wazy + Ushy—1 + ba, 2
ct =1 O Jt + fr © ci1, 3)
hi = o; © tanh(ct), ())

where o € {i,f,0,5}. i, ft,00 are the input gate,

Note that we choose the health degree intuitively; other definitions can be
used with only a slight modification.

Fig. 1: A component of the LSTM layer.

forget gate and output gate, respectively. c; represents the
memory cell which is designed to counteract the problem of
vanishing/exploding gradient, and thus enable extracting long-
term temporal dependency. The forget gate is for resetting
the memory cells. The input gate and the output gate are
for controlling the input and the output of the memory cells.
ar = o(d) when a € {i, f,0}, where o is the sigmoid
activation function. j; = tanh(ft) is a proposed update to
the cell state. ; € R™ is the input from the lower dense layer
at the time step t. h; is the output of current block at the time
step t. In the ¢ LSTM units, the weight matrices W,, € Rax4,
U, € R?*? and the bias vectors b, € RY are the parameters
to learn for a € {i, f,0,j}.

B. Layerwise Perturbation-Based Adversarial Training

Previous works on adversarial training concluded that train-
ing a DNN with adversarial examples acts as a regularizer
and improves the robustness of the neural network on the test
dataset. In order to mitigate the overfitting and biased fitting
problem caused by the highly imbalanced data, we design
LPAT to train the prediction model. Instead of only injecting
perturbation into inputs, LPAT generates adversarial samples
at the time series inputs and the intermediate layers. Fig. [2]
illustrates how LPAT works when training the model.

In Fig. 2 for a model consisting of M — 1 hidden layers,
m = 0 is the input layer, and Z,, = (Zm1,-.., Tm k) is the
output of the mth layer, where k is the dimension of the
layer. Each layer has a gradient accumulation layer P, serving
two functions: (1) it temporarily stores the backpropagation
gradients on the output of the m" layer, which is denoted
by the yellow line; and (2) it computes the adversarial per-
turbations 7y, = (7, 1, .-, 77, ;) for the m* layer and adds
the perturbation to &,, as denoted by the blue line. Then,
the neural network performs feedforward process again to
compute its new output. The training process can be formed
as a min-max problem. The adversarial samples apply the
worst perturbation to maximize the error of the model, while
the model tries to be robust to such perturbations through
minimizing the error caused by the adversary. The min-max
problem for the m" layer can be formulated as an additional
cost function:

mgn, e Ip(y D20 + 11, 0),4w D)) (5)

Input H, Qutput

P Py Py

Fig. 2: An overview of LPAT. It goes through two rounds
of feedforward and backpropagation. In the first round, it
performs feedforward process to compute the output of the
neural network. Then, it performs backpropagation to update
parameters and store gradients in gradient accumulation layers.
In the second round, it adds layerwise adversarial perturbations
based on the gradients to each layer and performs feedforward
process to compute the new output of the neural network. Fi-
nally, it performs backpropagation again to update parameters
of all network layers.

where e is the magnitude of the perturbation, [is the non-
negative cross entropy between two distributions representing
the prediction error caused by the perturbation, and ¢(y)
is a one-hot distribution of the corresponding label y(*). The
additional cost function can be simplified as:

—log p(y(i)|5c£,? +7m; 9). (6)
Then,
r:n =arg min log p(y(z)liﬁ(z) + Tm; é)a (7

T ||7m || <e

where © is a constant set to the current parameters of the
model. In general, the exact calculation for r,, is intractable
for most DNNs. We follow the method proposed in [13] to
linearly approximate r,, with the Lo norm constraints as:

* 9

~

N —e——
" lglly”

where g = V_log p(y®[2L): 6).

(®)

r

C. Extension of Semi-Supervised Setting

We extend the proposed adversarial training into the semi-
supervised setting to utilize the records relatively far before the
final failure. Due to the difficulty of labeling these records,
we regard them as unlabeled samples during the training.
Then, the adversarial perturbation r* is incalculable by us-
ing Eq. without the label y(*). To depict the prediction
error, we introduce the Kullback-Leibler (KL) divergence [16]]

Algorithm 1: Layerwise Perturbation-Based Adversarial Training

Input: Randomly initialized Network NN. B? is the batch sampled at step i of size k, with labeled training samples (X}, Y;') and

1

unlabeled training samples (X7, -). {Pl}f:[) are the gradient accumulation layers with stored layerwise adversarial

perturbations {r; }f.):_ol

perturbation magnitude for layer m.
for i <~ 0 to B —1 do

£y

initialized with zero. No gradient accumulation layer is active at the initial step ¢ = 0. €,, denotes

1

2 Sample a batch consisting of (X},Y;") and (X, ") of size k from training dataset;

3 Perform feedforward process without perturbation to calculate the output of NN and the loss £(©) for (X}, Y;') using Eq. ;

4 Produce a random unit vector e using an iid Gaussian distribution;

5 Perform backpropagation to take the gradient of KL w.r.t 7 on r = £e on each layer’s output X . Each accumulation layer P,
temporarily stores the gradients backpropagated to that layer;

Calculate and store layerwise adversarial perturbation r;, for each layer using Eq. ;

7 Perform feedforward process with layerwise adversarial perturbation: X,, = X, + €m - 7;,. Calculate the loss L4, for both

(X{,Y)") and (X}, -) using Eq. ;

8 Perform backpropagation using loss

(©) to update parameters;

which measures the divergence between the current output
distribution p(-|z);©) and the perturbed output distribution
p(+|x + 7; ©). The layerwiase adversarial perturbation for the
mt" layer can be calculated as:

r* =arg max KL, 9)

m
s |[rm || <e

where

KLy, = KL[p(-|&m; 0) || p(-|#m + 7m: ©)]. (10)

(| Zm; @) is differential with © and Z,,,. However, the max-

imum value of K L,,, cannot be computed directly as the first

derivative V,. K L,, has the minimum value 0 when r,,, = 0.

Hence, we approximate it with the second-order Taylor series:
1

KL, =~ *TmTH(‘%mv é)rmv

5 Y

where H(i,,,0) is the Hessian matrix [17]. Then, 7, is
the first dominant eigenvector u(&,,0) of H(Z,,O) with
magnitude €, and 7, can be represented as:

rr = eu(Zm, O),

(12)

where (-) represents the unit vector in the direction of ().
Given a randomly sampled unit vector e, according to the
power iteration method [17]], u(&.,, @) is the convergence of
the iteration e <— He, and He can be approximated as follow:

VTKLm,Irzge - VTKLm,|r:O

é—)
where ¢ # 0. The preliminary test shows that one-time iter-
ation provides sufficient performance as multi-time iterations
in our problem. So we approximate the convergence by the
one-time power iteration [17]. Then, the approximation of rJ},
is:

He =~ (13)

e (14)
lgll,
where
9= Vo KL[p(:|&m; O) || p(-|Em + 11 0)]|r=ee. (15)

Hitherto, we get the adversarial perturbation to the DNN
model in both the supervised setting and the semi-supervised
setting. During the training phase, the DNN model is trained
not only to minimize the regular classification loss on labeled
data but also to resist the adversarial perturbation on labeled
and unlabeled data. Thus, for all the training dataset including
labeled and unlabeled data of size N’, the full loss is given
by:

L(©) = L(O) + - Liap, (16)

where £(0) is the negative log-likelihood for the labeled data
defined by Eq. . L4y is computed on both labeled and
unlabeled data:
1 . . :
Liap = 5 S0 KL 00) 1190120 + 175,750,
i=1

a7
form=20,1,...,M — 1.

The gradients computed from mini-batch inputs aggregated
through intermediate layers are used to calculate perturbations
for the current mini-batch. Since Eq. requires no label
information, it is not necessary to shuffle mini-batch data to
avoid overlap of labels. Note that the number of accumulation
layers P is not necessarily equal to the number of model layers
as we can add perturbations to any layers. When P = 0,
we only inject perturbations into the input. P = M — 1
indicates that all layers of the model are perturbed. The
training procedure is summarized in Algorithm [1} Parameter
€m can be set to a fixed value for all layers or set differently
for different layers. During training, we add the gradient
accumulation layer P, after each neural network layer. During
testing, all the gradient accumulation layers are removed from
the model.

IV. EXPERIMENTS

In order to empirically evaluate the effectiveness of the
proposed methods in addressing hard drive healthy degree
prediction, we conduct a series of experiments on two datasets
and compare it with several existing methods. Furthermore, a
real mobile application is used as an experimental example

TABLE I: Number of Healthy (H) and Failed (F) hard drives

Original Post-Processing
#ofH [#of F | #0f H | #0of F
ST-1 | 33800 | 938 30685 | 758
ST-2 | 8660 48 7932 47

to verify that LPAT can be applied to other similar anomaly
detection problems where the dataset is highly imbalanced.
In the following, we first introduce the preparation of the
experiments. Then we present the experimental results along
with the analysis.

A. Data Preparation

Our evaluation and analysis are based on the Backblaze
datase At the end of 2016, it recorded 73,653 spinning hard
drives. Each entity in the dataset includes the date, the serial
number of the hard drive, the model of the hard drive, the
SMART statistics, the status, i.e., failed or alive, and other
necessary information.

In this paper, we evaluate the proposed methods based on
the SMART statistics of two different models of hard drives
in year 2016. The first one is Seagate ST4000DMO00 (ST-1).
There are 33,800 healthy hard drives and 938 failed hard drives
of ST-1 in the dataset. After data cleaning and aggregation
[2], there are 30,685 healthy hard drives and 758 failed
hard drives. To further verify our method, we collect another
small dataset from Seagate ST8000DMO002 (ST-2). There are
8660 healthy hard drives and 48 failed hard drives. After
pre-processing there are 7932 healthy drives and 47 failed
drives. It should be noted that ST-1 and ST-2 are different
models of hard drives although they are from the same hard
drive manufacture [2]], which means that they show different
degradation progressions. Table [I] lists the details.

Apparently, the dataset is extremely imbalanced. For ex-
ample, there are only 2.47% samples that are failed in ST-1.
The prediction model encounters serious overfitting and biased
fitting problems if the dataset is used directly, even with the
help of LPAT. Hence, we select the representative subset of
healthy hard drives to construct the dataset for training and
testing our model, by which the amount of healthy hard drives
can be reduced without a significant loss of information about
healthy hard drives. The K -means clustering algorithm [18] is
used to cluster the healthy hard drives into 10 clusters based
on every day’s records of SMART attributes. Then, for each
cluster, the top 30% samples closest to the centroid are selected
as the representative subset of healthy hard drives.

We follow the previous works [6], [2l], [19] to select dis-
tinctive SMART features. As the values of different SMART
attributes vary widely, we rescale the values of each selected
SMART attributes by the following formula to avoid bias to
SMART attributes with large values:

/ UV — Umin

v =
Umaz — Umin

; (18)

Zhttps://www.backblaze.com/hard-drive-test-data.html

TABLE II: Summary of datasets

Train Valid Test Unlabeled
ST-1 17137 | 4285 | 5356 10326
ST-2 755 - 236 489

where v is the original value of a SMART attribute, and vy,
and v, are the minimum value and the maximum value of
a SMART attribute.

Similar to the definitions used in [20], [19], we predict the
hard drives based on their residual life. Label ‘0’ is “red alert”,
which means the residual life is less than 5 days. Label ‘I’
means “going to fail” in 5 to 15 days. Label ‘2’ represents
“healthy”. For the failed hard drives with more than 15-day
residual life, we regard them as unlabeled data.

We split each dataset into three subsets, i.e., the training set,
the validation set, and testing set. In the supervised setting, we
use 80% of all labeled data as the training set and the rest as
the testing set. For ST-1, we use 20% of the training set as
validation set for tuning hyper-parameters. For ST-2, we do
not further split the training set due to its small population.
In the semi-supervised setting, we add unlabeled data into the
training set and keep the validation set and the testing set
unchanged. The information about the datasets is summarized
in Table [

B. Baselines and Metrics

To demonstrate the performance improvement of the pro-
posed approach, we compare it with the following method:

e« DT: It is a decision tree method, which creates a tree-like
model to predict the value of a target variable by learning
decision rules inferred from the data features.

¢ RGF [2]: It is a regularized greedy forests based method
to predict the impending replacements of hard drives.

o RNN [19]: It is a recurrent neural network based model
for predicting hard drive failure and giving health degrees,
which treats the observed SMART attributes as time-
sequence data.

Besides, we test the performance of the proposed LSTM
based neural network when it is trained by different existing
training methods.

e basic: It is the proposed LSTM based neural network
trained without adversarial training methods. Specifically,
it includes two dense (fully connected) layers, followed
by a LSTM layer and a dense layer.

o basic+AT [13]]: It is the basic neural network trained by
an adversarial training method which adds perturbations
to inputs in the supervised setting.

o basic+RDAT [21]: The basic model is trained by an
adversarial training method which adds perturbations to
intermediate layers of networks in the supervised setting.

o basic+VAT [22]]: We use the training method which adds
perturbations to inputs from the model distribution alone
without necessarily using the label information. It can be
applied to the semi-supervised setting.

TABLE III: Overall results in supervised setting

ST-1 ST-2
Accuracy Precision Recall Macro-F1 Accuracy Precision Recall Macro-F1
DT 82.4 73.6 74.7 74.1 82.2 74.0 72.6 73.1
RGF 74.4 68.4 54.8 56.1 92.0 87.0 83.3 84.9
RNN 84.3 80.1 79.8 79.9 87.7 83.9 78.6 80.9
basic 82.1 80.3 79.9 80.2 90.5 85.0 83.5 83.5
basic+AT 86.8 81.8 81.3 81.5 91.0 85.2 84.5 84.8
basic+RDAT 88.2 83.4 83.2 83.3 92.5 88.3 88.7 88.4
basic+VAT 87.0 82.6 82.1 82.3 91.4 86.9 85.6 85.6
LPAT+Bottom 88.9 84.0 85.0 84.5 93.1 89.5 90.2 89.7
LPAT+Top 90.0 85.5 86.1 85.8 95.6 93.4 92.1 92.9
LPAT+Al 90.2 85.8 86.7 86.2 95.2 93.2 91.2 92.1
TABLE IV: Detailed results in supervised setting
ST-1 ST-2
Precision Recall Macro-F1 Precision Recall Macro-F1
<5 <15 <5 <15 <5 <15 <5 <15 <5 <15 <5 <15
basic+AT 72.9 76.9 73.5 83.2 72.2 81.9 72.1 92.3 59.7 76.7 65.7 83.8
basic+RDAT 73.7 81.8 74.6 85.8 73.2 83.5 75.0 94.3 85.4 79.1 82.3 86.5
basic+VAT 73.5 80.6 70.9 85.9 72.2 83.1 71.7 94.2 84.7 73.0 77.7 82.3
LPAT+Bottom 722 81.6 74.3 86.2 73.2 83.4 79.6 93.0 88.2 86.0 83.7 89.4
LPAT+Top 74.5 83.1 72.1 85.3 73.7 84.2 89.3 94.3 88.3 91.6 88.4 92.5
LPAT+All 72.5 83.7 80.1 87.0 76.1 85.3 87.9 95.1 84.7 89.7 86.3 92.3

For these baselines, we tune parameters on the validation
set and report their best results on the testing set.

For the proposed LPAT, we design three variations: (1)
LPAT-Bottom where the adversarial perturbations are added
to the bottom two layers, (2) LPAT-Top where the adversarial
perturbations are added to the LSTM layer and the top dense
layer, and (3) LPAT-All where the adversarial perturbations
are added to the all layers.

We measure the overall accuracy, and each class’s precision,
recall, and Macro-F1 score. For the basic prediction model,
we set the two bottom dense layers with 128 units and the
activation as None. The LSTM layer has 200 units. The
final dense layer includes 3 units as we have 3 classes. The
time sequence window for each sample is set to 20. We use
RMSProp optimizer [23]] with learning rate 0.001. The mini-
batch size is 128. The epsilon € is empirically set in [0, 50]. The
hyperparameter A is set between [0, 5]. The training epochs are
set to 210.

Our methods are implemented in Tensorflow [24]. All the
experiments are trained and tested on four NVIDIA Tesla K80
GPUs.

C. Supervised Setting

We first conduct experiments in the supervised setting where
all the training data are labeled. As can be seen from Table
the proposed LPAT method achieves the best results on
both datasets. It improves accuracy by 2.0% and Macro-F1 by
2.9% on ST-1 compared to the best baseline method. As LPAT
can flexibly choose which layer and how many layers to add
perturbations, it makes the training more robust and brings
better performance on the testing set. On ST-2, it improves
accuracy by 3.1% and Macro-F1 by 4.5% over the other
baseline methods. These results indicate that the performance
improvement is more significant on small datasets like ST-2.

Considering that neural networks are more likely to encounter
overfitting when trained by small datasets, we infer that our
method shows good regularization and generalization ability
to prevent overfitting.

RNN performs better than RGF on ST-1 while slightly
worse than RGF on ST-2. ST-1 and ST-2 datasets are collected
on different hard drive models whose SMART attributes
are also different. RGF which automatically selects SMART
attributes may perform better in feature obvious dataset [2].
Models with the adversarial learning achieve better results than
the basic one without the adversarial training. VAT slightly
improves the performance than AT on the both datasets.
basic+RDAT shows the best performance among the baseline
methods only inferior to LPAT. It argues that adding per-
turbation to intermediate layers is an effective approach to
improving robustness of neural networks.

We further investigate the impact of different perturbation
patterns. For ST-1, LPAT-Bottom works better than only
adding perturbation to the input layer while worse than LPAT-
Top. Among the three perturbation patterns, LPAT-All achieves
the best results, which could be partly attributed to the LSTM
layer. Adding perturbations to the bottom layers before the
LSTM layer will make perturbations wrapped in the LSTM
layer and show less effect on the loss function. It undermines
the effectiveness of adversary perturbations. Thus, LPAT-
Bottom is less effective than adding perturbations after the
LSTM layer. For ST-2, LPAT-Top achieves the best perfor-
mance on accuracy and Macro-F1, though; its performance is
only marginally better than LPAT-All. Based on these results,
we speculate that adding perturbations to top or all layers can
achieve better regularization ability.

Table [[V] details the results on each class. Note that the size
of the training samples of class ‘1’ is two times larger than that
of class ‘0’ on both datasets. Precision represents the ability

TABLE V: Overall results in semi-supervised setting

ST-1 ST-2
Accuracy Precision Recall Macro-F1 Accuracy Precision Recall Macro-F1
basic+VAT 90.5 86.7 85.8 86.2 93.5 90.2 87.9 89.0
LPAT+All 92.6 89.3 88.7 88.9 96.3 93.6 92.5 93.8
basic+AT 86.8 81.8 81.3 81.5 91.0 85.2 84.5 84.8
basic+RDAT 88.2 83.4 83.2 83.3 92.5 88.3 88.7 88.4
094 0.90
1.1 0.93 * *tzsmflr 0.89 _ A &:QI:\?XT
—— basic+AT 092 _d TN 0.88 _ Tk
basic+VAT goot . » * * * 0¥ *> * A - ' ¥
1.0 —— LPAT+AIl So90 ¥ e gg-gg , Y
o9 Vs ~ * Sosa ,’ ~ *
oss _ & S 083 o 7
§ 0.9 087 4 082 ¥
- 0.86 0.81
o 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
.% Percents of unlabeled data Percents of unlabeled data
©08 (a) Accuracy (b) Macro-F1
074 Fig. 4: Accuracy and Macro-F1 on ST-1 with different amount
of unlabeled data used during training. 0% means only using
064 all labeled training data; 100% means using all labeled training

(I) 2I5 5I0 7I5 160 léS 150 1&5 2(I)0
Epoch
Fig. 3: Testing loss of AT, VAT and LPAT+All. A =1 for all
methods. € = 30 for AT and VAT. € = 20 on all layers for
LPAT+All. The optimal value of e differs between different
methods. But the value of € in [0, 50] usually performs well
for above methods and provides a fair comparison.

for a classifier to capture hard drives fails in 5 and 5— 15 days
precisely. Recall represents the failure detection rate, i.e. the
fraction of failed drives that are correctly classified as failed.
The proposed methods outperform basic+AT, basic+RDAT,
and basic+VAT in terms of precision and recall on both
datasets. In addition, LPAT+AIl improves Macro-F1 by 3.9%
on class ‘0’ and 2.2% on class ‘1’ than basic+VAT for ST-1,
while LPAT+Top improves Macro-F1 by 10.7% on class ‘0’
and 10.2% on class ‘1’ for ST-2. These results demonstrate
that adding perturbations to different layers improves the
performance of the classifier. Besides, the better performance
of LPAT compared to basic+RDAT on both datasets concludes
that using the KL divergence to measure perturbation could
further improve robustness of neural networks. Based on the
observation, our methods can give operators and users more
flexibility to take different actions 5 and 5 — 15 days before
the final failure.

D. Semi-Supervised Setting

In the following groups of experiments, we test the perfor-
mance of the proposed method when using unlabeled data dur-
ing training. Fig. [3| plots the testing loss on ST-1 when using
all unlabeled and labeled data for AT, VAT, and LPAT+AIl. It
shows that VAT and LPAT+All which utilize the unlabeled data
produce lower testing losses. The testing loss of AT becomes
unstable, a sign of overfitting, with the increase of the epochs.
LPAT+AIll generates the lowest testing loss and keeps the

data and all unlabeled training data.

tendency over the training. Thanks to the resistance to the
adversarial perturbations at every layer, LPAT+All performs
better than VAT which merely resists to the perturbations at
the input.

Then we analyze the influence of different amounts of
unlabeled data. The labeled data are always totally used during
training in these experiments. But the amount of unlabeled data
varies. We change the amount of unlabeled data used during
training from 0% to 100% of all the unlabeled data. A larger
value means that more unlabeled samples are used. Fig. @] gives
the effect on the overall performance.

From Fig.] we can see that when using unlabeled data,
both the accuracy and the Macro-F1 score are improved
compared with the purely supervised setting where the percent
of unlabeled data used is 0%. By extending the adversarial
perturbation to the semi-supervised setting, the Macro-F1 of
LPAT+AIl and basic+VAT are improved by 2.7% and 3.9%,
respectively. When the amount of unlabeled data increases, the
accuracy and the Macro-F1 of both LPAT+All and basic+VAT
firstly increase, and they achieve the highest scores around
60% and 40% unlabeled data, respectively. After that, the ac-
curacy and the Macro-F1 score slightly decrease. We speculate
that this is because when there are too many unlabeled data,
the perturbation-based adversarial training method will focus
more on resisting the perturbations to minimize the adversarial
loss on unlabeled samples rather than the supervised loss.
Hence, the model prioritizes being robust to perturbations
rather than correctly predicting hard drives health degrees. In
addition, we find that the performance of LPAT+AIl is almost
always better than that of basic+VAT even when LPAT+All
is trained without unlabeled data. It once again indicates that
layerwise perturbation is a powerful approach to improving
regularization and generalization of models.

TABLE VI: Results of other tasks

MNIST ALPH. ACCEL.
Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score
basic+VAT 97.1 97.1 85.5 84.2 83.5 84.6
LPAT+AIl 97.8 97.7 87.6 87.3 87.7 87.9
basic+AT 96.1 96.4 83.2 82.3 80.5 80.8
basic+RDAT 96.8 96.8 85.2 83.8 82.7 83.4
to achieve the balance between the supervised loss and the
oo Al -0 . *=0 adversarial loss.
085 & -¢ ,\/ ARG 0.86 * % — base
<& * { . - .
goss ! L TR goss > F. Generality in Other Domains
goss” , TTTTTTTTT N go.84 ~S
Soe2 1 *. Sog[TTTTTTEISTT % In the following experiments, we examine the generality of
’ . .
E:Z;i , b z:f , LPAT in other anomaly detection problems where the dataset
079 T . is imbalanced. We apply the proposed methods to a image

(a) Effect of € (b) Effect of A

Fig. 5: Effect of € and A\ for supervised learning on ST-1.
‘base’ represents the best result (basic+RDAT) of baselines.

Table [V]reports the best overall results of different methods.
In order to clearly identify the performance improvement
brought by the extension of semi-supervised setting, we list
the performance of basic+AT and basic+RDAT which only use
the label information to generate perturbation at the bottom of
the table. For ST-1, LPAT+All improves Macro-F1 by 2.7%
than basic+VAT and by 5.6% than basic+RDAT. For ST-
2, LPAT+AIll improves Macro-F1 by 4.8% than basic+VAT
and by 5.4% than basic+RDAT. This results show that the
extension of semi-supervised setting could considerably im-
prove the performance. Besides, the improvement brought by
the layerwise perturbation is usually more notable on small
dataset.

E. Parameter Analysis

LPAT mainly involves two hyperparameters: € and A, where
€ controls the intensity of perturbation added to different
layers and A\ controls the trade-off between the supervised
loss and the adversarial loss. Fig. [5fa) shows the effects of
e with different values of A € {0.5,1.0,2.0}. LPAT achieves
the best result when ¢ = 20 and A = 1. We can find
that the performance (i.e., Macro-F1) is not very sensitive
to the parameter e. When € € [10,50], it typically can
improve the neural networks performance. But when the value
of € is extraordinarily large, the performance would drop
substantially. The perturbation is too large for neural networks
to resist. Fig. [5(b) shows the effects of A with different values
of e € {20,50}. The best result appears around e = 20
and A = 1. When A > 1.0, Macro-F1 shows a descending
trend. It indicates that A should not be too large otherwise
the model would be trained to focus on the resistance against
perturbation. In most cases A € [0.5, 2.5], the proposed method
generates better results than ‘base’. We find from the above
results that the adversarial perturbation should be moderate

recognition task and a sequential analysis task. In the image
recognition task, we construct an imbalanced dataset from
MNIST. In the time series analysis task, we use a mobile
applicatio DeepMood [235] to test LPAT’s performance.

MNIST [26] is a large dataset of handwritten digits which
includes 60,000 training images and 10,000 testing images
with 10 classes from 0-9. We choose class ‘3’ and ‘5’ to
construct the imbalanced 2-class dataset. Images of ‘3’ and
‘5’ are more similar to each other than other pairs, which
increases the classification difficulty. In the original training
dataset, there are 6,131 images of class ‘3’ and 5,421 images
of class ‘5’. We randomly select 5% images of class ‘3’ as
labeled data and 15% images as unlabeled data. All images of
class ‘5’ are used as labeled data. Then, there are 306 labeled
images of class ‘3’ and 5,421 labeled images of class ‘5’ in
the imbalanced training dataset we construct. For the testing
dataset, we randomly select 20% original testing images of
class ‘3 and all original testing images of class ‘5’ to construct
the new testing dataset. For the basic model, we use a ReLU
based neural network consisting of two hidden layers with the
number of hidden units (1200, 1200) [27].

In order to further verify the effectiveness of LPAT in
real scenario, we use a mobile application DeepMood to
test LPAT’s performance. DeepMood harnesses the sequential
information collected from the basic keystroke patterns and
the accelerometer on the phone to predict the user’s mood
disorder. The alphanumeric character typing pattern (ALPH.)
and accelerometer values pattern (ACCEL.) of 40 volunteers
were collected over 8 weeks. There are 722 positive samples
(disorder) and 7,500 negative samples (health) in the original
dataset. We mask the labels of 30% positive samples to
construct the unlabeled data. We use 80% of all labeled data as
the training set and the rest as the testing set. The single-view
DNN proposed in [25] is used as the basic model.

Table shows the results of the image recognition task
(MNIST) and the sequential analysis task (ALPH. and AC-
CEL.). As the two tasks are binary classification problems,
we use Fl-score instead of Macro-F1. The performance of
four representative methods is listed. Note that basic+AT

3http://www.biaffect.com

and basic+RDAT are applied to the supervised setting, and
so they cannot utilize the unlabeled data. It can be found
that LPAT+All demonstrates the best performance on the
three datasets, which verifies the generality of our proposed
methods.

On MNIST, the accuracy and the F1-score of LPAT+AIll are
0.7% and 0.6% higher than those of basic+VAT, respectively.
The slight improvement is partly due to the fact that MNIST
is a relatively easy task where the accuracy and the Fl-score
are already quite high even without adversarial training. It is
difficult to further improve the performance on MNIST.

On the two datasets of the mobile application DeepMood,
LPAT+AIll shows the ability to substantially improve the
performance. The Fl-score of LPAT+AIl is over 3% higher
than the best baseline methods on both the two datasets.
Basic+RDAT which adds adversarial perturbations to inter-
mediate layers performs better than basic+AT only adding
perturbations to inputs. But the performance of basic+RDAT
is slightly inferior to that of basic+VAT which can be applied
in the semi-supervised setting. This observation indicates that
using KL divergence and unlabeled data is a little more
powerful than adding perturbations to intermediate layers on
these two datasets.

V. RELATED WORK

A series of models have been proposed to predict the
impending failures of hard drives. A nonparametric model was
proposed by [28] to detect the anomalous SMART values of
hard drives. [29] designed a Bayesian classifier to predict the
hard drive failures. In order to capture the temporal features
embedded in the SMART statistics, some researchers resorted
to the time series analysis methods. [30] employed the hidden
Markov model to predict the imminent failures. [2] used
the Bayes-based model to detect the changepoint of SMART
statistics, and then compacted the time sequence representation
by using an exponential smoothing technique. Besides, the
down sampling technology was implemented in [2] to solve
the imbalanced dataset problem. All the above works merely
attempted to predict the failure, and cannot provide further
information about the status of hard drives. [[19] tried to
assess the health status of hard drives based on their residual
lives. They designed a simple recurrent neural network to
classify hard drives as different groups. According to the health
status, different protective measures can be taken to improve
the storage system reliability. However, the accuracy of their
prediction is relatively poor due to the simpleness of their
model.

Adpversarial training is a strong regularization method which
was originally introduced in [13], [12]. Their works showed
that several deep neural networks are vulnerable to a very
small perturbation in the direction that the model’s assignment
of labels to an unseen class in the most adversarial(sensitive)
way. This small perturbation is called adversarial perturbation,
which has shown a better performance [27], [31] than dropout
[32] and models trained by random perturbations [13], [27]
like adding Gaussian noise [33]]. They also found that training

the models to be robust against adversarial perturbations was
effective to improve performance on testing dataset. [27]]
proposed the virtual adversarial method which expanded ad-
versarial training method into semi-supervised learning areas,
which improved robustness of models by utilizing the model’s
posterior distribution against local perturbations around each
input data point. They also demonstrated the effects in image
classification tasks [15] and text domain [14]. [34] designed
noise training methods to improve performance of shallow
neural networks in mobile cloud. [21] designed methods to
improve robustness and performance of very deep neural net-
works such as VGGnet [335]], InceptionV3 [36] by perturbing
intermediate layers. However, above methods either can only
be used in supervised learning domains or can only add
adversarial perturbations to inputs in semi-supervised learning
way.

VI. CONCLUSION

In this paper, we propose a layerwise perturbation-based
adversarial training method with an application on hard drive
health degree prediction. Differing from traditional methods
which usually predict hard drive health in a binary fashion,
the proposed method focuses on different health degrees.
Additionally, the proposed LPAT can not only add adversarial
perturbations to the input but also to the intermediate layers or
all layers, which improves the generalization and performance
of model. Besides, it utilizes unlabeled data to further improve
performance on prediction. Extensive experiments demonstrate
the superiority of our proposed methods.

In the future, we will explore improving performance on
more healthy degrees which can give better instructions for
technicians and users to take different actions. Also, our
method calculates adversarial perturbations each time based on
current mini-batch, which is time consuming. We will further
optimize the method to reduce computation time and improve
performance. In addition, we will extend the adversarial per-
turbation methods into more other domains which have large-
scale unlabeled data such as text classification.

REFERENCES

[1] S. Sankar, M. Shaw, K. Vaid, and S. Gurumurthi, “Datacenter scale
evaluation of the impact of temperature on hard disk drive failures,”
ACM Transactions on Storage, 2013.

[2] M. M. Botezatu, 1. Giurgiu, J. Bogojeska, and D. Wiesmann, “Predicting
disk replacement towards reliable data centers,” in KDD, 2016.

[3] B. Allen, “Monitoring hard disks with smart,” Linux Journal, 2004.

[4] Backblaze, “Hard drive reliability = review for 2015,
https:/fwww.backblaze.com/blog/hard-drive-reliability-q4-2015/, 2016.

[5] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved
disk-drive failure warnings,” IEEE Transactions on Reliability, 2002.

[6] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, “Machine learning
methods for predicting failures in hard drives: A multiple-instance
application,” J. Mach. Learn. Res., 2005.

[71 B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive drive
failure prediction for large scale storage systems,” in MSST, 2013.

[8] F. Mahdisoltani, I. Stefanovici, and B. Schroeder, ‘“Proactive error
prediction to improve storage system reliability,” in USENIX ATC, 2017.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, 1997.

A. Graves, A. r. Mohamed, and G. Hinton, “Speech recognition with

deep recurrent neural networks,” in /EEE ICASSP, 2013.

[10]

(1]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

L. Sun, Y. Wang, B. Cao, S. Y. Philip, W. Srisa-An, and A. D.
Leow, “Sequential keystroke behavioral biometrics for mobile user
identification via multi-view deep learning,” in ECML-PKDD, 2017.
C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in ARXIV,
2013.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training methods
for semi-supervised text classification,” in ICLR, 2016.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” in ICLR, 2017.

S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, 1951.

Golub, G. H, and H. A. Van der Vorst, “Eigenvalue computation in
the 20th century,” Journal of Computational and Applied Mathematics,
2000.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” /IEEE TPAMI, 2002.

C. Xu, G. Wang, X. Liu, D. Guo, and T. Y. Liu, “Health status
assessment and failure prediction for hard drives with recurrent neural
networks,” IEEE Transactions on Computers, 2016.

J. Li, R. J. Stones, G. Wang, Z. Li, X. Liu, and K. Xiao, “Being accurate
is not enough: New metrics for disk failure prediction,” in IEEE SRDS,
2016.

S. Sankaranarayanan, A. Jain, R. Chellappa, and S. N. Lim, “Regular-
izing deep networks using efficient layerwise adversarial training,” in
AAAI 2018.

T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning,” in ARXIV, 2017.

T. Tieleman and G. E. Hinto, “Lectur e6.5-rmsprop: Divide the gradient
by a running average of tts recent magnitude,” COURSERA: Neural
Networks for Machine Learnings, 2012.

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

(32]

(33]

[34]

[35]

[36]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” in ARXIV,
2016.

B. Cao, L. Zheng, C. Zhang, P. S. Yu, A. Piscitello, J. Zulueta, O. Ajilore,
K. Ryan, and A. D. Leow, “Deepmood: Modeling mobile phone typing
dynamics for mood detection,” in KDD, 2017.

Y. LeCun, L. Bottou, Y. Bengio, and G. Hinton, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distribu-
tional smoothing with virtual adversarial training,” in ICLR, 2016.

G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved
disk-drive failure warnings,” IEEE Transactions on Reliability, 2002.
G. Hamerly, C. Elkan, et al., “Bayesian approaches to failure prediction
for disk drives,” in ICML, 2001.

Y. Zhao, X. Liu, S. Gan, and W. Zheng, “Predicting disk failures with
hmm-and hsmm-based approaches.,” in /CDM, 2010.

Q. Wang, W. Guo, K. Zhang, A. G. Ororbia II, X. Xing, X. Liu, and C. L.
Giles, “Adversary resistant deep neural networks with an application to
malware detection,” in KDD, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., 2014.

P. Bachman, O. Alsharif, and D. Precup, “Learning with pseudo-
ensembles,” in NIPS, 2014.

J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not
just privacy: Improving performance of private deep learning in mobile
cloud,” in KDD, 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in CVPR, 2016.

	I Introduction
	II Problem Definition
	III Methodology
	III-A LSTM Based Neural Network
	III-B Layerwise Perturbation-Based Adversarial Training
	III-C Extension of Semi-Supervised Setting

	IV Experiments
	IV-A Data Preparation
	IV-B Baselines and Metrics
	IV-C Supervised Setting
	IV-D Semi-Supervised Setting
	IV-E Parameter Analysis
	IV-F Generality in Other Domains

	V Related Work
	VI Conclusion
	References

